FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

TECNOLOGIA DE FACHADAS

X MESTRADO EM CONSTRUÇÃO DE EDIFÍCIOS

"VÃOS ENVIDRAÇADOS"

"GEOMETRIA DE INSOLAÇÃO — OPTIMIZAÇÃO DO DIMENSIONAMENTO DE ELEMENTOS DE PROTECÇÃO SOLAR"

TRABALHO REALIZADO POR:

MÁRCIO MANUEL FERREIRA DA CUNHA

PROFESSOR ORIENTADOR: VASCO PEIXOTO DE FREITAS

PORTO
JUNHO DE 2005

ÍNDICE GERAL

1.	INTRODUÇÃO	3
2.	GEOMETRIA SOL-TERRA	3
3.	SISTEMA DE COORDENADAS SOLARES	4
3.	CARTAS SOLARES	5
4.	DIMENSIONAMENTO E ESTUDO DA EFICIÊNCIA DE PALAS HORIZONTAIS	7
5.	DIMENSIONAMENTO E ESTUDO DA EFICIÊNCIA DE PALAS VERTICAIS	10
6.	ESTUDO DA EFICÁCIA DE PALAS HORIZONTAIS E VERTICAIS (GRELHAS)	11
7.	GRUPOS DE PALAS E SUAS EFICIÊNCIAS	11
8.	EXEMPLOS DE PALAS EXISTENTES E SUA EFICIÊNCIA	14
9.	CONCLUSÃO	16
10.	BIBLIOGRAFIA	19

GEOMETRIA DE INSOLAÇÃO- OPTIMIZAÇÃO DO DIMENSIONAMENTO DE ELEMENTOS DE PROTECÇÃO SOLAR

INTRODUÇÃO

As condições de insolação dos vãos envidraçados são fortemente condicionadas não só pela sua orientação, mas também pelas obstruções à radiação solar directa. Estas obstruções podem resultar de edifícios fronteiros aos vãos, de palas ou outras saliências do próprio edifício e de vegetação. Em casos correntes, procura-se maximizar a insolação dos vãos envidraçados nos períodos frios e em minimizá-la nos períodos quentes. Para a utilização de dispositivos de sombreamento, torna-se necessário conhecer com exactidão a trajectória aparente do sol ao longo do ano em cada ponto do nosso planeta, sendo só assim possível, um correcto e eficaz dimensionamento destes elementos.

2. GEOMETRIA SOL-TERRA

A posição do sol relativamente a um ponto da Terra varia ao longo de do dia e também ao longo do ano. Um observador situado num ponto da superfície terrestre vê o sol tomar diferentes posições no seu horizonte visual durante o dia, devido ao movimento de rotação da terra em torno do eixo polar. Também notará que no Verão o sol atinge posições "mais altas" que no Inverno devido ao movimento de translação em torno do sol. A figura seguinte mostra a posição da terra na elíptica nos equinócios e solstícios.

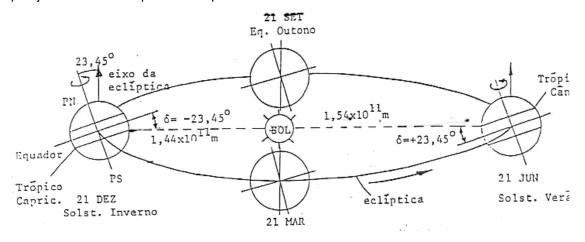


Figura 1 – Geometria Sol - Terra

Sendo a órbita elíptica, a distância Terra-Sol varia ao longo do ano aproximadamente 1,7% em relação à distância média, estando a Terra mais perto do Sol no dia 21 de Dezembro e mais afastada no dia 21 de Junho.

As inclinações do eixo de rotação da Terra em relação ao eixo da elíptica, originam que a duração dos dias e das noites para um dado dia do ano seja diferente conforme a latitude. Estas inclinações são responsáveis pela alteração do ângulo formado pelo eixo de rotação e o plano da elíptica, durante o ano, o que, excepto no equador, provoca variações anuais da duração do dia, para a mesma latitude. É portanto assim responsável pelas estações do ano. A figura seguinte mostra a variação da inclinação do eixo da terra e suas consequências.

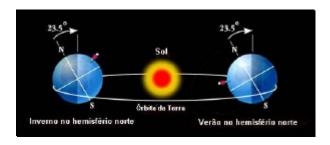


Figura 2 - Variação da inclinação do eixo da terra

3. SISTEMA DE COORDENADAS SOLARES

Como foi dito anteriormente, torna-se necessário definir com exactidão a trajectória aparente do Sol ao longo do dia e do ano em cada ponto do planeta. Desta forma, são definidas as seguintes coordenadas:

- Latitude (?) Ângulo medido entre o equador e o paralelo que passa pelo lugar considerado.
- Longitude (?) Ângulo medido entre o semimeridiano de Greenwich e o semimeridiano que passa pelo lugar.
- Azimute (A) Ângulo formado pelo plano vertical passando pelo sol e a direcção do Norte geográfico do lugar, contando positivamente no sentido N→E.
- Altura Solar (h) Ângulo formado pela direcção do Sol e o plano horizontal do lugar.
- Declinação (d) Ângulo formado pelo plano da elíptica com o plano do equador.
- Ângulo horário (H) Ângulo formado pelo plano meridiano passando pelo Sol e o plano meridiano do lugar

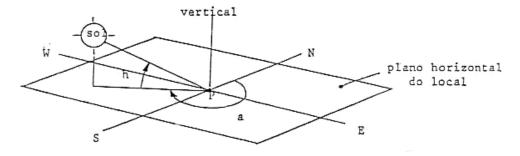


Figura 3 – Coordenadas Solares

Estas coordenadas podem ser relacionadas através das seguintes expressões:

$$Sen(h) = Sen(\mathbf{d}) \times Sen(\mathbf{f}) + Cos(\mathbf{d}) \times Cos(\mathbf{f}) \times Cos(\mathbf{H})$$

$$Sen(A) = \frac{Cos(\mathbf{d}) \times Sen(\mathbf{H})}{Cos(\mathbf{H})}$$

$$\mathbf{d} = 23,45 \times Sen\left(360 \times \frac{284 + n}{365}\right); \text{ n - dia do ano contado a partir de 1 de Janeiro}$$

$$H = 15 \times (TSV - 12); \text{ - TSV- Tempo solar verdadeiro}$$

$$TSV = TL + ET + \frac{1}{15} - fmensal; \text{ - TL - Tempo legal}; \text{ fmensal - 1 entre Abril e Setembro e}$$

0 entre Outubro e Março ; ET - Equação do tempo

$$ET = \frac{9,87 \times Sen \left[2 \left(\frac{360 \times (n-81)}{364} \right) \right] - 7,53 \times Cos \left(\frac{360 \times (n-81)}{364} \right) - 1,5 \times Sen \left(\frac{360 \times (n-81)}{364} \right)}{60}$$

$$D = \frac{2 \times ArcCos \left[-Tg(\mathbf{f}) \times Tg(\mathbf{d}) \right]}{15}; D - duração do dia$$

Pelas expressões apresentadas, é possível comprovar que:

- A altura solar é nula ao nascer e pôr-do-sol. (h=0)
- A declinação varia entre -23,45° em 21 de Dezembro (Solstício de Inverno), 0° em 21 de Setembro e 21 de Março (Equinócio de Outono e Primavera respectivamente) e 23,45° em 21 de Junho (Solstício de Verão).
- O ângulo horário é nulo quando for meio-dia em tempo solar verdadeiro. (H=0)

3. CARTAS SOLARES

A projecção aparente do Sol no plano horizontal do lugar é designada por diagrama de trajectória solar. Quando as trajectórias são representadas para vários dias do ano, numa dada latitude, obtém-se uma carta solar. As cartas solares contêm, para a mesma latitude, a mesma informação dada pelas expressões referidas anteriormente. São muito utilizadas na resolução de problemas de insolação e sombreamento, pois são de fácil utilização e muito intuitivas.

Na carta solar estão representados o Azimute variando de 0º a 360º, a altura solar variando de 0º a 90º, as trajectórias solares aparentes de alguns dias do ano, ao longo do dia. As figuras seguintes representam cartas solares que dividem Portugal em cinco zonas em função da latitude:

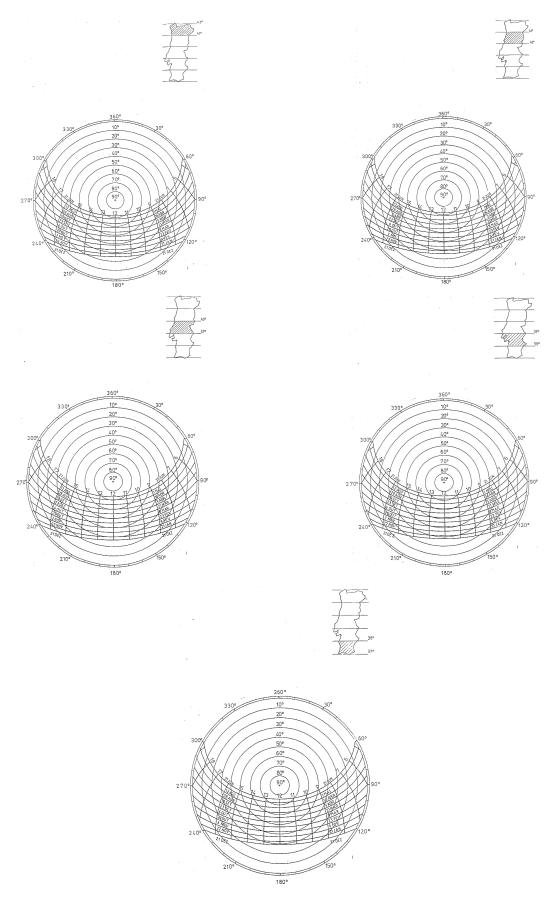
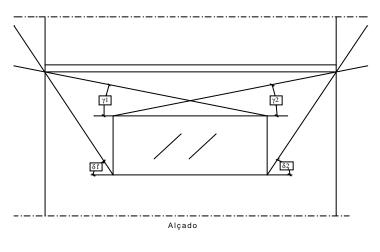
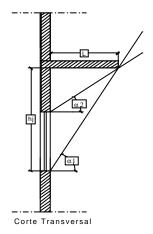


Figura 4 - Cartas Solares para Portugal Continental


Pela análise directa da carta solar, é possível tirar algumas conclusões de extrema importância, no que diz respeito à orientação dos edifícios e possíveis protecções: (edifícios situados no hemisfério norte)


- No Inverno a altura do sol é menor e uma superfície vertical virada a sul, recebe os raios solares durante mais tempo que uma com qualquer outra orientação. Por outro lado a orientação norte comporta-se como "perdedora de energia" pois não está sujeita à incidência directa do sol;
- No Verão o tempo de insolação de uma superfície vertical orientada a sul é menor do que no Inverno, ao mesmo tempo que o sol está mais alto.

Desta forma, os espaços de maior permanência numa habitação bem como os vãos envidraçados, deverão estar orientados a Sul de modo a receber o máximo de radiação solar no Inverno e terem fraca incidência do Sol no Verão. A fachada norte deve ser bem isolada e ter poucas aberturas.

4. DIMENSIONAMENTO E ESTUDO DA EFICIÊNCIA DE PALAS HORIZONTAIS

Admitindo a seguinte pala horizontal genérica em estudo:

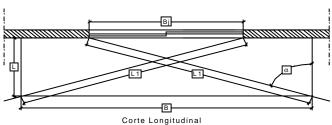


Figura 5 - Pala sombreadora Horizontal

Os passos a seguir para um correcto dimensionamento de palas horizontais são:

1º - Definir quais os meses do ano e horário ao longo do dia, nos quais se pretende sombreamento. Esta demarcação pode ser feita recorrendo às zonas de desconforto atribuídas para algumas cidades;

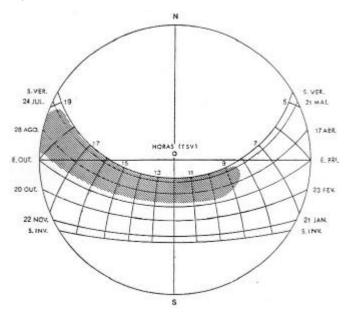


Figura 6 – Zonas de desconforto solar atribuídas à cidade de Lisboa

- 2º Traçar na respectiva carta solar a orientação exacta da fachada a sombrear, juntamente com a zona de sombreamento pretendida;
- 3º Determinar a variação dos azimutes (A) e alturas solares (h) na zona de sombreamento e escolher os mesmos que condicionam o dimensionamento;

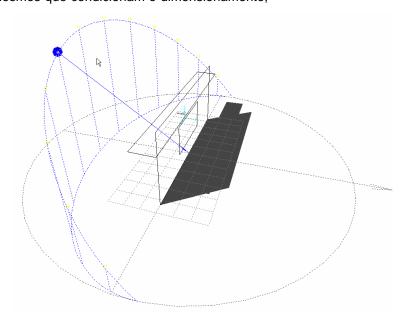


Figura 7 – Movimento aparente do Sol sobre um plano horizontal

4º - Pré-dimensionar a protecção em função dos dados obtidos, de acordo com as seguintes relações matemáticas:

$$L_{1} = \frac{h_{j}}{Tg(h)}$$

$$L = Cos(\mathbf{a}) \times L_{1}$$

$$B \ge 2 \times Sen(\mathbf{a}) \times L_{1} - B_{j}$$

5º - Verificar a eficiência da pala sombreadora. Com a ajuda de um transferidor de ângulos de sombra e dos ângulos obtidos anteriormente pelas características geométricas da pala, são definidas as superfícies de eficiência total, parcial e nulas de acordo com o seguinte semi-hemisfério celeste. Estas deverão ser sobrepostas na carta solar para verificar se coincidem com as zonas a sombrear pretendidas e com a eficiência desejada.

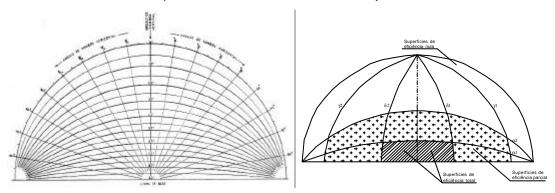


Figura 8 – Transferidor de ângulos de sombra

Figura 9 - Semi-hemisfério celeste visível para protecções horizontais

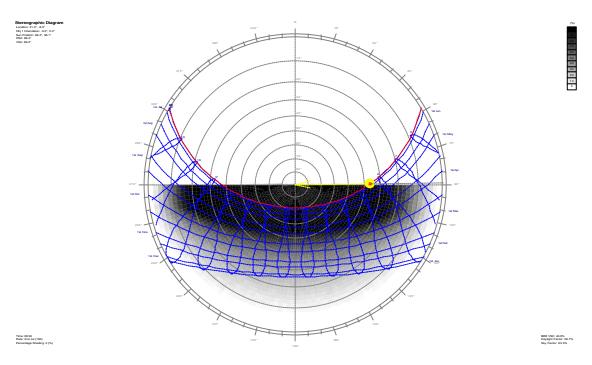
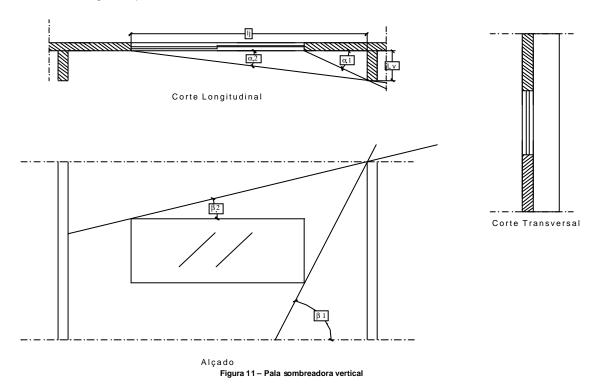



Figura 10 – Exemplo da eficiência de uma pala horizontal virada a Sul em Portugal

5. DIMENSIONAMENTO E ESTUDO DA EFICIÊNCIA DE PALAS VERTICAIS

Admitindo a seguinte pala vertical em estudo:

De forma semelhante ás palas horizontais, um correcto dimensionamento de palas verticais deve compreender os seguintes passos:

- 1º Definir quais os meses do ano e horário ao longo do dia, nos quais se pretende sombreamento;
- 2º Traçar na respectiva carta solar a orientação exacta da fachada a sombrear, juntamente com a zona de sombreamento pretendida;
- 3º Determinar a variação dos azimutes (A) e alturas solares (h) na zona de sombreamento e escolher os mesmos que condicionam o dimensionamento;
- 4º Pré-dimensionar a protecção vertical em função dos dados obtidos, através da seguinte relação matemática:

$$Tg(\mathbf{a}_1) = \frac{L_v}{l_j}$$
 ou $Tg(\mathbf{a}_2) = \frac{L_v}{l_j}$

5º - Verificar a eficiência da pala vertical. Com a ajuda do transferidor de ângulos de sombra indicado anteriormente e dos ângulos obtidos directamente pelas características geométricas da pala, são definidas as superfícies de eficiência total, parcial e nulas de acordo com o seguinte semi-hemisfério celeste. Estas deverão ser sobrepostas na carta solar para verificar se coincidem com as zonas a sombrear pretendidas e com a eficiência desejada.

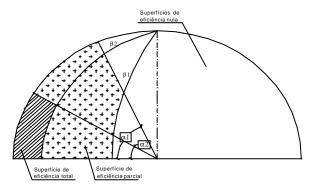


Figura 12 - Semi-hemisfério celeste visível para protecções horizontais

6. ESTUDO DA EFICÁCIA DE PALAS HORIZONTAIS E VERTICAIS (GRELHAS)

Da utilização simultânea de palas horizontais e verticais, advém muitas vantagens ao nível do sombreamento, uma vez que é possível obter uma elevada eficácia global através de elementos ligeiros, evitando o uso exagerado de palas horizontais para obter a mesma eficiência. O método de cálculo para este tipo de protecção é a conjugação dos métodos indicados anteriormente para as palas horizontais e verticais. Muitas vezes, o dimensionamento das palas verticais fica condicionado pelo dimensionamento das palas horizontais, visto que estes dois elementos terão a mesma largura. Nas figuras seguintes é possível comparar as dimensões necessárias para obter a mesma eficiência para diferentes protecções.

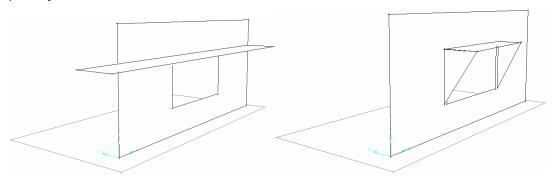


Figura 13 – Protecção Horizontal

Figura 14 – Protecção Horizontal e Vertical

7. GRUPOS DE PALAS E SUAS EFICIÊNCIAS

De acordo com o indicado anteriormente, as palas podem ser agrupadas em três grandes grupos, em função da sua geometria e eficiência:

Figura 15 – Grupos de palas

No grupo das palas horizontais, destacam-se os seguintes tipos:

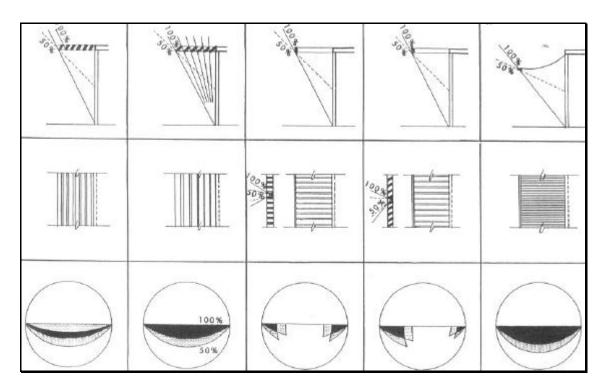


Figura 16 – Tipos de palas horizontais

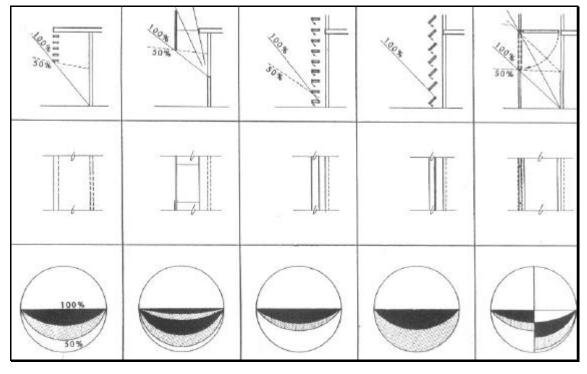


Figura 17 – Tipos de palas horizontais (continuação)

No grupo das palas verticais, destacam-se os seguintes tipos:

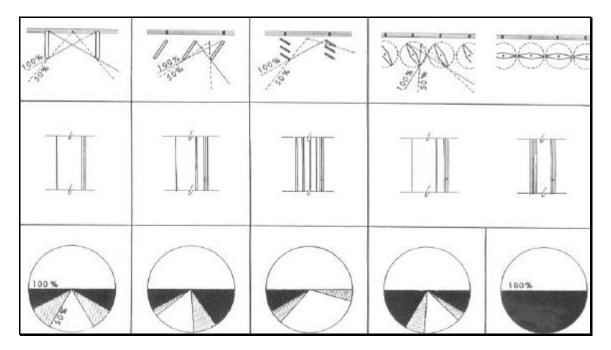


Figura 18 – Tipos de palas verticais

No grupo das grelhas, destacam-se os seguintes tipos:

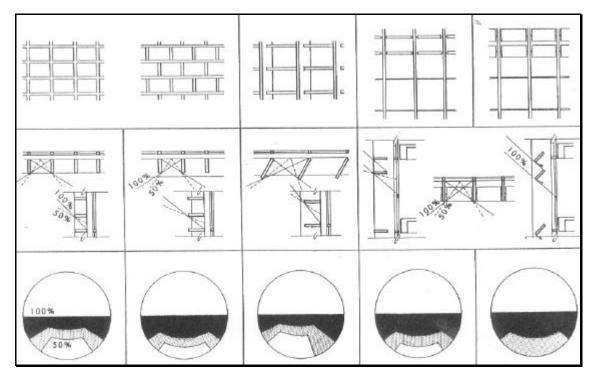
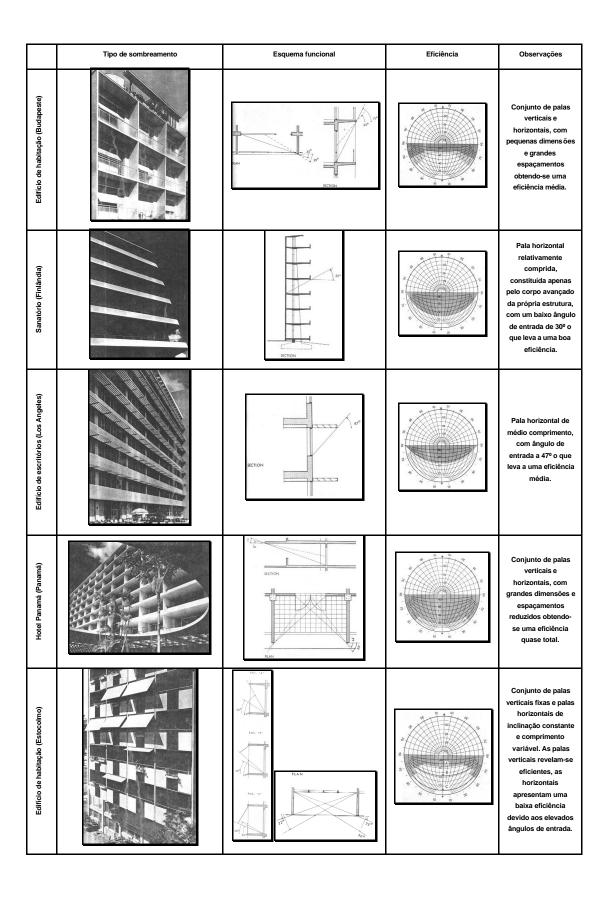



Figura 19 – Tipos de grelhas

8. EXEMPLOS DE PALAS EXISTENTES E SUA EFICIÊNCIA

No seguinte quadro é possível identificar alguns exemplos de protecções solares já construídas, sobre as quais é possível fazer algumas observações:

	Tipo de sombreamento	Esquema funcional	Eficiência	Observações
Escola em Fresno		300		Pala horizontal relativamente comprida, com ângulo de entrada a 30º o que leva a uma boa eficiência.
Sede da UNESCO		FISCAST CONCETTE OUVESTS FISCAST FAMILIAN FISC		Pala horizontal relativamente curta, com ângulo de entrada médio a 65º o que leva a uma fraca eficiência.
Edifício Seguradoras (Brasil)		WHITE ALL STOROGETS SORIZONTAL		Pala pivotante com três posições fixas. Abrange uma elevada quantidade de ângulos de entrada garantindo uma boa eficiência.
NorthWestern Mutual, Los Angeles		TON COLUMG TAX TONE TON COLUMN TAX TONE		Largas palas verticais orientáveis, permitindo uma boa eficiência.
Universidade de Minnesota				Palas verticais de pequena dimensão com fraca eficiência.

9. CONCLUSÃO

Frequentemente o "design" destes elementos de protecção é visto como um elemento arquitectónico necessário. O seu dimensionamento é realizado juntamente com a arquitectura, sendo entendidos como elementos da fachada do edifício. Por vezes a sua eficiência não é verificada, fazendo com que o conforto e sustentabilidade do edifício em estudo sejam comprometidos. É necessário conhecer com exactidão o movimento aparente do sol em cada ponto do planeta, só desta forma é possível projectar elementos de protecção que afastem o sol nas épocas indesejadas e permitam a sua radiação quando esta é desejável.

Existem várias configurações de protecções solares, função de diversos factores, mas resumidamente podem ser classificadas em três grandes grupos. Cada grupo tem a sua eficiência característica, podendo variar em função das suas características geométricas. Pelas observações feitas nos quadros anteriores é possível concluir que quanto maior for o elemento de protecção, menor for o espaçamento entre elementos e menor for o ângulo incidente dos raios solares, maior será a sua eficiência.

No objectivo de atingir um desenvolvimento sustentável, é cada vez mais importante o conhecimento destas técnicas de dimensionamento, evitando assim o uso excessivo de equipamentos de ar condicionado para climatização e a queima excessiva de combustíveis fosseis para o aquecimento.

Como resumo final, são aqui sugeridos os tipos de protecção solar mais adequados para Portugal continental, em função da sua orientação:

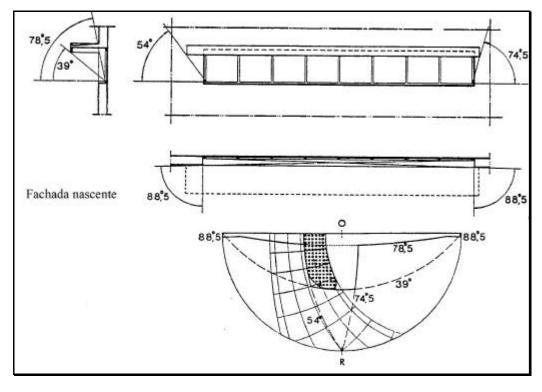


Figura 20 – Protecção solar aconselhada para sombrear uma fachada orientada a Nascente

Para sombrear a fachada nascente, são aconselhadas palas horizontais. Como não se pretende sombrear a fachada na totalidade, mas sim a partir das oito e trinta, nos meses de Abril a Outubro, (o que pode ser comprovado pela zona de desconforto inscrita na carta solar) não faz sentido a utilização de um elemento de protecção vertical, uma vez que este sombrearia o vão imediatamente a seguir ao nascer do sol, contrariando o pretendido.

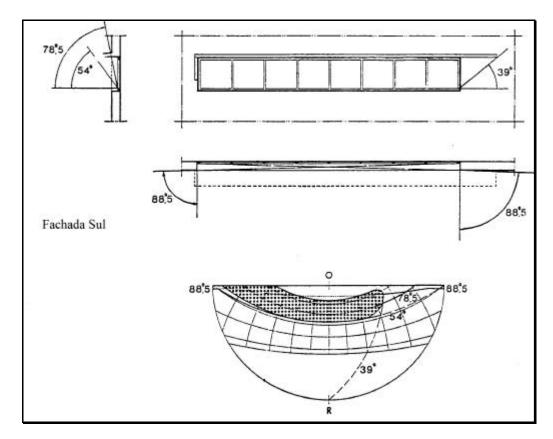


Figura 21 – Protecção solar aconselhada para sombrear uma fachada orientada a Sul

Para sombrear a fachada Sul, são aconselhadas novamente palas horizontais. A fachada sul, está numa orientação privilegiada, uma vez que através de elementos horizontais, é possível impedir ganhos solares no Verão quando o sol está mais alto e com menor exposição diária, permitindo-os no Inverno, quando o sol está mais baixo e com maior exposição diária. Deve ser feita a compatibilização dos elementos de protecção de nascente e poente quando os vãos estão adjacentes. Do lado nascente a pala horizontal deve ser prolongada e do lado poente devem ser introduzidas palas verticais, com uma altura aproximadamente até dois terços da altura do vão, como indicado na figura respectivamente.

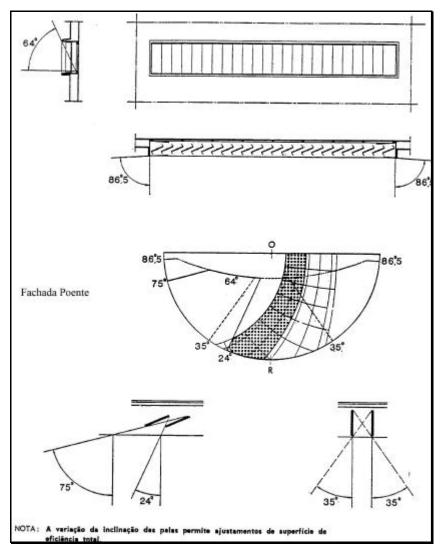


Figura 22 – Protecção solar aconselhada para sombrear uma fachada orientada a Poente

Para sombrear a fachada poente, desta vez são aconselhadas palas verticais pivotantes a toda a altura do vão. Isto porque de acordo com a zona de desconforto inscrita na carta solar, a fachada orientada a poente, deve ser totalmente sombreada entre os meses de Abril e Outubro, independentemente da hora do dia (lâminas cerradas). Por outro lado, nos restantes meses e ao longo do dia, o vão deve estar sempre desimpedido (lâminas abertas). A variação da inclinação das palas permite ajustamentos de superfície de eficiência total.

10. BIBLIOGRAFIA

- A. Cavaleiro e Silva, J. Malato, "Geometria da Insolação de Edifícios" LNEC, Lisboa, 1969
- B. Olarjay & Olarjay, "Solar Control & Shading Devices" Princeton University Press, Pinceton, New Jersey
- C. Anesia Barros Frota, "Geometria da Insolação" FAU-USP
- D. Helena Corvacho "Apontamento de Térmica dos Edifícios" FEUP Porto
- E. Sandra Monteiro "Apontamentos de Climatizações" UM Guimarães
- F. Dr. Andrew Marsh, Ecotect "SOLAR ANALYSIS Optimised Shading Design" Joondalup, Australia