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Abstract

In this note we propose a solution for the automatic bottom-following problem for a low cost autonomous underwater vehicle.
We consider the case that the seabed profile is not known in advance, and we show that it is possible to solve the bottom-
following using only one echo sounder and without the need to measure the vertical velocity component (heave velocity).
To this effect, we propose an output feedback controller that is obtained by first re-formulating the bottom-following into a
trajectory tracking problem, then constructing a reference signal generator (the exo-system) using Fourier series theory, and
finally solving the control design problem in the framework of nonlinear output regulation theory. An interesting feature of this
approach is that the combination of the Fourier series with output regulation problem allows to bypass the need to compute
explicitly the Fourier coefficients. To obtain an approximate solution of the resulting regulator equations we resort to pseudo-
spectral methods. Stability analysis that takes explicitly into account the effects of the inner-loop autopilots, disturbances, and
measurement noise is presented. Simulation results with real seabed data show the effectiveness of the proposed controller.
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1 Introduction

The bottom-following or seabed tracking problem has
been identified as one core task in an increasing num-
ber of scientific (and military) applications that require
autonomous underwater vehicles (AUV) to execute tra-
verses at a constant altitude from the sea bottom.

One of the first works reported in the literature on
bottom-following using underwater vehicles can be
traced in (Bennett et al., 1995) where proportional in-
tegrator type controllers are proposed. In (Caccia et
al., 2003), a Lyapunov based controller for a Remotely
Operated Vehicle (ROV) is developed that uses the
estimated altitude and seabed slope from the measure-
ments given by two echo sounders. Another method
proposed in (Silvestre et al., 2009) for bottom-following
takes into account the terrain characteristics ahead of
the vehicle that are also provided by two echo sounders.
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The main idea amounts to formulate the problem as a
discrete time path following control task, where a con-
veniently defined state error in the space model of the
plant is augmented with bathymetric preview data.

This paper is concerned with the case that the seabed
profile is not known in advance and with the additional
restriction that the proposed bottom-following solution
is to be applied to small low cost AUVs that have limited
navigation sensors. In particular, we consider the case
that there is only a single beam acoustic altimeter sen-
sor, and furthermore, it does not carry on-board a device
(e.g., a DVL) that provides the linear heave (vertical)
velocity w. It is important to stress that the above men-
tioned limitations pose considerable challenges for con-
trol design and to the best of authors knowledge there
are no bottom-following solutions that address such im-
portant practical case.

In this note, we design an output feedback bottom-
following control algorithm that exploits the output
regulation framework and pseudo-spectral methods to
approximate the solutions of the regulator equations.
To this effect, the main idea is to first re-formulate the
bottom-following as a trajectory tracking problem, then
construct an exo-system by resorting to Fourier series
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Fig. 1. Coordinate frames, positions and orientations of an
AUV

to approximate the seabed profiles, and finally solve
the control design problem in the framework of non-
linear output regulation theory. An interesting feature
of this approach is that the combination of the Fourier
series with output regulation problem allows to bypass
the need to compute explicitly the Fourier coefficients,
and further, the resulting dynamic controller embodies
naturally an observer of the seabed profile. We also con-
sider the practical situation that there exist inner-loop
tracking controllers for the linear surge velocity u and
pitch angular rate ¢ and take their dynamics explic-
itly into account in the stability analysis and control
design. In particular, we show that the tracking error
converges to a small neighborhood of zero, whose size
depends on the size of the external disturbances and
measurement noise, and also on the fact of not having
perfect inner-loop autopilots. With ideal autopilots (in-
finite bandwidth) and in the absence of disturbances
and noise, the error converges to zero.

The paper is organized as follows: Section 2 describes
the nonlinear model for the vertical plane dynamics of
an AUV and formulates precisely the addressed bottom-
following problem. Section 3 states the output feedback
controller design procedure, and in Section 4 the stabil-
ity analysis is discussed. In Section 5, the performance of
the proposed control algorithm is evaluated using com-
puter simulations and real seabed data. Section 6 con-
tains concluding remarks. Part of this work was pre-
sented in preliminary form in (Adhami-Mirhosseini et
al., 2011).

2 Control problem formulation

This section describes the AUV equations of motion used
for control design and formulates the bottom-following
problem. Fig. 1 illustrates the AUV coordinate frames,
position and orientation variables. In general, the mo-
tion of an AUV can be described using six degrees of
freedom (DOF) differential equations of motion, which
can be highly nonlinear and coupled, see e.g., (Fossen,
1994). In practice, the procedure adopted to simplify the
controller design, is to split the equations into two non-
interacting models for the vertical and horizontal planes,
(Jalving, 1994). For the bottom-following case and for
control design, we are concerned with the vertical plane

and we follow the model simplification strategy. Later, it
will be shown that this strategy is indeed adequate be-
cause the closed-loop system is locally stable as long as
the neglected coupling terms are locally bounded. Fur-
ther, simulation results with the complete six degrees of
freedom model shows that the impact on the closed-loop
performance is almost negligible. In the vertical plane,
the kinematic equations take the form

& =wucosf+wsinb (1a)
2= —usinf + wcos o (1b)
=q (1c)

where u, w and ¢ are the linear and angular velocities of
the vehicle, respectively, in surge (zp), heave (zp) and
pitch (6) direction of the body-fixed coordinates {B}.
The Cartesian coordinates of the vehicle’s center of mass
is denoted by x and z, and 6 is the pitch angle. Collecting
in the vector 7, = (7¢,, Te,,, Te,) the effects of the envi-
ronmental disturbances, neglected coupling terms, and
unmodeled dynamics, the simplified equations of motion
for surge, heave, and pitch rate when there is no actu-
ated force in Zp direction (that is, the vehicle is under-
actuated) yield

Myl + Myywq + dy(W)u = 7 + 7., (2a)
Myt — myug + dy(w)w =0+ 1., (2b)
Mg + Mywuw + dg(q)q — zpBsing = 7, + 7., (2c)

where m, = m — Xy, my = m — Zy, mg = I, — My
and My = My — My are mass and hydrody-
namic added mass terms, dy(u) = —X, — Xyulul,
duw(w) = =Zw — Zyjw||w| and dq(q) = =My — Myjq/lq|
are hydrodynamic damping effects, and B denotes
the buoyancy. The values of these scalar parameters
are listed in the simulation section for a particular
AUV. In the equations, and for clarity of presenta-
tion, it is assumed that the AUV is neutrally buoyant
and that the center of buoyancy can be expressed as
(zB,yB,28) = (0,0, 2p), where zp is the metacentric
height. The symbols 7, and 7, denote the actuated force
in surge direction and torque around the y-axis of the
vehicle, respectively.

We consider the practical situation that there exist
inner-loop controllers in charge of tracking reference sig-
nals in u and ¢, and that these autopilots controllers can
be even characterized by an n-order nonlinear dynam-
ics as long as locally the origin of the related linearized
unforced dynamics are asymptotically stable. For sim-
plicity, in the paper we will assume that they are locally
characterized by first order stable dynamics.

The bottom-following problem can be stated as follow:

Consider the AUV wertical model (1) and (2) together
with measurements on the depth z and altitude h from the
seabed. Derive output feedback control laws for the surge
reference velocity u, and pitch rate reference velocity q,



to drive the vehicle to move along an Xp direction with
a desired horizontal velocity Vy at a specified constant
height hq from the seabed.

3 Controller design

In this section we derive the output feedback control laws
to solve the bottom-following problem. In what follows
we will neglect the term 7. and the dynamics of the
inner-loop feedback laws. They will be explicitly taken
into account in the stability analysis section.

Step 1: Converting the bottom-following into a trajectory
tracking problem

Let zs(z) be the (unknown) seabed profile that we would
like the vehicle to track and let T}, be a given predefined
length. Using Fourier series (Steffens, 2006), we can ap-
proximate zs; by a finite combination of N sinusoidal

functions with frequencies 2; = %—’Ti, amplitude A; and
phase ;, i.e.,
N
2s(z) = Ag + Z A;sin(4x + ;) (3)

=1

To represent (3) as a function of time, we first compute
the surge velocity reference u,(t) for the speed controller
such that the horizontal velocity of the vehicle is regu-
lated to the desired value Vj. In this case, from (1) it
follows that v "
W — wsin
Ur= cosf )
where we have assumed that the pitch angle of the vehi-
cle is not close to the singular points (2k + 1)7/2, which
in practice for this type of marine vehicles is a reasonable
assumption. Later, u, in (4) will be redefined to address
the fact of not requiring measurements of the heave ve-
locity w.
From (4) we can now conclude that when u = w,. we have
& = Vy and therefore z(t) = Vy(t — to) + z(tp). Without
loss of generality set tgp = 0 and x(0) = 0. By this re-
lation between time and horizontal position, the seabed
profile (3) can be rewritten as a time dependent signal

N
2.(t) = Ao+ Y Aisin(QVat + i) (5)

i=1

This reference signal can be produced by the following
autonomous neutrally stable system recalled exo-system

£ =S¢ (6)

0, ] . lo, QN>

-, 0 —Qy, 0

where ¢ € R?2V*1 is the state vector. The output ys of
the exo-system is defined as y, =[11010...10]&. By
setting the proper initial conditions to the exo-system,
the reference signal (5) is equal to the output of the exo-
system, i.e. Z4(t) = ys(t) for all ¢ > 0. Later, it will be
clear that the resulting controller will include a subsys-
tem, which can be viewed as an observer of the seabed
profile that receives continuously the measurement sig-
nals of the depth z and altitude h and outputs an esti-
mate of the seabed z;. In fact, this observer uses (6) and

takes the form & = S€ — L(z+h— Fé), 2, = FE with
appropriate matrices L and F'.

The AUV equations with u = u, is reduced to
iy = fp(@p,q) (7)

where z, = [z, w, 0] and

—Vytanf + %

cos 6
_ | z. Zwlw v
fo=| Zowt 2ol | + M (Vi wtang) g
q

At this point, we have converted the bottom-following
into an equivalent trajectory tracking problem with
the additional feature of being in the framework of the
nonlinear output regulation (NOR) problem with plant
model (7), exo-system (6) and error ¢ = ys — z — hgq. To
simplify the notation in design procedure, we replace
z + hg by z. Thus, hereafter the output to be regulated
is changed to e = y5 — z.

Step 2: Output regulator design

Using the nonlinear output regulation methodology, see
e.g., (Isidori, 1995; Marconi and Praly, 2008; Huang,
2004; Pavlov et al., 2006), we propose a dynamic con-
troller of the form

n =01, Ym)

8
qr = k(nvym) ( )

where y,, satisfies the output equation

z 1 0 0
Ym = :mep+Fm§; Cn = y
Zs 0 0 O
0
F, =
1 1 0---1 0

(9)
Note that in (8), y,, will be a signal provided by the set
of sensors that measure the depth z and the altitude h
(where z5 = z 4+ h). Later we will consider and analyze
the real situation of these measurements being corrupted



by noise. Returning to the design procedure, we first
derive a state feedback controller ¢, = a4(¢) + K(z, —

m(€)), where ag(€) and 7(€) = [m.(€), mw(€), me(§)],
with a4(0) = 0 and 7(0) = 0, are mappings resulting
from the solution of the regulator equations

aﬂz Sf = —Vytanmy +

co%ﬂg
wa
wasg = Tizﬂ'w‘i‘ m‘ ‘Ww‘ﬂ'w‘
+% Co‘gre — Ty tanﬂg) Qg (10)
8”955 = g
0 =[11010...10¢—m,

The matrix gain K is computed such that the state-
space matrix of the closed-loop linearized system of the
reduced plant model (7) at the origin Ax = A,+ B, K is
Hurwitz. In the above, A4, gi L and By, = aaﬁ

»1(0,0) 4 1(0,0)
are the state and input matrix of the linearized reduced
model (7).

Now, the dynamic controller takes the form

m = fp(m,q) — L1 (Ym — Crum1) (11a)
= Sn2 — L2 (ym — Finn2) (11b)
gr = ag(n2) + K (m — m(n2)) (11c)

where n; € R? and 1o € R2N+1 are controller states that
estimate x,, and £, respectively. The matrices L; and Lo
are computed such that

A, 0
0 S

L,
Lo

Ay = [cm Fm} (12)

is Hurwitz. Note that the reference signal u,. for the surge
velocity in (4) can now be modified to use the estimated

states 1 = [z, D, ng]T as follows
Vi — N Si

up = 42— w2 T ST 70 (13)
cos My

Step 3: Obtaining an approximated solution of the regu-
lator equations

A typical problem that arises in the NOR framework is
the fact that in general there is no closed form solution
of the regulator equations. The computation of an ap-
proximation solution is an alternative way to overcome
this difficulty. For that effect, one of the oldest meth-
ods is to use truncated Taylor series expansion, which
is an easy method in computation and complexity. We
did not follow that approach since for our case, the Tay-
lor fails in accuracy because it is too local (not good

when ¢ € R?V*1 is not so close to the origin) and also
the regulator equation (10) is not smooth. To solve the
problem of convergency and accuracy in distant point,
we propose to use a pseudo-spectral method because it
offers high accuracy with fast convergence in approxi-
mation order and reasonable computational complexity.
The main idea is to compute the solution to the regu-
lator equation (10) at some collocation points 9 € T
fori=1,...,mq in a rectangular subspace Z C R2V+1,
and approximate w(§) and a4 (§) by

m(&) ~ Y w(EMnLE)
ay(§) =~ ZT‘H aq(gm)li(g)

where [;(.),i = 1,...,m, are Lagrange bases polynomi-
als with respect to the selected collocation points, which
attains value 1 at one of the collocation points and van-
ishes in the others. Lagrange bases are not unique, a
simple choice is

(14)

ma 2N+1 f[k]
=11 II = [Z] k, i=1,...,mq (15)
k 1 7j=1 g j

Note that by substituting the approximated mapping
(14) into the regulator equations (10) and isolating the
obtained equation at the i*" collocation point, we have

S Gl Selin(eld) = £, (r(€l), ag(El))
0=1[11010...10]¢d — 7, (£l
(16)
Thus, writing these algebraic equations at all collocation
points, and denoting 117 = [ (¢MHT ... w(glma)T,
ag (€M), - a,(€lmal )], we obtain a system of nonlinear
algebraic equations compactly written as

DII = F, (1) (17)

where D € R*ma*4ma ig called the derivative matrix
formed by properly ordering the known coefficients of
the left hand side of (16), and F,, € R is a nonlinear
vector function constructed from the right hand side of
(16). The algebraic equation (17) can be solved using
a simple numerical method. The number of collocation
points m, is related to the approximation order that is
set and depends on the required accuracy. For further
details of the pseudo-spectral method see (Funaro, 1991)
and (Fornberg, 1996).

4 Stability analysis

We now analyze the stability and performance of the
proposed output feedback controller in closed-loop with
sinusoidal seabed profiles, assuming exact solution of
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Ay = Ap =10, —-B,
0 Ap
0
bTLTH, bILTH, |15 0] , bT LT H,II
21 = ot =

~KAx —|K D| AL+ | -KB,K bTLYH, ~ KB,D] _KAgI - DS — KB,D + bTLTH,

Ae 0 000 0 10

App=| Bi=|-L 00 By = (20)
0 -, KLy +DLy 01
1,00

the regulator equations, but with non negligible inner-
loop dynamics, measurement noise and the presence of
bounded disturbances. To address explicitly the inclu-
sion of the inner loop dynamics, thus lifting the unreal-
istic assumption that the actual surge v and pitch rate g
equals the desired surge u, and g, respectively, we de-
fine the mismatch errors as « = v — u, and § = q — g,
and consider that the autopilots characteristics in closed-
loop can be locally described (for simplicity) by a first
order dynamics. More precisely, we assume that

=3}

= — A0 — Uy + by (18a)
q=— N — dr +bq (18b)

where b, and b, are bounded unknown disturbances due
to (but not only) the external disturbances 7. defined
in (2), and Ay, Ay > 0 are the convergence rates (band-
widths) of the autopilots. It is important to stress that
(18a) (and similarly to (18b)) matches locally what is
perceived in practice: if the reference u,. is constant, then
the autopilot will make the vehicle converge to a neigh-
borhood (with a small error) of the desired reference;
whereas for time-varying references the autopilot will
have more difficulty (depending on the bandwidth) to
keep the tracking error small. Notice also that we have
assumed first order dynamics, but the next results can
be extended for n-order nonlinear dynamics as long as
the origin of the related linearized dynamics are asymp-
totically stable. In that case, (18a) would be replaced
by &, = Ayxy + But,, and @ = Cyx, + by, with A,
Hurwitz.

Theorem 1 Consider the AUV equations of motion in
the vertical plane (1) and (2) together with the inner-loop
tracking dynamics (18), the seabed profile of the type (3)
and the dynamic output feedback controller (11), where w
and o are the solution to the regulator equations (10) in
some neighborhood W C R2N*L of the origin. Consider
also that the measurement signal y,, in (11) is corrupted
with additive bounded noise by, that is, replace y,, by
Ym + by. Then, there exists a value \* > 0 such that if

Aus Ag > A* it follows that for sufficiently small initial
conditions, the closed-loop system has bounded states,
and the vehicle altitude h = zs — z converges to a small
neighborhood of the desired constant distance hq from the
seabed. Furthermore, in the absence of disturbances and
noise, and with ideal autopilots (infinite bandwidth), the
altitude h(t) satisfies tl_l)rgo h(t) = hq.

PROOF.

Define the error vectors Z; = [z, — w(§),m — xp, N2 — g

and Zp = [@, )" . Consider the bounded measurement
noise b, and the bounded disturbances in (18) gather

in the perturbation vector wy, = [by,by, bq]T. After
straightforward computations it can be concluded that
the closed-loop dynamics can be written in the form

Ty =A% + A1aFa + Brwy + ¢1(71, F2, &) (19a)
Tog =A01Z1 + A22To + Age& + Bowp + ¢2(Z1, T2, )

(19b)
£ =5¢ (19¢)
where ¢;,7 = 1,2 vanish at the origin with their

first order derivatives. The state and input matri-

ces in (19) are defined in (20) with B, = 88‘—’;”

0,0)

© — KII. The Hessian ma-
0

T
trices H, and H, are given by H, = 8%1 (g:;;) ‘( :
0

_ Oa(n2)

_ Om(n2)
II= 87122

Y

(0) Onz

T
_ 0 9qr
and H, = Py (a%) ‘(0).

At this point we could use the center manifold theory
combined with the theory of singular perturbations to
conclude Theorem 1. We decided not to follow this path
because we would like to obtain performance bounds of
the steady state solution. To this end, we use the results
(Lemma 2) described in the Appendix.



Assume first the case of absence of noise and distur-
bances, that is, w, = 0. In this case, using a first or-
der approximation, the interconnected subsystems (19a)
and (19b) can be recognized as the one in Fig. 6, where
&(t) is a forced bounded input. Since the upper trian-
gular matrix Ay is Hurwitz from the fact that Ax and
Ay are designed to be Hurwitz and Ass is a diagonal-
izable Hurwitz matrix with A(As2) = min(\,, Ay), by
Lemma 2 it follows that there exists a positive constant
A* such that for any A,, A; > A* the equilibrium point
Z = (Z1,22) = (0,0) is locally stable. Moreover, the time
evolution of Z(t) satisfies the following inequality with a
decreasing function p : RT™ — RT, p(0) = 0,

Jim sup [Z(t)] < p (A(A22))lI€]l

In this case, the seabed tracking problem is achieved
practically, i.e.,

Jimn sup|(t) — ha(t)] < p (min(hu, Ag)) €]l

From the application of Lemma 2, it can be also con-
cluded that for infinite bandwidth inner-loop controllers,
i.e., Ay, Ay — 00, the seabed altitude tracking error con-
verges to zero.

Now, consider the closed-loop system in the presence of
noise and disturbances. The first two subsystems of the
linearized error dynamic (19), can be seen as a linear
system forced by a bounded exo-signal £ and bounded
disturbances wy as

z=Ai+ B¢+ Bywy (21)
where
A Ai 0 By
Ao Asp Aoge By

It has been shown above that for any A,, A\; > A*, the
matrix A is Hurwitz. Thus, the response of the linear
stable system (21) is bounded and satisfies the following
inequality

1Bl
A(4)

1Bsll
A(A)

Jlim sup |Z()] < [€]lo0 + llws oo
—00

which implies that if the closed-loop trajectories start
sufficiently close to the origin (z,,7,&) = (0,0,0), then
they remain bounded and the vehicle converges to
the desired distance from the seabed with a small er-
ror that depends on the bounds of the exo-signal and
the disturbances. Note also that as A,,A\; — 00, the
lim;_, oo sup |Z(¢)| will be independent of &.

Remark: From a practical point of view (important for
the tuning of the control parameters), it can be implicitly

Table 1
AUV parameters

Parameter description Symbol Value

Vehicle mass (kg) m 30

Added masses (kg) (X, Zw) (—2.2,-4.0)

Damping (kg/s,kg/m) (Zw, Zwjw|) (—3,—12.4)

Table 2
Constant parameters in the simulations
Parameter description Symbol Value
Horizontal velocity (m/s) Va 0.5
Desired distance (m) ha 5
Linear vel. u, limit (m/s) - 1
Angular vel. g, limit (rad/s) - 0.5
Fourier app. order N 1
Fourier app. horizon (m) T 100
Controller gain K [22.4, 87.3, —55.2]
T
Observer gain L {_4'0 26 3'2}
o 0 o0
T
Observer gain Lo 0 o0 }
—0.4 —1.4 —1

concluded from Theorem 1 that if the gains K and L
of the output regulator are fixed a-priori, then it follows
that it is possible to compute a critical value A\* that
corresponds to the point that for sure if the convergence
rate of the autopilots are faster, then the closed-loop
system is locally stable.

5 Simulation results

To show the effectiveness of the output regulator with
measurement feedback, we performed several computer
simulations using the complete 6DOF of an AUV model,
which contains the nonlinear coupling terms and pos-
sible disturbances. To this end, besides the inner-loop
autopilots, an heading autopilot was also implemented
to address the horizontal plane (states r and v) of the
AUYV. Table 1 shows the values of the nominal parame-
ters used for the proposed bottom-following control de-
sign and Table 2 contains the controller parameters and
simulation conditions fixed for all simulations.

The control design procedure and its implementation is
briefly summarized in Algorithm 1, where a backward
Euler method was used for discretization. To make the
simulations closer to the practical situation, the vehicle
model is discretized by a step size of 0.001 s, but the
control inputs are computed each 0.01 s, and the distance
from the seabed is measured each 0.1s. Also, we have
included saturations on the desired linear and angular
velocities u,. and g, respectively.

The first set of simulations is concerned with the tracking



Algorithm 1 Bottom-following procedure

Off-line

Input: Fourier approximation specifications: N and T,.
Numerical solution specifications: m, and Z.
Vertical model AUV nominal parameters.

Output: Approximate regulator mappings 7w and «.

Controller gains K, Ly, Lo.

1. Construct the matrix S defined in (6).

2. Compute the gains K, L1, Lo using for example a

linear-quadratic regulator (LQR) method so that Ak

and Ay, introduced in (Step 2, Section 3) are Hurwitz.

3. Determine the approximation mappings 7 and oy,

according to (Step 3, Section 3) and save the results in

a lookup table.

On-line

Input: Desired horizontal velocity V; and distance hg.
Regulator mappings 7 and oy (lookup table)
Controller gains K, Ly, Lo

Output: Control signals u, and ¢.

1. Refresh the measurements: seabed level every 0.01

seconds and the vehicle altitude every 0.1 seconds.

2. Compute the desired velocities ¢, and u, from (11)

and (13).

3. Send the computed values of ¢, and w, to the inner-

loop autopilots. Go back to 1.

15¢
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Fig. 2. Trajectories described by the vehicle with output
feedback output regulator for a sinusoid seabed profile.

of the sinusoidal seabed z; = 48 + 5sin(0.22 + %) with
a desired vertical distance hy = 5m. Fig. 2 shows the
vehicle trajectories starting from four different initial
conditions. It can be seen that the proposed controller
exhibits good performance even with initial conditions
far from the steady state.

A second set of simulations was carried out using a real
seabed profile of a volcanic seabed in the Atlantic ocean
near Azores. The data was collected in a 1 km? area with
a horizontal grid resolution of 1 m spacing. Fig. 3 shows a
part of the seabed profile and its Fourier first and second
order approximations, which can also be obtained from

40

Real seabed
— — — 1st order closed-loop app.
"+ 1st order open—loop app.
— = 2nd order open-loop app.

42

44

Seabed altitude from the sea surface (m)

54 i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100
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Fig. 3. Fourier approximations of the real seabed profile by
the open-loop and closed-loop exo-system
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Seabed profile
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Fig. 4. Trajectory described by the vehicle with output feed-
back output regulator for a real seabed profile.

the output signal of the (open-loop) exo-system (6) with
N =1 and N = 2, respectively, and with appropriated
initial conditions. For comparison, Fig. 3 also shows the
output of the observer described in (11b) that includes
the exo-system in closed-loop with initial conditions far
from the corrected ones, and with only one harmonic
(N =1) of frequency Qy = 27 /T,, T, = 100m. Clearly,
the closed-loop approximation is significantly better and
furthermore it could be concluded that at least for this
type of seabeds, one harmonic is more than enough.

Fig. 4 displays the vehicle trajectory and Fig. 5 shows
the time evolution of the tracking error e = z;, — z — h,
the control inputs and the pitch angle for ¢ € [600, 1000].
The initial conditions of the vehicle for the vertical states
were set to 2(0) = 0, z(0) = 30, w(0) = 0, 6(0) = 0,
and for the controller, n;(0) = [0,0,0]7 and 72(0) =
[0,0,30]7. It is worth noting that the vehicle follows the
bottom profile (that is not known a priori) with a fairly
small error.

To evaluate the benefits of the output regulator, a com-
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Fig. 5. Time evolution of relevant closed-loop signals with
output feedback output regulator for a real seabed profile.

Table 3
Comparison of the proposed and the simpler controllers
Method Index Sinusoidal ~ Real
. llessll2 0.14 0.77
Output regulation
|less|oo 0.08 0.75
. lless |2 4.88 1.06
Simpler controller
lless]loo 1.88 1.11

parison is made with a simpler bottom following con-
troller that is similar to the proposed one, but with-
out the exo-system component. More precisely, equation
(11) is substituted by

m = fp(nlaqr) —Li(z2—mn2)
qr = K (7]1 - [Zs - hdvovo]T)
where 71 = [1n.,79,70]T, and L; is the same ob-
server gain matrix as used for the proposed out-
put regulator. To compare both controllers, we in-
troduce the steady-state tracking error defined as
ess(t) = zs(t) — hg — 2(t), t € [tss,ts], where tg5 is
large enough time to guarantee that the transient
time is passed and t; is the final simulation time.
The following two quantitative indexes are defined:
llesslls = :SJ; e2s(t)dt and [|egs [loo = SUP¢elt,,,tf] less(t)]-
Table 3 contains the tracking error indexes obtained for
the proposed and for the simpler controllers in face of
the sinusoidal and the real seabed profiles. From Table 3
it can be concluded that the influence in performance
can be significant if the seabed is not flat. In that case,
the presence of the exo-system/observer plays a key role.

To investigate the robustness of the proposed controller
against model parameter uncertainty, a set of Monte-
Carlo simulations runs were carried out. In this case, all
the vehicle parameters were randomly perturbed up to
+20% of their nominal values. Table 4 shows the statis-
tical quantities of the tracking indexes after 100 simula-
tions. The results verify that the closed-loop system is

Table 4
Robustness study results against parameters uncertainty

Method ‘ Index Mean  Var. Min Max

Output | fless|2 084 003 065 1.17
regulation | |[less|loo 0.87 002 069 1.17
Simpler | |less]2  1.08 0.06 0.69 1.55
controller lless oo 1.10  0.08 0.59  1.57

not so sensitive to the parameters.

6 Concluding Remarks

This paper addressed the design of a seabed tracking
controller for a low cost AUV. Using the tools of non-
linear output regulation theory combined with Fourier
series expansion and pseudo-spectral methods, we have
proposed a nonlinear dynamic controller that solves the
bottom-following problem without requiring to know in
advance the seabed profile and using only one single
echo sounder to measure the altitude from the seabed.
Stability and zero tracking error of the closed-loop sys-
tem taking into account the effects of the inner-loop au-
topilots, disturbances, and measurement noise were an-
alyzed. The performance evaluated through computer
simulations indicates that the proposed controller is a
good candidate to be implemented in practice.

Appendix

In this Appendix we provide explicit bounds for the
trajectories of the interconnected system represented in
Fig. 6.

X2 X1

Gy

< ¢

Fig. 6. Interconnected system.

We make use of the following notation: |-| stands for the
Euclidean norm of a vector, the infinity norm of a signal
x(t) is defined as || (¢)||coc = sup;solz(t)], and ||A]| (resp.
IG|)) is the corresponding induced norm of the matrix
(resp. system). For any diagonalizable Hurwitz matrix
A, it is not difficult to show

1

e At
/O et < 5o (22)

where A\(A) = min; |\;(4)].



Lemma 2 Consider the interconnected system repre-
sented in Fig. 6 of the form

Gi: o1 =Anz + Aaza,
Go: 9= Agexs + Aniz1 + BE,

r; € R™ (23a)
xg ER™ £ € R™
(23b)

where A11, Ao are Hurwitz matrices and Aso is diago-
nalizable. There exists a \* > 0 such that if A(Aaz) > A*
the origin x = 0 of the overall system is stable and for
any bounded input &(t) the trajectories x1(t) and xa(t)
satisfy

. A"
limy o0 |21 (8)| < m €)oo

L= 116t oo

Moreover, if A(Az2) — o0, then x(t) converges to zero as
t — o0.

PROOF. Since systems G; and G5 are linear, the
states responses x;(t) = z;(t; 2(0),£(t)), i = 1,2 satisfy

zi(t) = z4(t;2(0),0) + z4(£;0,£(t), 1=1,2 (25)

First, consider the unforced system, i.e., £(¢) = 0. From
the small-gain theorem (Zames, 1966), the intercon-
nected system is stable if ||G1]|||Gz2]] < 1. By the defi-
nition of the induced norms of the first (resp. second)
subsystem with zo (resp. 1) as input and 1 (resp. x2)
as output, the stability condition is derived as

Muw@w/ m&%ﬁ/ ==t dt < 1
0 0

Considering the inequality (22) for Hurwitz diagonaliz-
able matrix Ass, the above stability sufficient condition
can be represented as A(Aag) > \*, where

| Avz|[| A21 ]|

AAn) 20

V=WMWMNA et <

Thus, in that case, it follows that the unforced system
responses converge to zero, i.e.,

lim z;(t;x(0),0) =0,

t—o0

i=1,2 (27)

Now, consider the zero-state response of the intercon-
nected system forced by a bounded input £(¢). The sta-
ble linear subsystems’ responses satisfy the following in-
equalities for every ¢ > 0

|21(0,6)] < [ Ava| 3 et ||dt [|za(t;0,€)]| oo
|22(t;0,€)] < || Azt]l [ le422t]|dt |1 (;0,€) [l (28)
B3 et |dt [[€(t)]

Taking the supremum over ¢ > 0 from inequalities (28)
leads to

l21.(£0,)llo0 < sy 12280, 0o
A
2240, )10 < 22 [l21.(£ 0, ) oo + 55 168100

Thus, for every A(As2) > A* we have

lims s o0 |21 (¢50,8)] < % 1€ Nloo
e [2(0:0,6)] < 3olZ L (D)

(29)
Clearly, from (25), (26) and (29), the inequalities (24) are
satisfied and for A(As2) — oo, the time response of the
interconnected system (23) converges to zero as t — co.
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