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Abstract

In this paper, we provide optimal solutions to two different (but related) input/output design problems involving large-scale
linear dynamical systems, where the cost associated to each directly actuated /measured state variable can take different values,
but is independent of the input/output performing the task. Under these conditions, we first aim to determine and characterize
the input/output placement that incurs in the minimum cost while ensuring that the resulting placement achieves structural
controllability /observability. Further, we address a constrained variant of the above problem, in which we seek to determine
the minimum cost placement configuration, among all possible input/output placement configurations that ensures structural
controllability /observability, with the lowest number of directly actuated/measured state variables. We develop new graph-
theoretical characterizations of cost-constrained input selections for structural controllability and properties that enable us
to address both problems by reduction to a weighted maximum matching problem — efficiently addressed by algorithms with
polynomial time complexity (in the number of state variables). Finally, we illustrate the obtained results with an example.

Key words: Linear Structural Systems, Input/Output Selection, Graph Theory, Computational Complexity

1 Introduction

The problem of control systems design, meeting certain
desired specifications, is of fundamental importance.
Possible specifications include (but are not restricted
to) controllability and observability. These specifica-
tions ensure the capability of a dynamical system (such
as chemical process plants, refineries, power plants, and
airplanes, to name a few) to drive its state toward a
specified goal or infer its present state. To achieve these
specifications, the selection of where to place the actu-
ators and sensors assumes a critical importance. More
often than not, we need to consider the cost per actu-
ator/sensor, that depends on its specific functionality
and/or its installation and maintenance cost. The result-
ing placement cost optimization problem (apparently
combinatorial) can be quite non-trivial, and currently
applied state-of-the-art methods typically consider
relaxations of the optimization problem, brute force
approaches or heuristics, see for instance Padula and
Kincaid (1999); Frecker (2003); Begg and Liu (2000);
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Chmielewski et al. (2002); Fahroo and Demetriou
(2000).

An additional problem is the fact that the precise nu-
merical values of the system model parameters are gen-
erally not available for many large-scale systems of in-
terest. A natural direction is to consider structural sys-
tems (Dion et al., 2003) based reformulations, which we
pursue in this work. Representative work in structural
systems theory may be found in Lin (1974); Siljak (2007);
Reinschke (1988); Murota (2009), and Liu et al. (2011);
Ruths and Ruths (2014) in the context of (structural)
controllability and observability studies in complex net-
works. The main idea is to reformulate and study an
equivalence class of systems for which system-theoretic
properties are investigated on the basis of the location
of zeros and (possibly) nonzeros of the state space rep-
resentation matrices. Properties such as controllability
and observability are, in this framework, referred to as
structural controllability and structural observability, re-
spectively. In addition, controllability and observability
properties hold for almost all possible of real matrices
satisfying the mentioned pattern (Dion et al., 2003).

In this context, consider a given (possibly large-scale)
system with autonomous dynamics

& = Ax, (1)
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where € R™ denotes the state and A is the n x n dy-
namics matrix. Suppose that the sparsity pattern, i.e.,
location of zeros and (possibly) nonzeros, of A is avail-
able, but the specific numerical values of the remaining
elements ist not known. Subsequently, let A € {0,1}"*"
be the binary matrix that represents the structural pat-
tern of A, i.e., it encodes the sparsity pattern of A by
assigning 0 to each zero entry of A and 1 otherwise.

Hereafter, we introduce two different (but related) in-
put/output design problems involving large-scale linear
dynamical systems, where the cost associated to each di-
rectly actuated /measured state variable can take differ-
ent values, but is independent of the input/output per-
forming the task. These costs can capture the specific
functionality required from an actuator and/or its in-
stallation and maintenance cost, regarding the actuation
of a specific state variables. Under these conditions, we
first aim to determine and characterize the input/output
placement that incurs in the minimum cost while ensur-
ing that the resulting placement achieves structural con-
trollability /observability as presented in Py. Further, we
address a constrained variant of the above problem, in
which we seek to determine the minimum cost placement
configuration, among all possible input/output place-
ment configurations that ensures structural controllabil-
ity /observability, with the lowest number of directly ac-
tuated/measured state variables (Pequito et al., 2013q)
as stated in P;.

Problems Statement

Given the structure of the dynamics matrix A €
{0,1}™*™ and a vector ¢ of size n, where the entry ¢; > 0
denotes the cost of directly actuating the state variable
i, determine the sparsity of the input matrix B that
solves the following optimization problems

Py _ min |1 B]e (2)
Be{0,1}nxn
s.t. (A, B) structurally controllable

B
|Bllo < ||1B']lo, for all
(4,

B') structurally controllable,

and
Py _ min |1 B]e (3)
Be{o,1}nxn
s.t. (A, B) structurally controllable.

where ||B||. = ¢TB1, ||Bl|o denotes the zero (quasi)
norm corresponding to the number of nonzero entries in
B, and 1 the vector of ones with size n. Notice that a so-
lution to P; or Py may consist of columns with all zero
entries, that can be disregarded when considering the
deployment of the inputs required to actuate the sys-
tem. Notice that in the worst case scenario, taking the
identity matrix as the input matrix we obtain structural
controllability, which justifies the dimensions chosen for
the solution search space.

Notice that in problems P; and Ps, some solutions may
comprise one nonzero entry in a column; in other words,
solutions in which an input actuates one state variable,
which we refer to as dedicated inputs. Additionally, if
a solution B* is such that all its nonzero columns con-
sist of exactly one nonzero entry, then it is referred to
as a dedicated solution, otherwise it is referred to as a
non-dedicated solution. For instance, in the context of
leader-selection problems, it corresponds to determin-
ing which agents should receive input signals from an
external source. If the signals are crafted for a specific
agent, then the input is dedicated, as it is common in
peer-to-peer communication schemes. Alternatively, if
the signal is broadcasted to a collection of (at least two)
agents, the input is not dedicated, since a collection of
individuals receive the same signal. In addition, observe
that in P; there is a restriction of obtaining a solu-
tion with the minimum number of state variables that
need to be directly actuated in order to achieve struc-
tural controllability. Without such restriction, i.e., by
possibly actuating more state variables, we may obtain
a lower cost placement achieving structural controlla-
bility, hence, the interest in studying Ps. Nonetheless,
the constrained scenario in P; may be desirable, for in-
stance, in multi-agent networks in an environment where
communication (of the input signal) is very expensive
in comparison with actuation cost of a specific agent, or
a collection of state variables for dynamical systems at
large.

Finally, note that the solution procedures for P; and Py
also address the corresponding structural observability
output matrix design problem by invoking the duality
between observability and controllability in linear time-
invariant (LTI) systems (Hespanha, 2009).

Recently, the I/O selection problem have received in-
creasing attention in the literature: the minimal con-
trollability problem, i.e., the problem of determining the
sparsest input matrix that ensures controllability of a
given LTI system (Olshevsky, 2014; Ramos et al., 2014),
and in Summers et al. (2015); Tzoumas et al. (2015);
Clark et al. (2014); Clark and Poovendran (2011);
Pasqualetti et al. (2014); Lin et al. (2014) the configura-
tion of actuators is sought to ensure certain performance
criteria, for instance, by optimizing properties of the
controllability Grammian.

Alternatively, I/O selection problem for structural lin-
ear systems has also been addressed in Commault and
Dion (2013); Dion et al. (2003); Pequito et al. (20154,
2013b,c,a, 2015b); Liu et al. (2011); Ruths and Ruths
(2014) and references therein, just to name a few. In par-
ticular, in Pequito et al. (2015a), the structural version
of the minimal controllability problem, or the minimal
structural controllability problem, was shown to be poly-
nomially solvable; an improvement on the computational
complexity was analyzed in detail for several subsystems
in Assadi et al. (2015). Notice that this is a particular
instance of P; and Ps when the costs are uniform, i.e.,



each variable incurs in the same (non-zero) cost.

The solution proposed in Pequito et al. (2015a) pro-
vides useful insights, but is not sufficient to address the
problems P; and P, with non-uniform cost. Nonetheless,
the characterizations obtained in Pequito et al. (2015q)
were used to obtain some preliminary results on prob-
lems P; and P, in Pequito et al. (2013a) and Pequito
et al. (2013c¢), respectively. These preliminary results are
based on analyzing the intrinsic properties of the class of
all minimal subsets of state variables that need to be ac-
tuated by dedicated inputs to ensure structural control-
lability; in particular, the proposed solution provided al-
gorithmic solutions with computational time complexity
O(n39), as a result of evaluating n maximum matchings
using the Hungarian algorithm Cormen et al. (2001).
In addition, in Olshevsky (2015) the problem P; is ad-
dressed for a specific binary actuation cost structure
¢ € {0,00}", and a solution with computational time
complexity O(n + m+/n) is proposed, where m denotes
the total number of non-zero entries, and O(n?-) in gen-
eral. Similarly, although (Olshevsky, 2015) provides use-
ful insights to address P, it is not sufficient to address
the problems P; with non-uniform cost, as well as Ps.

The main contributions of this paper are as follows:
by presenting new graph-theoretical characterizations
of cost-constrained input selections for structural con-
trollability and results on the properties of weighted
maximum matchings, we can cast both P; and Ps
as a weighted maximum matching problem — a well
known graph-theoretic algorithm that can be efficiently
addressed by algorithms with polynomial time com-
plexity (in the number of state variables); hence, lead-
ing to algorithms with computational time complexity
O(n*) (Mucha and Sankowski, 2004), where w < 2.373
is the lowest exponent known associated with the com-
plexity of multiplying two n x n matrices. Notwithstand-
ing, the minimum weighted maximum matching can be
arbitrarily approximated by executing linear computa-
tional complexity algorithms (Duan and Pettie, 2014),
thus linear time algorithms for obtaining approximate
solutions of P; and Ps arbitrarily close to the optimal
are readily available. In addition, the proposed solutions
are obtained while exploring the relation between these
two problems; more specifically, we use insights from
P;1 to solve P, which sheds light on possible extensions
towards less restrictive cost assumptions. More recently,
in ? the problem was extended to the case where a state
variable has a cost that depends on the input that actu-
ates it, hence, leading to a multiple heterogenous cost
scenario. Alternatively, the problem of determining the
minimum number of actuators from a given collection of
possible actuator-state configurations was shown to be
(in general) NP-hard Pequito et al. (2015b). Notwith-
standing, in ? it was shown that the same problem can
be polynomially solvable when the dynamic matrix is
irreducible.

The rest of the paper is organized as follows: Section 2

reviews results from structural systems and some graph
theorectical concepts required to obtain the main results
of this paper. Section 3 presents the main results of the
paper, in particular, a procedure to determine the min-
imal cost placement of inputs in LTI systems, as formu-
lated in P; and Ps. Section 4 illustrates the procedures
through an example. Finally, Section 5 concludes the pa-
per, and presents avenues for future research.

2 Preliminaries and Terminology

The following standard terminology and notions from
graph theory can be found, for instance in Pequito et al.
(2015qa). Let D(A) = (X,Ex,x) be the digraph repre-
sentation of A € {0,1}"*", to be referred to as the state
digraph, where the vertex set X represents the set of
state variables (also referred to as state vertices) and
Exx = {(xi,z;) : Aj; # 0} denotes the set of edges.
Similarly, given B € {0,1}"*?, we define the digraph
D(A,B) = (X UU,Ex,x U &u,x), to be referred to as
the system digraph, where U represents the set of in-
put vertices and &y x = {(u;, x;) : Bj; # 0}. Further,
by similarity, we have the state-slack digraph given by
D(A,S) = (XUS,Ex x UEs, x), where S represents the
set of (auxiliary) slack variables (or vertices) that take
the role of potential inputs in the solutions proposed to
our problems. In addition, given digraphs D(A, B) and
D(A, S), we say that they are isomorphic to each other,
if there exists a bijective relationship between the ver-
tices and edges of the digraphs that preserves the inci-
dence relation. Finally, since the edges are directed, an
edge is said to be an outgoing edge from a vertex v if it
starts in v, and, similarly, is said to be an incoming edge
to w if it ends on w.

In addition, we will use the following graph theoretic no-
tions Cormen et al. (2001): A digraph D, = (Vs, &) with
Vs CVand & C € is called a subgraph of D = (V,£). A
sequence of edges {(v1,v2), (v2,v3), -+, (Vp—1,vk)}, in
which all the vertices are distinct, is called an elemen-
tary path from vy to vg. A vertex with an edge to itself
(i.e., a self-loop), or an elementary path from v; to vy to-
gether with an additional edge (vg,v1), is called a cycle.
A digraph D is said to be strongly connected if there ex-
ists a directed path between any two pairs of vertices. A
strongly connected component (SCC) is a maximal sub-
graph Dy = (Vs, &) of D such that for every v, w € Vq
there exists a path from v to w. Notice that the SCCs are
uniquely defined for a given digraph; consequently, vi-
sualizing each SCC as a virtual node (or supernode), we
can generate a directed acyclic graph (DAG), in which
each node corresponds to a single SCC and there ex-
ists a directed edge between two virtual nodes if and
only if there exists a directed edge connecting vertices
within the corresponding SCCs in the original digraph.
The DAG associated with D = (V, £) can be efficiently
generated in O(|V| + |€]) (Cormen et al., 2001), where
|V| and |€] denote the number of vertices in V and the
number of edges in &, respectively. In the DAG repre-
sentation, an SCC (a supernode) that has no incoming



edge from any state in a different SCC (supernode) is re-
ferred to as a non-top linked SCC, since, by convention,
the DAG is graphically represented with edges between
the virtual nodes drawn downwards.

For any two vertex sets S1,82 C V, we define the bi-
partite graph B(S1,82,Es,.s,), as a graph (bipartite),
whose vertex set is given by &1 U S; and the edge set
5,5‘1,52 - {(81,82) e €& S1 € 81,82 €S } Given
B(S1,82,E€s, .s,), amatching M corresponds to a subset
of edges in &s, s, that do not share vertices, i.e., given
edges e = (s1, $2) and €' = (8], s5) with s1,s] € S and
S2,85 € Sa, e,e/ € M only if s1 # s} and sy # sh. A
bipartite graph is, by convention, depicted by a set of
vertices S in the left and another set of vertices Sy in
the right to clearly emphasize the bipartition. The ver-
tices in &1 and Sy are matched vertices if they belong
to an edge in the matching M, otherwise, we designate
the vertices as unmatched vertices. A maximum match-
ing M* is a matching M that has the largest number
of edges among all possible matchings. It is to be noted
that a maximum matching M* may not be unique. For
ease of referencing, keeping in mind the bipartite graph-
ical representation, the term right-unmatched vertices,
with respect to (w.r.t.) B(S1, Sz, s, s,) and a matching
M (not necessarily maximum), will refer to those ver-
tices in Sy that do not belong to a matching edge in M,
and are denoted by Ur(M). In addition, we introduce
the following notation: given a set of edges &s, s,, we
denote by L£(Es,.s,) and R(Es, .s,) the collection of ver-
tices corresponding to the set of left and right endpoints
of s, .s,, 1., in S and Sa, respectively.

Now, we present some specific bipartite graphs that are
closely related with the digraphs previously introduced.
More precisely, we have: (i) the state bipartite graph
B(A) = B(X,X,Ex x) that we often refer to as the bi-
partite representation of (or associated with, or induced
by) the state digraph D(A); (ii) the system bipartite
graph B(A,B) = B(X UU, X, Ex x U &y x) that we of-
ten refer to as the bipartite representation of D(A, B);
and, similarly to the latter, we have (iii) the state-slack
bipartite graph B(A, S) = B(XUS, X, Ex » UEs, x) that
we often refer to as the bipartite representation of the
state-slack digraph D(A4, S).

If we associate weights (or costs) with the edges in a di-
graph and bipartite graph, we obtain a weighted digraph
and weighted bipartite graph, respectively. A weighted
digraph is represented by the pair digraph-weight
given by (D = (V,€);w), where w : € — R{ U {oo}
is the weight function. Similarly, a weighted bipar-
tite graph is represented by the pair bipartite-weight
(B(S1,82,€s,.s,);w). Next, we revisit the minimum
weight mazimum matching (MWMM) problem (Kuhn,
1955; Munkres, 1957). This problem consists in deter-
mining the maximum matching of a weighted bipartite
graph (B(S1,S2,Es,.s,); w) that incurs the minimum
weight-sum of its edges; in other words, determining the
maximum matching M€ such that

M = arg&neiﬁl/l Z w(e),

where M is the set of all maximum matchings of
B(S1,82,€Es,.5,)-

We will also require the following general results on
structural control design from (Pequito et al., 2015a)).
We define a feasible dedicated input configuration to be
a collection of state variables to which by assigning ded-
icated inputs we can ensure structural controllability of
the system. Consequently, a minimal feasible dedicated
input configuration is the minimal subset of state vari-
ables to which we need to assign dedicated inputs to en-
sure structural controllability. Further, the feasible ded-
icated input configurations can be characterized as fol-
lows.

Theorem 1 (Pequito et al. (2015a)). Let D(A)
(X,Ex.x) denote the system digraph and B(A) =
B(X,X,Ex x) the associated state bipartite graph. Let

Sy C X, then the following statements are equivalent:

(1) The set S, is a feasible dedicated input configura-
tion;

(2) There exists a subset Ur(M™*) C S, corresponding
to the set of right-unmatched vertices of some maz-
imum matching M* of B(A), and a subset A,, C S,
comprising one state variable from each non-top
linked SCC of D(A). o

Observe that a state variable can be simultaneously in
Ur(M™) and A,, even if these sets correspond to those of
a minimal feasible dedicated input configuration; thus,
motivating us to refer to those variables as playing a
double role, since they contribute to both the conditions
in Theorem 1.

Remark 1. In Pequito et al. (2015a) general results
were given on structural input selection, in particular on
non-dedicated structural input design, i.e., in which the
structural input matriz B may possess multiple nonzero
entries in each column. To ease the presentation, we de-
note by m the number of right-unmatched vertices in any
mazimum matching of B(A) and by B the number of non-
top linked SCCsin D(A). The following characterization
of structural controllability was obtained in Theorem §
in Pequito et al. (2015a): a pair (A, B) is structurally
controllable if and only if there exists a mazimum match-
ing of B(A) with a set of right-unmatched vertices U,
such that, B has (at least) m nonzero entries, one in each
of the rows corresponding to the different state variables
in Ur and located at different columns, and (at least) 8
nonzero entries, each of which belongs to a row (state
variable) corresponding to a distinct non-top linked SCC
and located in arbitrary columns. o

3 Main Results

Despite the fact that problems P; and P> seem to be
combinatorial, hereafter we show that they can be solved



using polynomial complexity (in the dimension of the
state space) algorithms. To obtain these results, we first
present some intermediate results where we character-
ize the matchings that the bipartite graphs used in the
sequel can have (Lemma 1 and Lemma 2). Then, these
lemmas are used to characterize the MWMDMs that a
weighted bipartite graph can have, upon a specific cost
structure to be used to solve and characterize the solu-
tions to P; and Ps, see Lemma 3 and Lemma 4. Lastly,
we present the reduction of P; and P2 to a weighted
maximum matching, as provided in Algorithm 1, con-
strained to the conditions presented in Theorem 2 and
Theorem 3, respectively.

Let_S’ be anxgstructural (binary) matrix, and denote by
B(A, S) the state-slack bipartite graph associated with
the digraph D(A,.S). Note, by construction, the state-
slack digraph D(A, S) consists of n + ¢ vertices, where
the ¢ additional vertices (in comparison with the state
digraph D(A)) correspond to the slack variables, intro-
duced by S. Further, by construction, the slack variables
only have outgoing edges (associated with the nonzero
entries of S) to the state variables in D(A, S); in other
words, there are no incoming edges into the slack vari-
ables. We start by relating maximum matchings of the
two bipartite graphs B(A) and B(A,S) that will also
help in obtaining better insight and better understand-
ing of the properties of the maximum matchings of the
different bipartite graphs.

Lemma 1. Let B(A,S) =B(XUS, X, Ex x UEs x) be

the state-slack bipartite graph, B(A) = B(X,X,Ex x)

and B(S) = B(S,X,Es,x). The following statements
hold:

(1) If M5 and Mg are matchings of B(A) and B(S) re-
spectively, and R(M z) N"R(Mg) = 0, then M 5 g5 =
Mg U Mjy is a matching of B(A, S); and

(2) If Mj g is a matching of B(A,S), then Mz s =
Mg U My, where Mz = MAS N SX,X and Mg =
Mz 5N Es,x are (disjoint) matchings of B(A) and
B(S), respectively.

In particular, R(Mg) C Ur(Mjz), where Ur(Mz) is
the set of right-unmatched vertices associated with the
matching M 5z. o

Proof. The proof of (1) follows by noticing that, by con-
struction of B(A, S), we have L(Mz) N L(Mg) = 0, and
by assumption R(Mg) N R(Mg) = 0, which implies
that Mz g = Mg U M j has no edge with common end-
points; in other words, it is a matching of B(A4,S) =
(XYUS,X,Ex 1 UEs x), by definition of matching.

On the other hand, the proof of (2) follows by noticing
that the edges in M 4 g belong to either Ex x or s x and
noticing that M4 and Mg have no common endpoints
since My g is a matching. Subsequently, it is easy to

see that M4 and Mg are matchings of B(A) and B(S),
respectively. O

Subsequently, from Lemma 1, we can obtain the fol-
lowing result characterizing the maximum matchings of
B(A,S).

Lemma 2. Let B(A,S) = B(X US,X,Ex.x UEs x) be
the state-slack bipartite graph. If M} o is a mazimum
matching of B(A,S), then M% s = Mg U My, where
Mz = Mz sNEx x and Mg = Mz gNEs x are (disjoint)
matchings of B(A) and B(S), respectively, and Mg con-
tains the largest collection of edges incoming into a set of
right-unmatched vertices of some mazimum matching of
B(A). In particular, R(Mg) C Ur(Mj3), where Ur(M z)
is the set of right-unmatched vertices associated with the
(possibly not mazimum) matching M 5. o

Proof. From Lemma 1-(2), we obtain that Mz and M3z
are (disjoint) matchings of B(A) and B(S), respectively.
Now, recall that any set of right-unmatched vertices Ur
associated with a matching of a bipartite graph com-
prises a set of right-unmatched vertices U}, associated
with a maximum matching of that bipartite graph (Pe-
quito et al., 2015a). Next, given that ME,S‘ is a maximum
matching of B(A4, S), it follows that UR(M}‘S) comprises
the lowest possible number of right-unmatched vertices.
Now, to establish that Mg contains the largest collec-
tion of edges incoming into a set of right-unmatched ver-
tices of a maximum matching of B(A), suppose by con-
tradiction, that this is not the case. Then, there exists
at least one more right-unmatched vertex in the set of
right-unmatched vertices associated with a matching M’
of B(A,S) than in the set of right-unmatched vertices
associated with a maximum matching Mji g hence, M !
cannot be a maximum matching, a contradiction. O

To obtain particular maximum matchings we can con-
sider different cost structures. Therefore, we now extend
the results of Lemma 1 and Lemma 2 to weighted bipar-
tite graphs.

Lemma 3. Let A € {0,1}"*" and S € {0,1}"*?
with p < n. Consider the weighted state-slack bipartite
graph (B(A, S);w), where B(A,S) = B(X US,X,& =
(Ex x US&X)), and w : £ — RS‘ U {oo} such that
wleg) > wlez) = ¢z € R, with eg € Esx and
ei € Ex.x. A minimum weighted mazimum matching
M3 5 of (B(A, S);w) is given by

where £ consists in the largest collection of edges in-
coming into a set of right-unmatched vertices associated
with a maximum matching M of B(A) and such that £
incurs in the lowest weight-sum among all possible col-
lection of edges incoming into a set of right-unmatched
vertices associated with a mazimum matching of B(A). o

Proof. From Lemma 2, we have that any maximum
matching of B(A,S) comprises a set £ C Es x that



consists in the largest collection of edges incoming into
a set of right-unmatched vertices associated with a
maximum matching M?% of B(A). In addition, since the
weights of the edges in £x x are uniform and less than
the weights of the edges in &s x, it follows that the
edges from €y x are preferred over the edges in s x
as far as the maximum matching M}S is concerned;

consequently, the edges from Ex x in M} o are those

that belong to a maximum matching M% of B(A). By

noticing that the weight-sum of all matchings of B(A)
incur in the same cost, and a set £§ with the character-
istics previously described must belong to the maximum
matching M 5 of (B(A,S);w), the minimum cost of

}L g 1s achieved by considering the set £F incurring in
the lowest weight-sum, among all possible collection of
edges incoming into a set of right-unmatched vertices
associated with a maximum matching of B(A). O

By reversing the inequality between the weights of the
edges between state variables and those outgoing from
the slack variables, we obtain the following result.
Lemma 4. Let A € {0,1}"*™ and S € {0,1}"*P
with p < n. Consider the weighted state-slack bipartite
graph (B(A, S);w), where B(A,S) = B(X US, X, € =
(Exx U&sx)), and w : € — R U {oo} such that
wleg) < wlez) = ¢z € RY, with eg € Esx and
eix € Ex.x. A minimum weighted mazimum matching
M3 g of (B(A, S);w) is given by
Mj 5= MU Mg,

where Mg and Mz are as given in Lemma 2, and Mg
is a mazimum matching of B(S) = B(S, X, Es x) whose
edges incur in the lowest weight-sum among all possible
mazimum matchings of B(S). o

Proof. The proof follows a similar reasoning to that in
the proof of Lemma 2. In particular, notice that Mg is a

maximum matching of B(S) because a weight-sum of the
edges of a maximum matching of B(S) is smaller than
that of a collection of edges of B(A,S) with the same
size containing edges from £x _x, and secondly it consists
in the largest collection of edges incoming into a set of
right-unmatched vertices associated with a maximum
matching M} of B(A). O
Now, we present the (general) reduction of P; and P
to a MWMM problem in Algorithm 1. The solutions ob-
tained are dedicated, and to obtain a solution to either
problem depends on: (i) a specific weight function, and
(ii) an interpretation of the minimum weighted maxi-
mum matching obtained. Later, we explain how the ded-
icated solutions can be used to characterize all possible
solutions to P; and Ps by recalling Remark 1, see Re-
mark 2 for details. Before we present the weight func-
tions and interpretation of the minimum weighted max-
imum matching that lead to dedicated solutions to P;
and Ps, the general reduction of P; and Py to a MWMM
problem in Algorithm 1 can be intuitively described as
follows.

Algorithm 1 Solution to Py /P

Input: The structural n X n system matrix A, and the vec-
tor ¢ of size n comprising the cost of actuating each state
variable. ~

Output: A solution B to Pi/P2 comprising dedicated in-
puts.

1. Determine the minimum number p of dedicated inputs
required to ensure structural controllability (Pequito et al.,
2015a).

2. Let ./\/jT7 with j = 1,---, 3, denote the non-top linked
SCCs of D(A). Let ¢max be the maximum real value (i.e., not
considering c0) in ¢, and consider the n X p matrix S, where p
denotes the number of slack variables. In addition, consider
(B(A, S);w) where w is specific weight function associated
with P; and P2, as described in Theorem 2 and Theorem 3,
respectively.

3. Determine the MWMM M ™ associated with the bipartite
graph (B(4, S);w).

4. Consider the set of indices of the state variables J C
{1,...,n} obtained from interpreting the matching edges in
M* for problem P; and P2, as described in Theorem 2 and
Theorem 3, respectively. Set B = D(J), where D(J) is the
n x n diagonal matrix with D;; = 1if j € J, and D;j; =0
otherwise.

5. If the weight-sum of M* is finite, then (A, B) is struc-
turally controllable, and a solution to Pi/P2 is obtained,;
otherwise, the problem is infeasible, i.e., there is no feasible
B (with finite cost) such that (A, B) is structurally control-
lable.

Informal Description of Algorithm 1: The slack vari-
ables introduced, in the same number as the minimum
number of state variables required to obtain a feasi-
ble dedicated input configuration, indicate through the
matching edges with the state variables which state
variables should be considered to achieve a feasible ded-
icated input configuration. Towards this goal, outgoing
edges from the slack variables into the state variables
are chosen such that a MWMM containing these edges
exists. Next, weights are chosen such that the feasi-
ble dedicated input configuration determined incurs in
minimum cost, where the state variables considered are
determined from the matching edges in the MWMM. o

To obtain the solution to P; using Algorithm 1, consider
the following result.

Theorem 2. Consider Algorithm 1, where S;j = 1 if
z; € N¥ with k = 1,...,8, and S;, = 0 otherwise;
further, for k = 8+ 1,...,p we have Si,k =1 fori=
1,...,n; in other words, each slack variable k =1,...,0
has outgoing edges to all the state variables in the k-th
non-top linked SCCNL', whereas, for the remaining p— 3
slack variables we introduce outgoing edges to all state
variables. In addition, let the weight function in Step 2
to be

Cmaw —"_ 17
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Ci, GE(SJ',I',;)GES,X7jil,...,p,

(A g)(’)(,

and the interpretation of the MWMM given by M* in
Step 4 to be as follows: J ={i € {1,...,n}: (sg,xz;) €



M*, k=1,---,p}. Moreover, the overall computational
complezity of Algorithm 1 is O(n*), where w < 2.373 is
the lowest exponent known associated with the complexity
of multiplying two n X n matrices. o

Proof. First, we notice that a solution obtained using
Algorithm 1 with the proposed weight function is feasi-
ble, if the weight-sum of M7 5 is finite. Because a feasi-
ble dedicated input configuration with p state variables
exists, where [ state variables belong in different non-
top linked SCCs, and the remaining p — g state vari-
ables correspond to right-unmatched vertices in the set
of right-unmatched vertices associated with a maximum
matching of the state bipartite graph B(A) and do not
belong to the non-top linked SCCs.

Therefore, from Lemma 2 we can argue that a maxi-
mum matching of B(A, S) contains edges outgoing from
slack variables and ending in all right-unmatched ver-
tices with respect to a maximum matching of B(A). Fur-
thermore, there exists a maximum matching M}L g of

B(A, S), where all slack variables belong to matching
edges in M:i,g' In the former case, due to the proposed
construction, there is at least one edge from a slack vari-
able to each non-top linked SCC; hence, by Theorem 1,
the collection of the state variables, where the edges with
origin in slack variables belonging to Mji, 5 end, is a fea-

sible dedicated input configuration; such a collection is
also minimal since it has exactly p state variables — the
size of a minimal feasible dedicated input configuration.

Consequently, we aim to determine such a matching,
which will be accomplished by considering a MWMM
problem. More precisely, we associate a weight function
w as proposed. Consequently, taking (B(A, S);w) to be
the weighted version of B(A4, S) with the weight function
as previously described, by invoking Lemma 4, there ex-
ists a maximum matching M7 ¢ of B(A,S), where each
edge with origin in slack variables belonging to M ji, g

indicates which state variables should be actuated, and
such that the sum of the weights of the edges in M}S
is finite. In other words, an infinite cost would corre-
spond to the case where no feasible dedicated input con-
figuration exists, i.e., no finite cost input matrix B can
make the system structurally controllable. In summary,
we obtain a minimal feasible dedicated input configura-
tion with the lowest cost, which corresponds to a (dedi-
cated) solution to P;.

Now, to conclude that B obtained by Algorithm 1 in-
curs in the minimum cost, suppose by contradiction
that this is not the case. This implies that, there ex-
ists another feasible B’ leading to a smaller cost. If
B’ has multiple nonzeros in the same column, given
Remark 1, there exists B” with the same cost as B’
and with at most one nonzero entry in each column
such that (A, B”) is structurally controllable. Conse-
quently, by letting D(4,B") = (X UU,Ex » U Ey x)
and D(A,S) to be isomorphic, and considering the

weight function w as in Algorithm 1, it follows by
Lemma 4 that there exists a maximum matching M" of
(B(A4,5) = (X US,Ex x U&s x);w) containing Es x.
Nevertheless, this is a contradiction since it implies
there exists a maximum matching M” incurring in a
lower cost than M™* obtained, and used to construct B.

Finally, the computational complexity follows from
noticing that Step 1 can be determined by solving a
MWMM (Pequito et al., 2015a). Step 2 can be com-
puted using linear complexity algorithms. Step 3 con-
sists in solving a MWMM. In addition, Step 4 consists
of a for-loop operation which has linear complexity, as
well as Step 5. Therefore, the complexity of solving the
MWMM dominates, whose solution can be determined
in O(n*) (Mucha and Sankowski, 2004), and the result
follows. O

Next, we present the solution to P, using Algorithm 1.

Theorem 3. Consider Algorithm 1, where S = Loxp 18
the matrix with all entries equal to 1; in other words, each
slack variable has outgoing edges to all the state variables.
In addition, let the weight function in Step 2 to be

Cmax+17 eegX,Xa
Cis e = (sk,m;) € Esx and z; € N*
kE=1,...,5,
=3 :
Ci+ s €= (k1) € Es.x and x; ¢ NF,
E=1,...,5,
Ci, GE(Sk,fEi)ESS’X,k:ﬂ+1,...,p,
where k. corresponds to the minimum cost associated

with the state variables in ./\f,;‘r Further, let the interpre-
tation of the MWMM given by M™ in Step 4 to be as
follows: let M* = {(sg, Zox)) : k=1,--- ,p} where o(.)
is a permutation of the state variables indices. Consider
O = Uj=1....p Sl where

Y = { {Zotmy}s 2oy € N,
{irg(kﬁm’]:nin}? ifxa(k) ¢ ./\/}37
k

with x% .~ a state variable in NiT with the minimum cost,
and take J = {i € {1,...,n} : =z, € ©}. Moreover,
the overall computational complezity is of O(n*), where
w < 2.373 is the lowest exponent known associated with
the complexity of multiplying two n X n matrices. o

Proof. The proof follows similar steps to those in Theo-
rem 2, where for the feasibility and minimality we need
to notice that because of the (potential) double-role of
the state variables in a minimal feasible input configu-
ration (i.e., state variables in a non-top linked SCC and
right-unmatched vertices), we may be able to further re-
duce the cost by considering two state variables instead
of one playing a double role used in the construction of
a minimal feasible dedicated input configuration (asso-
ciated with a solution to P;), while retaining the feasi-
bility. O



Finally, in Remark 2 we characterize all possible solu-
tions to P; and P, given a dedicated solution obtained
with Algorithm 1. o

Remark 2. Now, consider (B(A, B¢) = (X US,Ex x U
Eu x),w') where B¢ contains only the non-zero columns
of B obtained from Algorithm 1, i.e., the effective inputs,
and w' is given as follows:

1, e€eéxy x,
w'(e) = Ay
2, ec gu_’)(.

Therefore, considering (B(A, B¢); w) and using Lemma 3,
a MWMM comprises the edges from &y x with end-
points in the state variables that belong to the set of
right-unmatched vertices Ur(M%) associated with a

mazximum matching M7 of B(A). Consequently, from
Remark 1 and the dedicated solution obtained with Algo-
rithm 1, we can further obtain a non-dedicated solution
to P1/Pa; more precisely, one requires m distinct in-
puts, where m is the number of right-unmatched vertices
Ur(MY), assigned to those state variables in Ur(M%)
and some input (potentially the same) must be assigned
to the remaining state variables required to ensure struc-
tural controllability (identified by the dedicated solution,).
Finally, because the cost is associated with each directly
actuated state variable and is independent of the la-
beled input variable, the (overall) costs attained by the
dedicated and non-dedicated solutions are the same. ©

4 TIllustrative Example

Consider the state digraph depicted in Figure 1 and
the manipulating costs ¢ = [50 oo 10 10 1 10 20]. The

solutions to P; and Ps are now presented, resorting
to Algorithm 1 with the additional constraints as in
Theorem 2 and Theorem 3, respectively. In Step 1 of
Algorithm 1, we obtain that the minimum number of
dedicated inputs required to ensure structural control-
lability is p = 2. Thus, two slack variables, denoted by
$1, 82, are introduced. From each slack variable, new
edges to the state variables are introduced to obtain the
bipartite graph (B(A, S);w) as described in Algorithm 1
— Step 2; see Figure 1 a) and Figure 1 b) for the asso-
ciated weighted digraphs considering the constraints in
Theorem 2 and Theorem 3, respectively. The MWMMs
obtained in Step 3 to address P; and P, are M! =
{(517 'Il)a (527 SCG), (‘I27 1:2)7 (1317 l'3>, (I37 I’4), (1’4, I5)a
(z5,27)} and M? = {(s1,4), (52, %), (22, 21), (1, 73),
(3, 22), (x6,x5), (x5,27)}, respectively. Subsequently,
from Step 4 we obtain J' = {1,6} and J? = {3,4,6},
where the associated actuation cost is 60 and 30, re-
spectively. Notice that the sum of weights in M! and
M? is finite, hence, D(J!) and D(J2) are (dedicated)
solutions to P; and P, respectively. In addition, notice
that by actuating more state variables it is possible to
further minimize the overall cost; in particular, this is
due to the fact that z; is a state variable with double
role, i.e., besides being a right-unmatched vertex, it is
also a variable in a non-top linked SCC.

Fig. 1. An illustrative example of a digraph D(A), where
the SCCs are inscribed in the dashed boxes and the non-top
linked SCC labeled by N{. The edges’ costs are depicted by
gray labels, the edges that are not depicted have co cost, and
the edges between state variables have cost equal to 51. In
this figure, we present the reduction Step 2 of Algorithm 1;
more precisely, in a) we used the weight function in Theo-
rem 2, and in b) the one associated with the weight function
in Theorem 3.

5 Conclusions and Further Research

In this paper, we provided a systematic method with
polynomial complexity (in the number of the state vari-
ables) in order to obtain minimal cost placements of
actuators ensuring structural controllability of a given
LTI system. The proposed solutions hold under arbitrary
non-homogeneous positive assignment costs for the ma-
nipulation of the state variables. By duality, the results
extend to the corresponding structural observability out-
put design under cost constraints. The non-homogeneity
of the allocation cost makes the framework particularly
applicable to input (output) topology design in large-
scale dynamic infrastructures, such as power systems,
which consist of a large number of heterogeneous dy-
namic components with varying overheads for controller
(sensor) placement and operation. Future research may
focus on the development of solutions to actuator /sensor
placement under more general assumptions on the cost.
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