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Abstract

In this paper, we address the robust minimal controllability problem, where the goal is, given a linear time-invariant system,
to determine a minimal subset of state variables to be actuated to ensure controllability under additional constraints. We study
the problem of characterizing the sparsest input matrices that assure controllability, when the autonomous dynamics’ matrix
is simple when a specified number of inputs fail. We show that this problem is NP-hard, and under the assumption that the
dynamics’ matrix is simple, we show that it is possible to reduce the problem to a set multi-covering problem. Additionally,
under this assumption, we prove that this problem is NP-complete, and polynomial algorithms to approximate the solutions
of a set multi-covering problem can be leveraged to obtain close-to-optimal solutions.
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1 Introduction

The problem of guaranteeing that a dynamical system
can be driven toward the desired state regardless of its
initial position is a fundamental question studied in con-
trol systems and it is referred to as controllability. Sev-
eral applications, for instance, control processes, multi-
agents networks, control of large flexible structures, sys-
tems biology and power systems (Egerstedt},[2011} |Siljak],
2007} [Skogestad,, |2004) rely on the notion of controllabil-
ity to safeguard their proper functioning. Subsequently,
it is important to identify which subsets of state vari-
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ables need to be actuated, or what is the placement of
actuators required, to ensure controllability (van de Wal
and de Jager] 2001} |Olshevskyl, 2014} [Pequito, Kar and
Aguiar, 2016)).

Moreover, actuators may malfunction over time due to
the adverse nature of the environments where the actu-
ators are deployed, e.g. due to the wear and tear of the
materials, or due to external (adversarial) influence of an
agent aiming to disrupt the proper functioning of the dy-
namical system. In fact, a classical example of such ma-
licious attack is the Stuxnet malware incident (Langner,
2011)), in which the controller’s input response to a tem-
pered measured output lead the system away from its
normal operating conditions. Thus, the control designer
needs to consider such scenarios, while accounting for
the actuator placement (Velde and Carignan, (1984)). Ad-
ditionally, as the systems become larger (i.e., the dimen-
sion of their state space), we aim to identify a relatively
small subset of state variables that ensure the controlla-
bility of the system, for instance, due to economic con-
straints (Olshevskyl 2014]). Consequently, in this paper
we address the following natural design question:

Q1: What is the minimum number of actuated state vari-
ables we need to consider to ensure the controllability of
a dynamical system if a specific number of actuators fail-
ures occur?

To formally capture Q;, we introduce and study the ro-
bust minimal controllability problem (rMCP) that aims
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to determine the minimum number of state variables
that need to be actuated to ensure system’s controllabil-
ity, under the possible failure of a specified number of ac-
tuators. This is a generalization of the minimal control-
lability problem (MCP) (Olshevsky [2014), which can
be obtained as a particular case of the rMCP when no
actuator fails. Therefore, the MCP is the first step to
understand resilience and robustness properties of dy-
namical systems since it unveils which variables need to
be actuated.

Finally, it is important to mention that the rMCP can
be stated regarding observability, by invoking the du-
ality between controllability and observability in LTI
systems (Hespanhal [2009). In particular, Shoukry and
Tabuadal (2014)); |Chen et al.| (2015); [Fawzi et al.| (2014)
provide necessary and sufficient conditions concerning
the sensor deployment to ensure that a reliable estimate
of the system is recovered. More importantly, those
conditions can be achieved by design, when solving the
rMCP. Hence, guaranteeing the design of stable ob-
servers to proper monitor the state evolution of an LTI
system. Furthermore, the results presented in this paper
are for discrete-time, but they are readily applicable to
continuous-time LTT systems.

Related Work: This paper follows up and subsumes
previous literature by considering the deployment of
actuators to ensure controllability under possible actu-
ation failures. When no actuators fail, it extends the
results available for the MCP, as we overview next.
In Nabi-Abdolyousefi and Mesbahi (2013)) the controlla-
bility of circulant networks is analyzed by exploring the
Popov-Belevitch-Hautus eigenvalue criterion, where the
eigenvalues are characterized using the Cauchy-Binet
formula. The controllability in multi-agents with Lapla-
cian dynamics was initially explored in Tanner| (2004]).
Later, in Rahmani et al.| (2009) and Egerstedt et al.
(2012), necessary and sufficient conditions are given in
terms of partitions of the Laplacian graph. In|Parlangeli
and Notarstefano| (2012)), the controllability is explored
for paths and cycles, and later extended by the same
authors to the controllability of grid graphs by means
of reductions and symmetries of the graph (Notarste-
fano and Parlangeli, 2013)), and considering dynamics
that are scaled Laplacians. In|Kibangou and Commault
(2014) and |Zhang et al.| (2011), the controllability
is studied for strongly regular graphs and distance-
regular graphs. Recently, new insights on the control-
lability of Laplacian dynamics are given regarding the
uncontrollable subspace, in |[Aguilar and Gharesifard
(2015) and |Chapman and Mesbahi| (2014). In addition,
in [Pasqualetti and Zampieri| (2014)) the controllability
of isotropic and anisotropic networks is analyzed.

Furthermore, |Aguilar and Gharesifard (2015) concludes
by pointing out that further study of non-symmetric dy-
namics and controllability is required — which we address
in the present paper. Therefore, we consider a much less
restrictive assumption: A is a simple matrix, i.e., all of

its eigenvalues are distinct. Moreover, there are several
applications where A satisfies this assumption, for in-
stance, all dynamical systems modeled as random net-
works of the Erdds-Rényi type (Tao and Vu, [2017)), as
well as several known dynamical systems used as bench-
marks in control systems engineering (Ogatal 2001} [Sil-
jakl |1991} {2007).

Observe that the MCP problem presents both contin-
uous and discrete optimization properties, captured by
the controllability property and the number of non-zero
entries, respectively. To avoid the nature of this problem,
in |Olshevsky| (2014), the non-zero entries of the input
matrix were randomly generated. In the present paper,
we ‘decouple’ the continuous and discrete optimization
properties, and show that by first solving the discrete
nature of the problem, it is always possible to determin-
istically obtain a solution to MCP in a second phase.
Besides, the first step reduces the MCP to the set cover-
ing problem — well known to be NP-hard. Nonetheless,
the set covering problem is one of the most studied NP-
hard problems (probably second only to the SAT prob-
lem). Subsequently, although the set covering problem is
NP-hard, some subclasses of the problem are equipped
with sufficient structure that can be leveraged to invoke
a polynomial algorithm that approximate the solution
with ‘almost’ optimality guarantees (Bronnimann and
Goodrich, [1995)). This contrasts with the approach pro-
posed in |Olshevsky| (2014)), where an approximated so-
lution particular to the MCP problem was provided. In
addition, we study the rMCP which has not been previ-
ously addressed in the literature. Similarly to the MCP,
we show that the rMCP can be polynomially reduced to
the set multi-covering problem, i.e., a set covering prob-
lem that allows the same elements to be covered a prede-
fined number of times. Furthermore, extensions of poly-
nomial approximation algorithms are also available with
similar optimality guarantees.

Alternatively, when the parameters of the LTI system
are not exactly known, and assumed to be independent,
structural systems theory (Dion et al.,|2003) can be used
to address the MCP and rMCP while ensuring struc-
tural controllability, see Pequito, Kar and Aguiar| (2016])
and [Liu et al.|(2015)), respectively. Notwithstanding, the
tools and conditions to ensure structural controllability
are quite different from those adopted in this paper, and
a solution to the MSCP is not necessarily a solution to
the MCP when the dynamics’ matrix is simple (Pequito,
Ramos, Kar, Aguiar and Ramos| 2016)). )

Main Contributions of the present paper are as fol-
lows: (4) we characterize the exact solutions to the MCP;
(#) we show that for a given dynamics’ matrix almost
all input vectors satisfying a specified structure are so-
lutions to the MCP; (4ii) we show that the rMCP is an
NP-hard problem; (iv) we characterize the exact solu-
tions to the rtMCP; (v) we prove that the decision ver-
sion of both MCPs are NP-complete; (vi) we provide
approximated solutions to the rMCPs and discuss their



optimality guarantees; and, finally, in (vii) we discuss
the limitations of the proposed methodology. o

The remainder of this paper is organized as follows. In
Section 2, we formally state the rMCP addressed in this
paper. Next, in Section 3, we review some concepts re-
quired to prove the main results of this paper. In Sec-
tion 4, we present the main results of this paper, i.e., we
characterize the solutions to the rMCP, its complexity,
and a polynomial algorithm that approximates the so-
lutions. Finally, in Section 5, we provide some examples
that illustrate the main results of the paper and discuss
the limitations of the proposed methodology.

Notation: We denote vectors by small font letters such
as v, w, b and its corresponding entries by subscripts. A
collection of vectors is denoted by {v’},c 7, where the
superscript indicates an enumeration of the vectors us-
ing indices from a set such as Z, J C N. The number
of elements of a set S is denoted by |S|. We denote
by I, the n-dimensional identity matrix. Given a ma-
trix A, o(A) denotes the set of eigenvalues of A, the
spectrum of A. Given two matrices M; € C"*™t and
My € C™*™2 the matrix [M; Ms] is the n X (m1 +my)
concatenated complex matrix. The structural pattern of
a vector /matrix or a structural vector/matriz have their
entries in {0, x}, where * denotes a non-zero entry, and
they are denoted by a vector/matrix with a bar on top
of it. We denote by AT the transpose of A. The func-
tion - : C" x C™ — C denotes the usual inner product
in C", i.e., v-w = viw, where v' denotes the adjoint of
v (the conjugate of vT). With some abuse of notation,
-1 {0,%x}" x {0, %}"™ — {0, x} also denotes the map where
v-w # 0, with 0,w € {0,%}" if and only if there ex-
ists ¢ € {1,...,n} such that v; = w; = *. Additionally,
lv]]o denotes the number of non-zero entries of the vec-
tor v in either {0,x}™ or R™. Given a subspace H C C"
we denote by H€ its complement with respect to C, i.e.,
H¢ = C™ \ H. With abuse of notation, we will use in-
equalities involving structural vectors as well — for in-
stance, we say v > w for two structural vectors v and w
if and the only if the following two conditions hold: (i) if
w; = 0, then v; € {0,*}, and (ii) if @; = % then 7; = *.

2 Problems Statement

Under the adverse scenarios of failure or malicious tem-
per of the actuators, the dynamics of the system can be
modeled by

x(k+1) = Azx(k) + Bapau(k), (1)

where x(k) € R™ is the state of the system, u(k) € RP
is the input signal exerted by the actuators, and k € N
denotes the time instance. The matrix A € R™*™, which
is referred to as the system dynamics’ matrix, describes
the coupling between state variables. In addition, B 4
consists of the subset of columns with indices in M\ A,
the set M = {1,...,p} is the set of inputs’ labeling in-
dices and A the set of indices of malfunctioning actua-
tors. Therefore, an extra set of actuators should be in
place to ensure that it is still possible to control the sys-

tem if some inputs fail. By identifying the system (1)
with the pair (A, By 4), we aim to ensure that this pair
is controllable, so the rMCP can be posed as follows.

P: Given a dynamics’ matrix A € R™*"™ and the number
of possible input failures s, determine the matrix B* €
R™*(s+1)n guch that
B =arg _min Bl @
s.t. (A, Bapya) is controllable,
Al <s, ACM,

where M C {1,...,n} are the indices of the non-zero
columns of the matrix B. Notice that the dimension of
Bisn x (s4 1)n, to ensure that a solution always exist.
In particular, in the worst case scenario the matrix B
that concatenates s times the identity matrix is a feasible
solution. In practice, only the non-zero columns of B
matter, which we refer to as effective inputs. Notice that
when s = 0, we recover the MCP problem, so we first
provide the solution to the MCP, which we later extend
to characterize the solution to the rMCP.

The main assumptions in this paper are as follows:

Assumption 1: The dynamics’ matrix is simple, i.e., all
the eigenvalues of A are distinct. o

Observe that Assumption 1 is not very restrictive since
there are several applications where A satisfy this as-
sumption. For example, dynamical systems modeled
as random networks of the Erdés-Rényi type (Tao and
Vu, |2017)), as well as known dynamical systems used
as benchmarks in control systems engineering (Ogata,
2001} (Siljaky (1991} |2007).

Assumption 2: A [eft-eigenbasis of A is available, i.e.,
the eigenbasis consisting of left-eigenvectors of A. )

The second assumption is a technical requirement, since
an eigenbasis is determined using numerical methods.
Therefore, in practice, it may be composed of approxi-
mated eigenvectors up to a given floating-point error —
see Section 4.1 for further discussion.

3 Preliminaries and Terminology

In this section, we introduce some basic concepts of
computational complexity required to characterize the
rMCP using the following NP-hard problem.

Definition 1 ((Chekuri et al.,2012)) (Minimum
Set Multi-covering Problem) Given a set of m elements
U = {1,2,...,m} referred to as universe, a collec-
tion of n sets S = {S1,...,S,}, with S; C U, with
jed{l,...,n}, U?:1 S; = U, and a demand function
d : U — N that indicates the number of times an ele-
ment i needs to be covered. In other words, d(i) is the
minimum number of sets in S that need to be consider
such that i is member of all of this sets. The minimum
set multi-covering problem consists of finding a set of in-
dices J* C{1,2,...,n} corresponding to the minimum
number of sets covering U, where every element i € U is
covered at least d(i) times, i.e.,



J* = argmin | 7]
JC{1,2,...,n}

st. |[{jeT:ie S >d().

In particular, if d(i) = 1 for alli € {1,...,n}, then we
obtain the minimum set covering problem. o

The minimum set multi-covering problem plays a double
role in this paper: (i) we reduce the rMCP to a minimum
set multi-covering problem; and (ii) by polynomially re-
ducing (Garey and Johnson [1979)) it to the rMCP, we
show the latter to be NP-hard. Such reduction is useful
to determine the qualitative complexity class a particu-
lar problem belongs to, see (Garey and Johnson, [1979)
for an introduction to the topic.

4 Robust Minimum Controllability Problem

In this section, we propound the main results of this pa-
per. First, notice that when there are no input failures
(i.e., s = 0) in the rMCP, we recover the MCP prob-
lem. Therefore, we first provide the solution to the MCP,
which we later extend to provide the characterize the
solution to the rMCP.

To obtain the solution to the MCP, we perform the fol-
lowing two steps: (i) we polynomial reduce the structural
optimization problem in (3) to a set-covering problem
using Algorithm 1, and (ii) we determine a numerical
parametrization of an input matrix with a specific input
structure in a deterministic polynomial fashion, by solv-
ing (4). Simply speaking, by performing these two steps,
we are ‘decoupling’ the discrete and continuous proper-
ties of the MCP without losing optimality. In fact, in
Theorem 1, we provide a generic characterization of the
solutions to the MCP, and a particular instance can be
found using Theorem 2.

Next, we design a similar procedure to that used to solve
MCP to obtain the solution to the rMCP, which we show
to be NP-hard (Theorem 4). Specifically, we determine
the sparsity of an input matrix, by polynomially reduc-
ing the problem to a minimum set multi-covering prob-
lem (see Theorem 5), which is later used to characterize
the solutions to the rMCP (Theorem 6).

Complementary to the solutions to the MCPs, in what
follows, we show that (under Assumption 1) the deci-
sion versions of the rMCP is NP-complete (Theorem 7).
Subsequently, we provide a polynomial approximation
algorithm (see Algorithm 2), which solution is feasible
(see Theorem 8) and has sub-optimality guarantees (see
Theorem 9). Finally, in Section 4.1, we explore numeri-
cal implications of waiving Assumption 2.

Let us start by considering the MCP and only one in-
put, i.e., instead of an input matrix B, we only consider
an input vector b. The first set of results provides nec-
essary conditions on the structure that an input vector
b must satisfy to ensure that (A,b) is controllable, and
a polynomial complexity procedure (Algorithm 1) that
reduces the problem of obtaining such necessary struc-
tural patterns to a minimum set covering problem.

Lemma 1 Given a collection of mnon-zero wvectors
{'}jeg with v € {0,%}™, the procedure of finding
b* € {0,x}" such that
b* = arg min l16]lo
be{0,x}n (3)
s.t. v -b#0, forallj € J

is polynomially (in |J| and n) reducible to a minimum
set covering problem with universe U and a collection S
of sets by applying Algorithm 1. o

Algorithm 1 Polynomial reduction of the structural
optimization problem (3) to a set-covering problem

Input: {#7};e7, a collection of | 7| vectors in {0, x}™.
Output: S = {Si}icq1,....n} and U, a set of n sets and the
universe of the sets, respectively.

Step l.set S; ={}fori=1,...,n

Step 2. for j=1,...,|7|

fori=1,...,n
if o] # 0 then
Si =8 U{jk
end if
end for
end for

Step 3. set S = {S1,...,Sp} and U = U, S

Next, we show that given the structure obtained in
Lemma 1, almost all possible real numerical realizations
lead to a vector b € R™ that is a solution to the MCP.

Theorem 1 Let {v'};c 7 to be the set of left-eigenvectors
of A, and b a solution to (3). Then, almost all numerical
realizations b of b are solutions to the MCP. o

Remark 1 The generic properties that characterize
structural controllability (Dion et all, |2005) imply that
almost all parameters of both dynamics and input matri-
ces satisfying a given structural pattern are controllable.
Although, in Theorem 1 the dynamics’ simple matriz A
is fixed, i.e., a numerical instance with specified struc-
ture, density arguments are provided to the numerical
realizations of the input vector with certain structure
that ensure controllability of the system. o

Although Theorem 1 ensures that almost all parameter-
izations provide a feasible solution to the MCP, we need
to determine one parameterization that guarantees con-
trollability, which can be determined by solving the fol-
lowing optimization problem.
B* = arg min 0
BeRnXxm (4)
s.t. Bl,k =0if Bl,k = 0, l7k = 1,...,714

Remark 2 In fact, suppose the objective function in the
optimization problem (4) is given by f(B). Then, this
can be chosen to satisfy additional design constraints.
For instance, f(B) = ¢"B1, where ¢ could capture an
actuation cost, i.e., entry c; captures how desirable is
to actuate x;, and 1 is a vector of ones with appropri-
ate dimensions. Subsequently, one may need additional
constraints such that the total actuation budget r avail-
able is bounded, for instance, |f(B)| < r and B;; > 0
to avoid negative entries that will restrain the objective



goal. Alternatively, f(B) can also be considered nonlin-
ear, while capturing control-theoretic properties; in par-
ticular, it can be a function of the controllability Gram-
mian (Pasqualetti et all |2014), with some appropriate
constraints to ensure the problem to be well defined. ¢

Next, we show that the (sparsest) pattern given by
Lemma 1 with the optimization problem (4) leads to a
numerical realization that is a solution to the MCP.

Lemma 2 Given {v'};cs with v € C", the procedure
of finding b* € R™ that is a solution to

b* = argmin |Ib]]o
beR™ (5)
st v -b#0, foralli € J,

is polynomially (in |J| and n) reducible (by Algorithm 1)
to a minimum set covering problem, with numerical en-
tries determined using the optimization problem (4). <

Now, we state one of the main results of the paper.

Theorem 2 The solution to the MCP can be determined
by first identifying the sparsity of the input vector as in
Lemmoa 1, followed by determining the numerical realiza-
tion of the non-zero entries as in Lemma 2. o

Next, based on the previous solution to the MCP, we ex-
tend the result to find a dedicated solution to the MCP.

Theorem 3 Let b € R™ be a solution to the MCP as
described in Theorem 2, b its sparsity and N C {1,...,n}
the indices where b is non-zero, i.e., N = {i : b; =
* andi=1,...,n}. If B € {0,x}"*" has ezxactly one
non-zero entry in the i-th row, where i € N, then the
output B € R™*"™ of (4), when B and the left-eigenbasis
of A are considered, is a solution to the MCP. o

Before characterizing the solutions to the rMCP, we no-
tice that this problem is computationally challenging.
Specifically, we obtain the following result which follows
from noticing that a particular instance of the rMCP is
the MCP (an NP-hard problem).

Theorem 4 The rMCP is NP-hard. o

Therefore, without incurring in additional computa-
tional complexity and similar to the reduction proposed
from MCP to the set covering problem, we can charac-
terize the dedicated solutions to the rMCP as follows.

Theorem 5 Letv',...,v™ be a left-eigenbasis of A, and
s the number of possible input failures. Further, consider
the set multi-covering problem ({S1,...,Sr1yn}, U =
{1,...,n};d), where the demand is d(i) = s+1 fori € U,
and S = {j : [v7]; #0, andl —1 =k mod n} fork €
K =A{1,...,(s+ 1)n}. Then, the following statements
are equivalent:

(i) M* is a solution to the set multi-covering problem
({Sla s 7S(s+1)n}7u = {17 cee 7TL}; d))

(i) B, (M*) is a dedicated solution to rMCP, where
[Bn(M*)]iy =1 forl =1 modn andi € M* C K,
and zero otherwise. o

Remark 3 A matriz B,(M') described by the concate-

nation of (s+1) solutions to the MCP achieves feasibility

to the rMCP, but it is not necessarily an optimal solution
— see Section 5 for a counterexample. o

Next, we characterize the solutions of the rMCP, i.e.,
not only the ones that are dedicated. Towards this goal,
we introduce the following merging procedure. Let two
distinct effective inputs ¢ and j, associated with two non-
zero columns of the input matrix, b* and b’, be such that
they do not share non-zero entries k, i.e., [b'], # [b’] for
k € {1,...,n}. These two inputs are said to be merged
into one input &%, where [b% |, = [b?]x when [b'] # 0, and
%)) = [V], when [b]), # 0, for k € {1,...,n}. Further,
we implicitly assume that b takes the place of b?, and
b7 is set to zero. In other words, the effective input  is
associated with b and the effective input 7 is discarded.

Theorem 6 Let B, (M*) € R™6TU" be o dedicated
solution to the rMCP as described in Theorem 5. In addi-
tion, let B € {O,*}”X(S+1)" be the sparsity of the matriz
resulting of the merging procedure between any of the ef-
fective inputs in B,(M*). Then, the matriz B € R"*"
obtained using the optimization problem (4), with B and
the left-eigenbasis of A, is a solution to the rMCP. o

Although we reduced the rMCP to a set multi-covering
problem, it is interesting to notice that these are ‘equiv-
alent’ in the sense that the decision version of the rMCP
is NP-complete.

Theorem 7 The MCP and rMCP are NP-complete. ©
Therefore, from Theorem 7, we have the following ob-
servation.

Remark 4 A solution of the MCP almost always coin-
cides with a numerical realization of a solution to the
associated minimal structural controllability. Combining
this with the fact that the MCP is NP-complete when the
eigenvalues of A are simple (see Theorem 7), it follows
that the set of simple dynamics’ matrices that lead to NP-
complete problems has zero Lebesgue measure. o

Also, we notice that if a problem is NP-hard, then it does
not mean that all instances are not polynomially solv-
able; notwithstanding, these can be solved exactly (Hua
et al.l 2009, [2010)).

Remark 5 The NP-completeness, stated in Theorem 7,
allows us to consider the subclasses of the set multi-
covering problem that are known to be polynomially solv-
able, to identify polynomially solvable subclasses of the
rMCP. This enables a new characterization of solutions
to the question posed in|Aguilar and Gharesifard (2013]),
regarding the existence of polynomial algorithms to de-
termine controllable graph structures. o

Additionally, by the construction proposed in Theorem 5
and the result in Theorem 7, if the set multi-covering
problem obtained possess additional structure, then this
can be leveraged to use polynomial algorithms to ap-
proximate the solutions with close-to-optimal solutions
(see Algorithm 2).

Furthermore, Algorithm 2 leverages the submodularity
properties (Bach) [2011)) of the set multi-covering prop-



erties to obtain a dedicated solution to the rMCP. Sub-
modularity properties ensure that the associated poly-
nomial greedy algorithms have sub-optimality guaran-
tees while performing well in practice (Bachl|2011)). Sub-
sequently, we can obtain the following result.

Algorithm 2 Approximate Solution to the rMCP

Input: Left-eigenbasis v!, ..., v" associated with A € R"*"
and the number s of possible input failures.
Output: Dedicated solution B, (M’) € R**(+1n,
Step 1. Let Si,...,S(st1)n, Where S = {j : [v/], #
0, andl—1=%k modn}forke L={1,...,n(s+1)}.
Step 2. set U’ = (), with i = 1,..., s > denote the indices in
U that are covered ¢ times and the indices of the sets covering
them, respectively.
Step 3.set J =0
Step4.fori=1,...,5+1
set U' = {k: {keld:keS;je T} =i} the
indices that are already covered by at least 7 sets
Step 5.while U" # U _
select S; with largest number of indices in U \ U*
set 7+ JU{j}
set U' U US;
end while; end for
set M' «— 7
Step 6. set B, (M), where [B,,(M')];; = 1 for
=1 mod nandi € M’ C K, and zero otherwise.

Theorem 8 The matriz B, (M') obtained using Algo-
rithm 2, with B and the left-eigenbasis of A, is a feasible
solution to the rMCP. Further, the computational com-
plexity of Algorithm 2 is O(sn), and it ensures an ap-
prozimation optimality bound of O(logn). o

Finally, by invoking Theorem 6 and Theorem 8, we ob-
tain the following result.

Theorem 9 Let B, (M’) € R™*6TY" be g dedicated so-
lution to the rMCP as described in Theorem 8. In addi-
tion, let B € {0,%}"*(5T17 be the sparsity of the matriz
resulting of the merging procedure between any of the ef-
fective inputs in B,,(M’). Then, the matriz B € R™*"
obtained using the optimization problem (4), with B and
the left-eigenbasis of A, achieves feasibility to the rMCP
and is computed in polynomial time. o
4.1 Numerical and Computational Remarks

Now, for the sake of completeness, we discuss the impli-
cations of waiving Assumption 2 and the impact on the
input vector in the MCP. The results readily extend to
the general solution to the rMCP. Towards this goal, we
need the following result.

Theorem 10 ((Pan and Chen, 1999)) Let A €
C™*™ be a matrixz with simple eigenvalues. The determin-
istic arithmetic complexity of finding the eigenvalues and
the eigenvectors of A is bounded by O (n3) +t (n,m) oper-
ations, where t(n,m) = O ((n log? n) (logm + log? n)),
for a required upper bound of 2=™|A|| on the absolute
output error of the approximation of the eigenvalues and
eigenvectors of A and for any fixzed matriz norm || - ||. ¢

More precisely, Theorem 10 states that in practice, only
a numerical approximation of the left-eigenbasis is pos-

sible in polynomial time. In this case, let ¢ = 27™|| A|]
be as in Theorem 10, then the results stated in Lemma 1
and Lemma 2 (see also Algorithm 1 and the optimization
problem (4)) can only be used in an e-approzimation of
the left-eigenbasis of the dynamics’ matrix. Therefore,
the e-approximation of the left-eigenbasis may lead to
the following issues:

(i) an entry in the left-eigenvector is considered as zero,
where in fact it can be some non-zero value that (in
norm) is smaller then €. Consequently, the sets gener-
ated using Algorithm 1 (see also Lemma 1) do not con-
tain the indices associated with those non-zero entries.
Thus, additional sets need to be considered to the min-
imum set covering, which implies that the structure of
the input vector may contain more non-zero entries than
the sparsest input vector that is a solution to the MCP.
In other words, we obtain an over-approximation of the
sparsest input vector that is a solution to the MCP.

(ii) an entry of the e-approzimation in a left-eigenvector
of the left-eigenbasis is non-zero. Then, it does not repre-
sent an issue when computing the structure of the input
vector as described in Lemma 1 (see also Algorithm 1),
but it can represent a problem when determining the
numerical realization by resorting to the optimization
problem (4). Nonetheless, by Theorem 1 it follows that
such issue is unlikely to occur.

To undertake a deeper understanding of which entries
fall in the first issue presented above, several methods to
compute eigenvectors can be used and solutions posteri-
orly compared, see Demmel et al.| (2000)) for a survey on
different methods and computational issues associated
with those.

5 Illustrative examples

To illustrate the first main result of this paper, to find a
solution to the MCP, consider the dynamics’ matrix A

6 -3 3 2 —1
0 8 00 0

A=|4 3 7 2 1|, (6)
00 0 6 0
—4-3-3-2 3

where o(A) = {2,4,6,8,10} consists of distinct eigen-
values, so the matrix A is simple and our results are
applicable. Consequently, to obtain the solution to the
MCP, we first compute the left-eigenvectors of A that

are as follows: v! = [11001]T, 02 =[00101]T, v3 =
[00010]T,v* = [01000]T and v® = [10110]T. Us-
ing Algorithm 1, since v; for ¢ = 1,...,5, we obtain

{S;}j=1,...,5, where the j-th set corresponds to the set
of indices of the left-eigenvector which have a non-zero
entry on the j-th position. In particular, we obtain &; =
{1,5}, 82 = {1,4}, S5 = {2,5}, 84 = {3,5}, S5 = {1, 2},
and the universe set is given by U = {1,2,3,4,5} . Now,
it is easy to see that a solution to this minimum set
covering problem is the set of indices Z* = {2, 3,4},
since U = Sy U S3 U 84 and there is no pair of sets, i.e.,
7' = {i,i'} with 4,7’ € {1,...,5} such that i = S; US;.
Therefore, a possible structure of the vector b that is a
solution to the MCP is

b:[O***O]T. (7)



Additionally, to find the numerical parametrization of
b, under the sparsity pattern of b, we have to solve the
following system with three unknowns: bs, b3, by # 0 and
bs + by # 0. By inspection, a possible choice is b =
[01110]T, but the numerical parametrization can be
obtained by invoking the optimization problem (4), with
the set of left-eigenvectors of A given by {v/};cq1, 5

and the structure of b given by b in (7). For the sake of

completeness, we, the controllability matrix is given by
02 44 608 7184
C=] 2 A3 A% ] 112 130 1176 11550
T LA AL AT AT = 56 b1 1296
0 —8 —104 —1112 —11264

and the rank(C) = 5, implying that (A4, b) is controllable.
Observe that the single-input solution obtained with
b=1[01110]T, can be immediately translated into
a solution with two effective inputs, by Theorem 3.
In particular, two possible solutions are B = [p 2]
with 8! = [o1100]T and »* = [00010]T, and
B = v?p?]witht! =[01000]T,62 =[00100]T and
b3 =[00010]T, where the latter is a dedicated solution.

Alternatively, if we consider, for instance, B = [ 2]
with 8! = [01000]T and b2 = [00-110]T, then
vTB = 0 for the left-eigenvector v = [10110]T, and

the pair (A4, B) is uncontrollable. Thus, as prescribed in
Theorem 3, by the optimization problem (4), one can
obtain a new realization of B that ensures controllabil-
ity of (A, B); e.g., the same b, and b% = [00 12 1 0]T.

Notice that a systematic polynomial approximation to
the MCP can be obtained by considering the rMCP with
the number of input failures s = 0. By doing so, we ob-
tain the same sparsity to b, i.e., b, as in the aforemen-
tioned example, and the subsequent analysis follows. We
also observe that the approximate solution is a solution
to the MCP.

Now, we illustrate how to find a solution to P. Let us
apply the developments of Section 4, when we consider
the dynamics’ matrix in (6). First, if we consider that
at most one input fails, we use Algorithm 1, where a set
multi-covering problem is considered with the sets as in
Section 4, universe Y = {1,...,5} and with a demand
function d(i) = 2fori =1,...,5, i.e., each element must
be covered twice. Subsequently, by inspection, we con-
clude that the sets So and Sy need to be considered twice,
since the elements 5 and 4 only appear in these sets, re-
spectively. After this, we need to cover the element 2 and
to this end we can choose Sz or S5 or twice one of them,
so a possible solution to the multi-set covering problem
is M* = {2,3,4,2,3,4}. Therefore, B, (M*) is a solu-
tion to the rMCP, and, in particular, the solution is the
same as concatenating twice a dedicated solution to the
MCP, see Remark 3. Further, Algorithm 2 produces an
optimal solution as often occurs in practice.

In fact, if we apply our results when s inputs are allowed
to fail, i.e., d(i) = s+ 1 for i = 1,...,5, we notice that
the sets S; and S need to be considered s + 1 times
since the elements 5 and 4 only appear in these sets,
respectively. Besides, we need to cover the element 2, so

we can choose either S3 or S5 s+ 1 times, which implies
that B(M*), with M* = {2,3,4,...,2,3,4} where the
elements 2,3 and 4 appear s + 1 times, is a solution.
Similarly, the solution consists of concatenating s + 1
times a dedicated solution to the MCP, and the same
remarks are applicable, i.e., Remark 3.

However, the concatenation of s+1 solutions to the MCP
is not always a solution to the rMCP when at most s
inputs are allowed to fail. Let us consider the dynamics’
matrix and associated left-eigenvectors as follows:
4 —22 Lo
A:[—lSl};VZ vt v? 3 :{Ho}. (8)
1 -15 L1 011
First, we note that o(4) = {2,4,6}, so A is simple,
and we can apply our results. Secondly, the structure
of the left-eigenvectors of A is given by o' = [x % 0]T,

92 = [0 % «|T and ©® = [% 0 %]T. Further, we consider

that at most one input failure is likely to occur, i.e.,
s = 1. Then, we can invoke Algorithm 1 to build the sets
for the set multi-covering problem, which are as follows:
S = {81,52753}, with 81 = {1,2}, 82 = {2,3} and
S3={1,3},and U = U§:1 Si; = {1,2,3}. By inspection,
we obtain that M’ = {1,2,3} is the optimal solution,
where the indices cover each element of U twice. Further,
observe that a solution to the dedicated input MCP al-
ways has size equal to two, and in this case, the concate-
nation of two solutions lead to a solution that has one
more input than the optimal solution obtained. Observe
that this is a small dimensional example that incurs into
a solution that is already 33% worst than the optimal.
Alternatively, if we apply Algorithm 2 to approximate
the solution to the rMCP, we obtain one that is optimal,
i.e., B(M’) where M’ = {1,2,3}.

6 Conclusions and Further Research

In this paper, we addressed two minimal controllabil-
ity problems, with the goal of characterizing the in-
put configurations that actuate the minimal subset of
variables yielding controllability, under a specified num-
ber of failures. The problems explored were shown to
be NP-complete, and a polynomial reduction of these
to a set multi-covering problem was provided. In par-
ticular, the strategies followed by us separate the dis-
crete and continues nature of the minimal controllability
problems. Subsequently, we discussed greedy solutions
to the minimal controllability problems that yields fea-
sible (but sub-optimal) solutions to rMCP.

Directions for future research in this line of work include
the use of the obtained inputs’ structure and consider
methods such as coordinate gradient descent to mini-
mize an energy cost, and to consider the case where the
model is not exactly known. Additionally, it would be in-
teresting to assess the computational complexity of the
rMCP without the assumption on the spectrum of the
dynamics’ matrix, as well as to provide polynomial al-
gorithms to obtain approximated solutions with subop-
timal guarantees.



Appendix

Proof of Lemma 1: Consider the sets S and U obtained
in Algorithm 1. The following equivalences hold: let Z C
{1,--- ,n} be a set of indices and bz the structural vector
whose i-th component is non-zero if and only if ¢ € Z. Then,
the collection of sets {S;}iez in S covers U if and only if
Vj € J, dk € I such that j € S, which is the same as
Vj € J, 3k € I such that o] # 0 and bx # 0, this can
be rewritten as Vj € J, Jk € 7 such that ﬂil;k # 0 and
therefore Vj € J @’ -b # 0. In summary, bz is a feasible
solution to the problem in (3). In addition, it can be seen that
by such reduction, the optimal solution b* of (3) corresponds
to the structural vector bz+, where {S;}iez+ is the minimal
collection of sets that cover U, i.e., Z* solves the minimum
set covering problem associated with S and Y. Hence, the
result follows by observing that Algorithm 1 has polynomial
complexity, namely O(max{|J|,n}%). |

Proof of Theorem 1: The proof follows by showing that
if {v'}ies with countable J such that v* # 0 for all ¢ € J
and b a solution to (3), then the set @ = {b € R™ : o' .
b = 0 for some ¢ € J, and b is a numerical instance of b}
has zero Lebesgue measure. The proof follows similar steps
to those proposed in [Wonham| (1985)), but due to the addi-
tional sparsity constraint we devise an independent proof.
Let {v'}icr, with countable J, be given and let b be a so-
lution to problem (5). For b € R™, the equation v* -b = 0
represents a hyperplane H* C C" (provided v¢ # 0 for all 4),
thus the equation v’ -b # 0 defines the space C™ \ H’. There-
fore, the set of b that satisfies v’ - b # 0 for all s € 7, is given

by N (C"\H') =C"\ ( U Hi) and the set Q of values
ieJ ieJ
which does not verify the equations is the complement, i.e.,

((C" \ U ’Hl> = U H*, which is a set with zero Lebesgue
i€J i€J

measure in C™, since |J| is countable.

Now, if {v'};e7 is taken to be the set of left-eigenvectors of A
and b the corresponding solution to problem (5), each mem-
ber of the set £ constitutes a solution to (5) and hence the
MCP. Since, by the preceding arguments, €2 has Lebesgue
measure zero in C", it follows readily that almost all numer-
ical instances of b are solutions to the MCP. |

Proof of Lemma 2: By Lemma 1, given {7'}:c7, problem
(5) is polynomially (in |7| and n) reducible to a minimum
set covering problem. Now, given a solution b to (3), the
optimization problem (4) can be used to obtain a numerical
instantiation b with the same structure as b such that v*-b # 0
for all i € J, which incurs polynomial complexity (in | 7| and
n). Furthermore, it is readily seen that any feasible solution
b to (5) satisfies ||b'|lo > ||bllo = ||b]|o. Hence, b obtained by
the above recipe is a solution to (5) and the desired assertion
follows by observing that all steps in the construction have
polynomial complexity (in |J| and n). |

Proof of Theorem 2: The proof follows by invoking the
PBH eigenvector test. The left-eigenbasis is available by As-
sumption 1, the problem in (5) is a restatement of the MCP.H

Proof of Theorem 3: The feasibility of the solution is en-
sured by proceeding similarly to Theorem 1, when the left-
eigenbasis of the dynamics’ matrix is considered to invoke
the PHB eigenvector criterion. The optimality follows simi-
lar steps to those presented in Lemma 2. |

Proof of Theorem 5: First, we observe that, by construc-
tion of the sets {Si,...,S(4+1)n} and the demand func-
tion d(i), for ¢ € {1,...,n}, there exists always s + 1 en-
tries matching every non-zero entry of the vectors in a left-
eigenbasis. This implies that if at most s sensors fail, at
least one entry of a column c of B is such that for each left-
eigenvector v.c # 0, implying v'"B # 0 for i € {1,...,n}.
Hence, the system is controllable by the PBH eigenvector
test, and we have a feasible solution. Now we need to show
that the solution is optimal, i.e., there is not another solution
with less dedicated inputs to the rMCP. We will proceed by
contradiction, so assume that there is a solution to a demand
function d(i) = w for i € {1,...,n} and some w < s+ 1.
Then, for some entry of a left-eigenvector v it is only ensured
the existence of w columns in B whose inner product is not
zero. Therefore, if w dedicated inputs fails, i.e., the corre-
sponding columns of B are now zero, then B is such that
vTB = 0, for some eigenvector v. Thus, contradicting the
assumption that there is a sparser solution to the rMCP. B

Proof of Theorem 6: The proof follows similar steps to
those presented in Theorem 3. In particular, recall the merg-
ing procedure, and the guarantees obtained in Theorem 5.1

Proof of Theorem 7: From Olshevsky| (2014), we have that
the MCP is NP-hard, and, in particular, the minimum set
covering problem can be polynomially reduced to it. There-
fore, we just need to show that the MCP assuming that A
comprises only simple eigenvalues and the left-eigenbasis is
known, i.e., under our assumptions, can be reduced polyno-
mially to the minimum set covering problem.

To this end, note that, given the set {v'}ics of left-
eigenvectors of A, the MCP is equivalent to problem (5),
the latter being polynomially (in |J| and n) reducible to
the minimum set covering problem (see Lemma 2). Since
|7| = n, the overall reduction to the minimum set covering
problem is polynomial in n.

Similar arguments hold for the rMCP. It was shown to be
NP-hard, in Theorem 4, and a reduction to the minimum set
multi-covering problem can be obtained by Theorem 5. W

Proof of Theorem 8: Algorithm 2 terminates when each
element of the universe set U is covered s+1 times (steps 4-5)
by the sets of the set multi-covering problem indexed by J.
In other words, it terminates when we obtain a solution to
the set multi-covering problem. By designing B, (M), with
M’ = J, we build a matrix that corresponds to dedicated
inputs. Thus, using Theorem 5, since J is a solution to
the set multi-covering problem, then B, (M) is a dedicated
solution to the rMCP.

The computational complexity of Algorithm 2 is obtained by
the overall complexity of steps 1, 4 and 5. In step 1, we need
to compute (s + 1)n sets, in step 5 we need to consider at
most n sets, and, in step 4, (s + 1) iterations are performed,
each with the number of steps of step 5, yielding (s + 1)n
computational steps. Summing up the complexity of each
step, Algorithm 2 has, in the worst case, complexity of order
O(sn). In addition, notice that the performance attained in
a multi-set covering problem is the same as in the rMCP,
as a consequence of Theorem 7. Furthermore, the solution
obtained incurs in an optimality gap of at most O(log n) since
the algorithm implements the greedy algorithm associated
with submodular functions, as it is the case of the multi-set
covering problem, and the result follows. |



References

Aguilar, C. O. and Gharesifard, B. (2015), ‘Graph controlla-
bility classes for the laplacian leader-follower dynamics’,
IEEE Transactions on Automatic Control 60(6), 1611
1623.

Bach, F. (2011), ‘Learning with Submodular Functions: A
Convex Optimization Perspective’, ArXiv e-prints .

Bronnimann, H. and Goodrich, M. T. (1995), ‘Almost opti-
mal set covers in finite VC-dimension’, Discrete & Com-
putational Geometry 14(4), 463-479.

Chapman, A. and Mesbahi, M. (2014), On symmetry and
controllability of multi-agent systems, in ‘63rd IEEE Con-
ference on Decision and Control’.

Chekuri, C., Clarkson, K. L. and Har-Peled, S. (2012), ‘On
the set multicover problem in geometric settings’, ACM
Trans. Algorithms 9(1), 9:1-9:17.

Chen, Y., Kar, S. and Moura, J. M. F. (2015), ‘Dynamic
Attack Detection in Cyber-Physical Systems with Side
Initial State Information’, ArXiv e-prints .

Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H.
(2000), Templates for the Solution of Algebraic Eigenvalue
Problems: A Practical Guide, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

Dion, J.-M., Commault, C. and der Woude, J. V. (2003),
‘Generic properties and control of linear structured sys-
tems: a survey.’, Automatica pp. 1125-1144.

Egerstedt, M. (2011), ‘Complex networks: Degrees of con-
trol’, Nature 473(7346), 158-159.

Egerstedt, M., Martini, S., Cao, M., Camlibel, K. and Bicchi,
A. (2012), ‘Interacting with networks: How does struc-
ture relate to controllability in single-leader, consensus
networks?’, Control Systems Magazine 32(4), 66 — 73.

Fawzi, H., Tabuada, P. and Diggavi, S. (2014), ‘Secure esti-
mation and control for cyber-physical systems under ad-
versarial attacks’, IEEE Transactions on Automatic Con-
trol 59(6), 1454-1467.

Garey, M. R. and Johnson, D. S. (1979), Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W. H. Freeman & Co., New York, NY, USA.

Hespanha, J. P. (2009), Linear Systems Theory, Princeton
Press, Princeton, New Jersey.

Hua, Q.-S., Wang, Y., Yu, D. and Lau, F. C. (2010), ‘Dy-
namic programming based algorithms for set multicover
and multiset multicover problems’, Theoretical Computer
Science 411(2628), 2467 — 2474.

Hua, Q.-S., Yu, D., Lau, F. C. M. and Wang, Y. (2009), Pro-
ceedings of the Algorithms and Computation: 20th Interna-
tional Symposium, ISAAC 2009, Honolulu, Hawaii, USA,
Springer Berlin Heidelberg, Berlin, Heidelberg, chapter
Exact Algorithms for Set Multicover and Multiset Multi-
cover Problems, pp. 34-44.

Kibangou, A. Y. and Commault, C. (2014), ‘Observability
in connected strongly regular graphs and distance regular
graphs’, IEEE Transactions on Control of Network Sys-
tems .

Langner, R. (2011), Robust Control System Networks: How to
Achieve Reliable Control After Sturnet, Momentum Press.

Liu, X., Pequito, S., Kar, S., Sinopoli, B. and Aguiar, A. P.
(2015), ‘Minimum Sensor Placement for Robust Observ-
ability of Structured Complex Networks’, arXiv preprint
arXi:1401.4209 .

Nabi-Abdolyousefi, M. and Mesbahi, M. (2013), ‘On the con-
trollability properties of circulant networks’, IEEE Trans-
actions on Automatic Control 58(12), 3179-3184.

Notarstefano, G. and Parlangeli, G. (2013), ‘Controllabil-
ity and observability of grid graphs via reduction and
symmetries’, IEEE Transactions on Automatic Control
58(7), 1719-1731.

Ogata, K. (2001), Modern Control Engineering, 4th edn,
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Olshevsky, A. (2014), ‘Minimal controllability problems’,
IEEE Transactions on Control of Network Systems
1(3), 249-258.

Pan, V. Y. and Chen, Z. Q. (1999), The complexity of the
matrix eigenproblem, in ‘Proceedings of the thirty-first
annual ACM symposium on Theory of computing’, STOC
99, ACM, New York, NY, USA, pp. 507-516.

Parlangeli, G. and Notarstefano, G. (2012), ‘On the reach-
ability and observability of path and cycle graphs’, IEEE
Transactions on Automatic Control 57(3), 743-748.

Pasqualetti, F. and Zampieri, S. (2014), On the controllabil-
ity of isotropic and anisotropic networks, in ‘53rd IEEE
Conference on Decision and Control’.

Pasqualetti, F., Zampieri, S. and Bullo, F. (2014), ‘Control-
lability metrics, limitations and algorithms for complex
networks’, IEEE Transactions on Control of Network Sys-
tems 1(1), 40-52.

Pequito, S., Kar, S. and Aguiar, A. P. (2016), ‘A framework
for structural input/output and control configuration se-
lection of large-scale systems’, IEEE Transactions on Au-
tomatic Control 61(2), 303-318.

Pequito, S., Ramos, G., Kar, S., Aguiar, A. P. and Ramos,
J. (2016), ‘The robust minimal controllability problem’,
arXww preprint arXiv:1401.4209 .

Rahmani, A., Ji, M., Mesbahi, M. and Egerstedt, M. (2009),
‘Controllability of multi-agent systems from a graph-
theoretic perspective’, SIAM Journal on Control and Op-
timization 48(1), 162-186.

Shoukry, Y. and Tabuada, P. (2014), Event-triggered pro-
jected Luenberger observer for linear systems under sparse
sensor attacks, in ‘53rd IEEE Conference on Decision and
Control’, IEEE, pp. 3548-3553.

Siljak, D. D. (1991), Decentralized control of complex systems,
Academic Press, Boston.

Siljak, D. D. (2007), Large-Scale Dynamic Systems: Stability
and Structure, Dover Publications.

Skogestad, S. (2004), ‘Control structure design for complete
chemical plants’, Computers and Chemical Engineering
28(1-2), 219-234.

Tanner, H. (2004), On the controllability of nearest neighbor
interconnections, in ‘43rd IEEE Conference on Decision
and Control’, Vol. 3, pp. 24672472 Vol.3.

Tao, T. and Vu, V. (2017), ‘Random matrices have simple
spectrum’, Combinatorica pp. 1-15.

van de Wal, M. and de Jager, B. (2001), ‘A review of methods
for input/output selection’, Automatica 37(4), 487 — 510.

Velde, W. E. V. and Carignan, C. R. (1984), ‘Number and
placement of control system components considering pos-
sible failures’, Journal of Guidance, Control, and Dynam-
ics 7(6), 703-7009.

Wonham, W. M. (1985), Linear multivariable control: a geo-
metric approach, Applications of mathematics, Springer,
New York, Berlin, Tokyo.

Zhang, S., Camlibel, M. and Cao, M. (2011), Controllabil-
ity of diffusively-coupled multi-agent systems with general
and distance regular coupling topologies, in ‘50th IEEE
Conference on Decision and Control and European Con-
trol Conference’, pp. 759-764.



	Introduction
	Problems Statement
	Preliminaries and Terminology
	Robust Minimum Controllability Problem
	Numerical and Computational Remarks

	Illustrative examples
	Conclusions and Further Research

