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Abstract

Motivated by the development and deployment of large-scale dynamical systems, often comprised of geographically distributed
smaller subsystems, we address the problem of verifying their controllability in a distributed manner. Specifically, we study
controllability in the structural system theoretic sense, structural controllability, in which rather than focusing on a specific
numerical system realization, we provide guarantees for equivalence classes of linear time-invariant systems on the basis of their
structural sparsity patterns, i.e., the location of zero/nonzero entries in the plant matrices. Towards this goal, we fist provide
several necessary and/or sufficient conditions that ensure that the overall system is structurally controllable on the basis of
the subsystems’ structural pattern and their interconnections. The proposed verification criteria are shown to be efficiently
implementable (i.e., with polynomial time-complexity in the number of the state variables and inputs) in two important
subclasses of interconnected dynamical systems: similar (where every subsystem has the same structure) and serial (where
every subsystem outputs to at most one other subsystem). Secondly, we provide an iterative distributed algorithm to verify
structural controllability for general interconnected dynamical system, i.e., it is based on communication among (physically)
interconnected subsystems, and requires only local model and interconnection knowledge at each subsystem.
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1 Introduction modular structure (Ozgiiner and Hemani, 1985; Davi-
son and Ozgiiner, 1983; Davison, 1977), such as con-

In recent years we have witnessed an explosion in the use tent delivery networks, social networks, robot swarms,

of large-scale dynamical systems, notably, those with a
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and smart grids. Such systems, often geographically dis-
tributed, are comprised of smaller subsystems (which we
may refer to as agents), and a typical concern is ensuring
that the system, as a whole, performs as intended. More
than often, when analyzing these interconnected dynam-
ical systems, which in this paper we consider to consist
of continuous linear-time invariant (LTT) subsystems, we
do not know the exact parameters of the plant matrices.
Therefore, we focus on the zero/nonzero pattern of the
system’s plant, which we refer to as sparsity pattern, and
we focus on structural counterpart of controllability, i.e.,
structural controllability (Dion et al., 2003).

It is worthwhile noting that these agents may be homoge-
neous or heterogeneous, from its structure point of view.
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When the agents are homogeneous, their plants and con-
nections (when used) have the same sparsity pattern and
the system is referred to as a similar system. Otherwise,
the agents are heterogeneous and two possible scenar-
ios are conceivable: (7) an agent may receive information
from (possibly several) other agents but it only trans-
mits to one other agent, the overall system is referred to
as serial, and commonly arises in peer-to-peer commu-
nication schemes; and (i) the communications between
agents can be arbitrary, which commonly arise in broad-
cast communication setups. All the above subclasses of
interconnected dynamical systems are of interest and ex-
plored in detail in this paper. More precisely, we provide
several necessary and/or sufficient conditions to ensure
key properties of the system, which can be verified re-
sorting to efficient (i.e., with polynomial time complex-
ity in the number of state variables) algorithms.

In some applications, the problem of composability is
particularly relevant. Consider, for example, a swarm of
robots possessing similar structure where the communi-
cation topology may change over time, or where robots
may join or leave the swarm over time. Then, the ex-
istence of necessary and/or sufficient conditions on the
structure and interconnection between these agents con-
tribute to controllability-by-design schemes, i.e., we en-
sure that by inserting an agent into the interconnected
dynamical system, we obtain a controllable dynamical
system. Consequently, we can specify with which agents
an agent should interact with such that those conditions
hold.

A swarm of robots can also be composed by a variety
of heterogeneous agents in which case controllability-by-
design is also important, yet due to constraints on the
communication range, the interaction between agents
is merely local, even if some additional information is
known. Therefore, in the context of serial systems we
can equip each subsystem with the capability of inferring
if the entire system is structurally controllable, i.e., we
provide distributed algorithms that rely only on the in-
teraction between a subsystem and its neighbors, where
information about their structure may be shared. In par-
ticular, if we equip the robots in the swarm with actu-
ation capabilities that can be activated when the inter-
connected dynamical system is not structurally control-
lable, we can render this interconnected dynamical sys-
tem structurally controllable.

Nonetheless, imposing a priori knowledge of the struc-
ture of the interconnections in the system (for instance,
wether it is a serial system) can be restrictive, so dis-
tributed algorithms to verify structural controllability of
general interconnected dynamical systems are in need.
Hereafter, we provide such an algorithm: It requires the
interaction between a subsystem and its neighbors, but
it does not require to share the structure of the subsys-
tems involved. Instead, it requires only partial informa-
tion about its structure, which leads to a certain level of
privacy of the intervenients in the communication. The

proposed scheme is also particularly suitable to other ap-
plications such as the smart grid of the future, that con-
sists of entities described by subsystems deployed over
large distances; in particular, notice that in these cases,
the different entities may not be willing to share infor-
mation about their structure due to security or privacy
reasons.

Related Work: Structural controllability was intro-
duced by Lin (1974) in the context of single-input single-
output (SISO) systems, and extended to multi-input
multi-output (MIMO) systems by Shields and Pearson
(1976). A recent survey of the results in structural sys-
tems theory, where several necessary and sufficient con-
ditions are presented, can be found in Dion et al. (2003).

In this paper, we focus on the composability aspects that
ensure structural controllability. In other words, we are
interested in understanding how the connection between
different dynamical subsystems enables or jeopardizes
the structural controllability of the overall system. The
presented problem statement fits the general framework
presented in Anderson and Hong (1982). Nevertheless,
the verification procedures proposed in Anderson and
Hong (1982) based in matrix nets lead to a computa-
tional burden which increases exponentially with the di-
mension of the problem. Alternatively, in Davison (1977)
an efficient method is proposed that takes into account
the whole system instead of local properties (i.e., the
components of the system and their interconnections),
however this method does not apply to an arbitrary
systems. More precisely, it is assumed that when con-
nected, the state space digraph (to be defined later) is
spanned by a disjoint union of cycles, which is called a
rank constraint. In contrast, in Rech and Perret (1991)
and Li et al. (1996), the authors have presented results
on the structural controllability of interconnected dy-
namical systems, by focusing on the cascade intercon-
nection of system structures that ensure the structural
controllability of the interconnected dynamical system.
Nevertheless, these structures are not unique, and the in-
terconnection of these is established assuming such con-
nectible structures are given, therefore, no practical cri-
teria to compute the structures and verify the results is
given. More recently, in Blackhall and Hill (2010) sim-
ilar results were obtained by exploring which variables
may belong to a structure and referred to as control-
lable state variable. Thus, similarly to Rech and Perret
(1991) and Li et al. (1996), the results depend on the
identified structures, but no method to systematically
identify these structures is provided. In Yang and Zhang
(1995) the study is conducted assuming that all the sub-
systems except a central subsystem, which is allowed to
communicate with every other subsystem, have the same
dynamic structure, and the interconnection between the
several subsystems also has the same structure (even
though they may not be used). This, study considers the
impact of local interactions into the system structural
controllability, which results can be obtained with the



solution proposed hereafter.

In Pequito et al. (2016a), we studied the problem of
determining the sparsest input matrix to ensure struc-
tural controllability in a centralized fashion. Further-
more, polynomial algorithms with computational com-
plexity O(n?) were provided to both problems, where
n is the number of state variables. In Pequito et al.
(2015), we studied the setting where the selection of in-
puts is constrained to a given collection, and shown to
be NP-hard. Finally, in Pequito et al. (2016b), the prob-
lem in Pequito et al. (2016a) was further extended to
determining the input matrix incurring in the minimum
cost when the state variables actuated incur in different
costs while ensuring structural controllability. Further-
more, procedures with O(n*) computational complex-
ity were provided, where w < 2.373 is the lowest known
exponent associated with the complexity of multiplying
two n X n matrices. All these contrasts with the prob-
lem addressed in the current paper in the sense that
we aim to verify structural controllability properties in
a distributed fashion. In particular, it requires identify-
ing specific network conditions on the network structure
under which we can use efficient algorithms, i.e., poly-
nomial in the dimension of the state space, or provide
distributed algorithms suitable to address the proposed
problem.

On the other hand, composability aspects regarding con-
trollability have been heavily studied by several authors,
see for instance, Zhou (2015); Chen and Desoer (1967);
Wolovich and Hwang (1974); Yonemura and Ito (1972);
Wang and Davison (1973); Davison and Wang (1975).
Briefly, all these studies resort to the well known Popov-
Belevotch-Hautus (PBH) eigenvalue controllability cri-
terion for LTI systems (Hespanha, 2009). We notice that
this criterion requires the knowledge of the overall sys-
tem to infer its controllability. The reason is closely re-
lated with the loss of degrees of freedom imposed by in-
terconnected dynamical systems, as well as conservation
laws in general, that reflects in the decrease of the rank of
the system’s dynamics matrix when compared with the
sum of the rank of the dynamics matrices of each sub-
system. Consequently, even if all subsystems are control-
lable, their interconnection may not be. Notwithstand-
ing, the same does not happen when dealing with struc-
tural systems, where if all subsystems are structurally
controllable, then the overall system is structurally con-
trollable. So, while not guaranteeing that a system is
controllable, we can regard these as necessary conditions
for controllability.

Main Contributions: The main contributions of this
paper are threefold:

(i) we provide sufficient conditions for similar systems
to be structurally controllable. More precisely, these rely
only on the structure of the subsystem and intercon-
nection between subsystems. A distributed algorithm is

proposed, that can verify these conditions in polynomial
time;

(#i) we provide sufficient conditions for serial systems to
be structurally controllable. A distributed algorithm to
verify these conditions is provided. It requires only the
knowledge of the subsystem and its neighbors’ structure,
as well as its interconnections. This algorithm requires
only the capability of a subsystem to communicate with
its neighbors, and has computational complexity equal
to O (nf’g), where ng corresponds to the total number of
state variables and inputs present in a subsystem and its
neighbors; and

(7i7) we provide a distributed algorithm to verify nec-
essary and sufficient conditions to ensure structural
controllability for any interconnected dynamical system
that consists of LTI subsystems. This algorithm requires
only the capability of a subsystem to communicate with
its neighbors, have access to its own structure and par-
tial information regarding decisions performed by its
neighbors that do not require sharing the structure of
the neighboring agents.

The rest of this paper is organized as follows. In Section 2
we formally describe the problem statement. Section 3
introduces some concepts in structural systems theory,
that will be used throughout the remainder of the pa-
per. The main contributions are presented in Section 4,
and in Section 5 we provide examples that illustrate the
main findings. Finally, Section 6 concludes the paper and
discusses avenues for further research.

2 Problem Statement

Consider r linear time-invariant (LTI) dynamical sys-
tems described by

where x; € R™ is the state, and u; € RP¢ the input. The
dynamical system can be described by the pair (4;, B;),
where A; € R™*™i ig the dynamic matrix of subsystem
1 and B; € R™*Pi its input matrix. By considering the
interconnection from subsystem i to subsystem j for all
possible subsystems we obtain the interconnected dy-
namical system described as follows:

Ay Eis Ey, By 0 0
Esq Az By, 0 B 0
it = NECE at) (1)
Er 1 Er,r—l Ar 0 0 BT
A B
where the state is given by z = [¢] ... z]]T € R", with

n =Y., n;, and the input given by u = [u] ... uJ]T €



RP, with p = >~'_, p;. In addition, E; ; € R™*" is re-
ferred to as the connection matriz from the j—th sub-
system to the i—th subsystem. Furthermore, we denote
the system (1) by the matrix pair (A, B), denoting the
i—th subsystem, ¢ = 1,...,r of (1) by the matrix pair
(A, B;). Finally, we call those subsystems (A4;, B;), with
j=1,...,rsuchthat E;; # 0, the outgoing neighbors of
the i—th subsystem, and those that F; ; # 0 the incom-
ing neighbors of the i—th subsystem; we refer to them
collectively as the neighbors of the i—th subsystem.

Now, consider the sparsity pattern of matrix pair (A, B)
which we denote by the structural system (A, B); simi-
larly, we denote by (A;, B;) the structural pair of matri-
ces associated with (A;, B;), and E; ; the sparsity pat-
tern of I; ;. Then, a structurally controllable system is
defined as follows (Dion et al., 2003).

Definition 1 Given a structural system (A, B), we say
that it is structurally controllable if and only if, there
exists at least one control system (A, B) with the same
sparsity pattern as (A, B) (i.e. A;j =0 if A; ; =0 and
Bix = 0 if By = 0) which is controllable. o

It can be seen, from density arguments, that if (A, B)
is structurally controllable, then almost all control sys-
tems (A, B) with the same sparsity as (4, B) are struc-
turally controllable (Dion et al., 2003). We say that a
control system (A, B) is structurally controllable if the
associated structural system (A, B) is structurally con-
trollable.

The problem addressed in the current paper can be posed
as follows.

Problem: Given a collection of control systems (A;, B;),
i =1,...,7, and the interconnection from the subsys-
tem ¢ to its neighbors, ie., (4;, B;, E;;) for all j # i,
design a distributed procedure to determine if the inter-
connected control system (A, B) given in (1) is struc-
turally controllable. o

Furthermore, note that in a non-structural setting local
properties are not enough to guarantee controllability,
since the connection to other subsystems may lead to
parameter cancellation (Wang and Davison, 1973; Davi-
son and Wang, 1975); therefore, the approach presented
hereafter allows us to obtain only necessary conditions
for controllability.

3 Preliminaries and Terminology

In this section, we review some of the concepts used
to analyze the problem of structural controllability of
interconnected dynamical systems, which illustrations
can be found in Pequito et al. (2016q).

In order to perform structural analysis efficiently, it is
customary to associate to (1) a directed graph, or di-
graph D = (V,&), in which V denotes the set of ver-
tices and & the set of edges, where (v;,v;) represents
an edge from the vertex v; to the vertex v;. To this end,

let A € {0,1}"*" and B € {0,1}"*? be the binary
matrices that represent the sparsity patterns of A and
B as in (1), respectively. Denote by X = {z1, -+ ,z,}
and U = {uq,--- ,up} the sets of state and input ver-
tices, respectively, and by Ex x» = {(z;,2;) : Aji # 0},
Eux = {(uj,z;) : Byj # 0}, the sets of edges between
the vertex sets in subscript. We may then introduce the
state digraph D(A) = (X, Ex x) and the system digraph
D(A,B) = (X UU,Ex x U &y x). Note that in the di-
graph D(A, B), the input vertices representing the zero
columns of B correspond to isolated vertices. As such,
the number of effective inputs, i.e., the inputs which ac-
tually exert control, is equal to the number of nonzero
columns of B, or, in the digraph representation, the num-
ber of input vertices that are connected to at least one
state vertex through an edge in & x.

A directed path from the vertex v to vy is a sequence of
edges {(v1,v2), (v2,v3), ..., (Vk—1, vk)}. If all the vertices
in a directed path are distinct, then the path is said to
be an elementary path. A cycle is an elementary path
from v to vg, together with an edge from vy to vy.

Given a digraph D = (V, &), we say that D' = (V', &)
is a subgraph of D if it is a digraph with V' C V and
&' C &, which we denote by D’ C D. Furthermore, we
say that D’ spans D if V' = V.

We also require the following graph-theoretic no-
tions (Cormen et al., 2001). A digraph D is strongly
connected if there exists a directed path between any
two vertices. A strongly connected component (SCC)
is a subgraph Dg = (Vs,E&s) of D such that for every
u,v € Vg there exist paths from u to v and from v to u
and is maximal with this property (i.e., any subgraph of
D that strictly contains Dg is not strongly connected).

Definition 2 An SCC'is said to be linked if it has at least
one incoming or outgoing edge from another SCC. In
particular, an SCC'is non-top linked if it has no incoming
edges to its vertices from the vertices of another SCC. ¢

Furthermore, given a digraph D = (V, &), we say that
D is a weakly connected digraph if (V,£ UET) is strongly
connected, where T = {(v/,v) : (v,v') € £}

For any digraph D = (V, £) and any two sets S;, Sy C V
we define the bipartite graph B(S1, Sz, Es, s,) where we
call 87 the set of left vertices, and Sy the set of right ver-
tices; and the edge set £s, s, = EN(S1 X S2). We call the
bipartite graph B(V, V, £) the bipartite graph associated
with D(V, £). In the sequel we will make use of the state
bipartite graph, B(A) = B(X,X,Ex x), which is the bi-
partite graph associated associated with the state di-
graph D(A) = (X, Ex x), and the system bipartite graph
B(A,B) =BUUX,X,Exx UEyx)

Given a bipartite graph B(S1, Sz, Es,.s,), a matching M
corresponds to a subset of edges in s, s, so that no
two edges have a vertex in common, i.e., given edges
e = (s1,82) and € = (s),s5) with s1,s) € S and



S2,85 € Sy, e, € M only if 51 # s and sy # s5. Also,
maximum matching M* is a matching M that has the
largest number of edges among all possible matchings.

Furthermore, it is possible to assign a weight to the
edges in a bipartite graph, say c(e) (where ¢ is a function
from s, s, to RT). We thus obtain a weighted bipartite
graph, and can introduce the concept of minimum weight
mazimum assignment problem. This problem consists in
that of determining a maximum matching whose overall
weight is as small as possible, i.e., a matching M€ such

that
/i c = 1
A8 \Tem Z (e),

where M is the set of all maximum matchings. This
problem can be efficiently solved using the Hungar-
ian algorithm (Munkres, 1957), with complexity of
O (max{|Si],]S2[}?). We call the vertices in S and
S5 belonging to an edge in M*, the matched vertices
with respect to (w.r.t.) M*, otherwise, we call them
unmatched vertices. It is worth noticing that there may
exist more than one maximum matching. For ease of
referencing, in the sequel, the term right-unmatched ver-
tices, with respect to B(S1,S82,Es,.s,) and a matching
M, not necessarily maximum, will refer to those ver-
tices in So that do not belong to an edge in M*, dually
a vertex from S; that does not belong to an edge in M*
is called a left-unmatched vertex.

Now, we can interpret a maximum matching of a bipar-
tite graph associated to a digraph, at the level of the
digraph as follows (Pequito et al., 2016a).

Lemma 1 (Maximum Matching Decomposition)

Consider the digraph D = (V,&) and let M* be a
mazimum matching associated with the bipartite graph
BV, V,E). Then, the digraph D = (V, M*) comprises
a disjoint union of cycles and elementary paths (by def-
inition an isolated vertex is regarded as an elementary
path with no edges), beginning in the right-unmatched
vertices and ending in the left-unmatched vertices of
M?*, that span D. Moreover, such a decomposition is
minimal, in the sense that no other spanning subgraph
decomposition of D(A) into elementary paths and cycles
contains strictly fewer elementary paths. o

In addition, to make comparisons with previous work
(namely, Rech and Perret (1991) and Li et al. (1996)),
we need the following definition (Lin, 1974).

Definition 3 Given a digraph D, an elementary path
i D, also called a stem, is a cactus. Given a cactus
G =Vg,E) C D, and a cycle C = Ve, Ec) C D, such
that G and C have no vertices in common, and there is
an edge from a vertex in G to a vertex in C; then GUC =
(Vg U Ve, Eg U&c) is a cactus. o

Particularly, in the case where D = D(A, B), a cactus
G in D is called an input cactus if the stem starts on an
input vertex. Furthermore, we note that the decompo-
sition in disjoint elementary paths and cycles, stated in

Lemma 1, can be used to determine a spanning of the
digraph in disjoint cacti (Pequito et al., 2016a).

When dealing with interconnected dynamical systems,
the structure of the connection between the subsystems
will create connections between the SCCs of different
subsystem digraphs. This, in turn, makes it difficult to
identify the SCCs of the system digraph of the overall
system by analysing the SCCs of each subsystem digraph
seperately and the connection to their neighbors. Hence,
we introduce the concept of reachability (Dion et al.,
2003). We thus say that a state vertex x in a system
digraph is input-reachable or input-reached if there exists
a path from an input vertex to it.

All of these constructions can be used to verify the struc-
tural controllability of an LTI system by analysing the
associated graphs, as formally stated in the following re-
sult (Dion et al., 2003; Pequito et al., 2016a).

Theorem 1 For LTI systems described by (1), the fol-
lowing statements are equivalent:

(1) The corresponding structured linear system (A, B)
is structurally controllable;
(2) The digraph D(A, B) is spanned by a disjoint union
of input cacti;
(3i) The non-top linked SCCs of the system digraph
D(A, B) are comprised of input vertices, and
(3i1) there is a matching of the system bipartite graph
B(A, B) without right-unmatched vertices;
(4i) Ewvery state vertex is input-reachable, and
(4i7) there is a matching of the system bipartite graph
B(A, B) without right-unmatched vertices. o

4 Main Results

We begin this section by providing sufficient conditions
for an interconnected dynamical system to be struc-
turally controllable in the case where all the subsystems
have the same structure (Theorem 2 and Theorem 3).
We then focus on more general interconnected dynamical
systems, called serial systems, and provide sufficient con-
ditions for their structural controllability (Lemma 2), as
well as an efficient distributed algorithm (Algorithm 1)
to verify these conditions which has its correctness and
complexity proven in Theorem 4. In light of these condi-
tions, we explain why previous results in this line (Rech
and Perret, 1991) presented conditions that are only suf-
ficient instead of necessary and sufficient (Figure 2). Fi-
nally, we end this section by providing an efficient dis-
tributed algorithm (Algorithm 3) to verify the structural
controllability of an arbitrary interconnected dynamical
system, which has its correctness and complexity proven
in Theorem 6. In order to perform this verification, each
subsystem has to perform calculations using the infor-
mation about itself and its neighbors. Furthermore, the
subsystems must be able to communicate with each of
their neighbors.

Often it is the case that the interconnected dynamical



systems under analysis are comprised of subsystems that
are similar among themselves. So, we begin by mak-
ing this idea precise, and providing conditions to ensure
structural controllability of such systems.

Definition 4 Let E € {0,1}™", A, H € {0,1}"*",
B' € {0,1}"*P, be matrices with the restriction
that E;; = 0 (i = .,7). Then, we denote by
(A',B',H,E') the structural system (A, B), with
A= (I, ®A’) (E® H) and B =1, ® B’, where V is
the entry-wise logic or-operation. We call such a system
composed of r similar subsystems, or a similar system
for short. o

Remark 1 Note that in the case of similar systems, H is
the structural matriz modeling the interactions between
each subsystem and its neighbors, all of which have the
same structure.

Definition 5 Let (A, B) be the structural matrices asso-
ciated with the interconnected dynamical system in (1),
we define the condensed graph of the system as being the
digraph D*(A) = D(A, E), where a; € A = {ay,...,a,}
is a vertex representing the i—th subsystem, and (a;,a;) €
€ = {(ai,a;)|E;; # 0} a directed edge representing a
communication from subsystem j to subsystem i. More-
over, if there is no directed edge ending in a vertex, this
vertex is referred to as a source. o

Note that in the case that a system (A, B) is composed
of r similar systems and parametrized by matrices
(A, B', H, E) the condensed graph D*(A) is the same as
the dlgraph D(E). Now, we proceed to verify structural
controllability of these systems when the subsystems
are not structurally controllable by themselves.

Theorem 2 Let the system (A, B) be composed of r
similar components, and parametrized by (A", B', H', E),
where (A’,B’) is mnot structurally controllable, and
B(A’, B) has a matching without right-unmatched ver-
tices. The pair (A, B) is structurally controllable if and
only if (A’ V H,B') is structurally controllable and the

condensed graph D*(A) has no sources. o

Proof: To prove the equivalence, we begin by proving
that the conditions are sufficient by contrapositive; sub-
sequently, we prove directly that the conditions are also
necessary.

Thus, we begin by noting that, since (A’, B') is not struc-
turally controllable despite B(A’, B) having a maximum
matching without right-unmatched vertices, it follows,
from Theorem 1-(4), that D(A’, B) has a vertex which
is not reachable from any input vertex. So assume that
D*(A) has a source, this implies that there is a subsystem

(A’ Bj}) with no incoming edges from other subsystems,

and so the overall system digraph D(A, B) has a state

vertex without a path from any input vertex to it, and

so, by Theorem 1-(4), (A, B) is not structurally control-

lable. Furthermore, (A’ V H, B') is not structurally con-
)

A
trollable. Since B(A’ B') has a matching without right-

unmatched vertices, so does B(A’V H, B'), which means,
by Theorem 1-(4) that, D(A’V H, B') must have a state
vertex which is not reachable from any input vertex.
This implies that the corresponding state vertex is not
reachable from an input vertex in any of the subsystems
(since a path from an input vertex in the overall system
translates into one such path in D(A’ vV H, B')).

Finally, assume that (A’ H, B') is structurally control-
lable and that D*(A) has no sources, then for each state
vertex, there is a path from an input vertex to it, which
implies, by Theorem 1-(4), that (A, B) is structurally
controllable. |

In the next result, we relax the assumptions from The-
orem 2, about the structure of the dynamics of the sub-
systems. Thus, allowing for applications in the design
of interconnections between subsystems that may fail to
meet these criteria.

Theorem 3 Given an interconnected dynamical sys-
tem (A,B) composed of r similar components, and
parametrized by (A',B',H,E), where (A", B’) is not
structurally controllable, then (A, B) is structurally con-
trollable if both (A" Vv H,B') is structurally controllable
and D*(A) is spanned by cycles. ©

Proof: First, notice that if the digraph D*(A) is spanned
by cycles, every vertex in it is within a cycle, and in par-
ticular means that D*(A) has no sources. Consequently,
the method of proof of Theorem 2 is applicable to show
that every state vertex has a path from an input vertex
to it, so all that remains to show is that the B(A, B) has
no right-unmatched state vertices with respect to some
maximum matching. To this end, we first assume (with-
out loss of generality) that D*(A) has one spanning cy-
cle, and that the subsystems (A}, B}),--- , (4}, B}.) are
ordered in such a way that F;,; = 1fori=1,...,r—1,
and El,r =1.

Now, denote the state and input vertices of the i—
th subsystem by z{ with & = 1,---,n and u} with
Il = 1,---,m, respectively. In addition, let M be a
maximum matching of B(A’ v H,B’) without right-
unmatched state vertices, then we can partition M’ into
three matchings My, My, M}, comprising, respectively,
the edges of M’ of the form (uy,xy), those of the form
(x1, 1) where Ag; = 1, and the remaining ones, that
are of the form (J?l, xk) where Ak,l =0and Hk,l = 1. Fi-
nally, consider the matching M of B(A, B) comprising
the edges:

(ul,z?), if (ug, ;) is in M,

(xk,xl) if (zg,x;) is in My,

(xf,xy), if (x;,2;) is in My,
(

a2 ™), if (2, 2) is in M.

To show that this matching has no right-unmatched ver-
tices, consider a state vertex xi of B(4, B), since M’ has
no right-unmatched vertices, ;. is not right-unmatched

"), and thus there is an edge (2, 2,) for some

in B(A', B



lor (wy, k) in M’, but this implies that either (x},z%),
(zi~1 ), or (uj,zt) € M (where i — 1 = r when
i = 1) from the construction above, thus B(A, B) has no
right-unmatched vertices w.r.t. M.

Finally, if more than one cycle is necessary to span the

graph D*(A), then the same argument applies to each
cycle individually. |

Remark 2 The conditions in Theorem 3 are not neces-
sary. Indeed, consider the example in Figure 1—(b) which
is shown to be structurally controllable, yet the condensed
graph is not spanned by cycles. o

(a) DA, B')

e

() D*(A,B)

.

Fig. 1. In (a) we provide the digraph D(A’, B) of a sys-
tem that is not structurally controllable, where we repre-
sent in blue the single input vertex. By connecting three of
these systems together as in (b) the system (A, B) becomes
structurally controllable, as evidenced by the fact the match-
ing M, associated to the path and cycle decomposition (see
Lemma 1) depicted by the red edges, has no right-unmatched
state vertices (since every state vertex has an incoming red
edge), and the fact that every non-top linked SCC is com-
prised of an input vertex. Finally, in (¢) we show that the
condensed graph D*(A) of the system in (b) is not spanned
by cycles, showing that the condition in Theorem 3 is not
necessary.

We now move toward methods of verifying structural
controllability of interconnected dynamical systems by
way of distributed algorithms. To this end, we begin by
introducing a result that will allow us to infer structural
controllability of a family of interconnected dynamical
systems that we call serial systems. Later, we provide a
computational method to perform this verification in a
distributed manner, that is, while each subsystem only
needs to have partial information about the system in
order to verify if this is structurally controllable or not.

It is worth noting that in order to make it so that all
of the algorithms in the present paper to work as in-
tended, several assumptions have to be made about the
subsystems, and how they communicate. Namely, that
each subsystem has a processing unit, and can send ar-
bitrary messages to its neighboring subsystems; in ad-
dition, each subsystem is aware of the number of sub-
systems in the overall system and possesses a unique id,
and that the condensed graph of the system D*(A) is
weakly connected.

Lemma 2 Consider the structural system (A, B) as

in (1) with subsystems (A1, B1), ..., (A, B;.). Then the
system (A, B) is structurally controllable if there exist
mazimum matchings My, ..., M, of the bipartite graphs
B(A1),...,B(A;) such that the following conditions
hold:

(1) For each subsystem (A;, Bj) with j = 1,...,r, the
non-top linked SCCs of D(A;, B;) is comprised of
mput vertices.

(2) the following bipartite graph admits a maximum
matching without right-unmatched vertices
B | Juc(), | (), |\ Eun vty unian)

i=1 i=1 i=1 ji
where Ur,(M;) and Ur(M;) are the sets of left-
and right-unmatched vertices, respectively, and
Eup (M) ur() S Ex,x is the set of edges from
vertices in Ur, (M) to vertices in Ur(M;). o

Proof: First, note that the non-top linked SCCs of
D(A, B) are comprised of SCCs of the subsystem di-
graphs D(A4;, B;), and that for one such SCC to be non-
top linked, it must contain at least one non-top linked
SCC of one of the D(A;, B;) in it. Therefore, since every
non-top linked SCC of every D(A;, B;) is comprised of
input vertices, and there are no edges from any neigh-
boring system to input vertices, the non-top linked
SCCs of D(A, B) must be comprised of input vertices.

Secondly, note that the union of the maximum matchings
M; of the B(A;, B;) comprises a matching M of B(A4, B).
Furthermore, let M’ be the matching mentioned in con-
dition (2). Since M’ is comprised of edges from left-
unmatched vertices to right-unmatched vertices of M,
and so M UM’ is a matching of B( A, B), and since by hy-
pothesis the matching M’ has no right-unmatched ver-
tices, neither does M U M’. By Theorem 1—(3), this im-
plies that the system is structurally controllable. |

Note that using Lemma 2 we conclude that the system
from Figure 2—(a) is structurally controllable, yet but
using the characterization in Rech and Perret (1991), it
is not possible to obtain the same conclusion. Further-
more, Lemma 2 provides only a sufficient condition for
structural controllability. Nonetheless, these conditions
can be verified in a distributed manner in the class of
interconnected dynamical systems formally introduced
next.

Definition 6 We say that an interconnected dynamical
system (A, B) as in (1) is a serial system if each vertex

of the condensed graph D*(A) has at most one outgoing
edge. o

Although serial systems seem a restrictive class of sys-
tems, they may exhibit a rich structure as exemplified in
Figure 3. Furthermore, as stated before, serial systems
enable us to verify the sufficient conditions for struc-
tural controllability in Lemma 2, in a distributed man-
ner. Thus, in Algorithm 1 we present the procedure that



Algorithm 1

Distributed algorithm to verify sufficient conditions given in

| |
i i Lemma 2, for an arbitrary serial system.
| oo T | oo T 1: procedure SEQSTRTCTL(A;, B, 1, E; j # 0)
3 ‘ 3 ‘ >r = total number of subsystems, F; ; = connection
| | | | matrices
1 I | 1 I ! 2:  nghl(i) + {j: E;; #0}
e e 3. nghO(i) « {j: E;; # 0}
R R 4:  nghbs(i) < nghI(i) UnghO(i)
Fig. 2. In (a), we present the digraph associated to an inter- > send the dynamic matrix to (the unique) out-
connected dynamical system, where the different subsystems going neighbor
are represented inside the dashed boxes. Recall the definition 5. for all j € ngh0(i) do
of cactus, it can be readily be seen that the digraph D(A, B) 6: SEND(/L-, 7)
is spanned by the input cactus, depicted by the red edges, 7. end for
rendering the structural system (A, B) structurally control- . he d . trix of the i .
lable by Theorem 1-(2). In (b), however, we depict possible > receive t. ¢ dynamuc matrix of the mcotning
cacti that span each of the subsystem digraphs. Since a span- nelghbo?s Je nghI (4) ) ) )
ning cactus for D(Az, B2) has to include a stem comprising &: for all j € nghI(i) do > nghI(i)= {ji,...,5}
at least a vertex, neither of the cacti spanning D(A:, Br) 9: Aj < Rev(j)
and D(Az, Bz) can contain any cycles, and there is no way 10: end for
of prolonging the stem that spans D(A;, B1) to include a A, E; i E; i
stem spanning D(A2, B2). This shows that the conditions _ ’
proposed in Rech and Perret (1991) are not necessary. _ 0 Aj 0
11: Al )
/’ '/ﬂ'\' /—«—- 0 0 ... A,
<\ 122 B+ [B],0,...,0]"
/ 13: B; « B(A], B))
~* 14: function c¢;(y, zx,) > define the weight function
\ / 15: if y==x;, and k,j <n; or k,j > n; then
K . return 1
. . . 16: else
Fig. 3. Example of a possible condensed graph for a serial return 2
system, where each vertex represents a subsystem, and each .
directed edge a non-zero connection matrix, see Definition 6. 17: end if .
each agent deploys in order to verify the conditions in 18: end function
Lemma 2. 19: M; + MINWTMAXMATCH(c¢;, BB;)
20: Ur(M;) < {z; : z; right-unmatched w.r.t.M; and j < n;}
Before introducing Algorithm 1, we explain the functions o
that are used throughout the algorithm. All these func- 21: N < {state vertices in non-top linked SCC of D(4;, B;)}
tions should be able to be applied by the i—th subsys-
tem, SEND(z, j) sends the value of the variable x to the 22: mchd (i) < [Ur(M;) == 0)
j—th subsystem, while Rcv(j) makes the system wait to 23: rchd(i) < [N == (]
receive a message from the j-th subsystem and subse- > check if the whole system can be structurally
quently reads this message. Note that both these func- controllable according to wether the conditions
tions can only be applied when systems ¢ and j communi- are satisfied in the current system or not
cate with each other. For communication to be success- 24: ctld(é) < rchd(i) A mchd(7)
ful, we assume that the systems perform these steps syn- 25: fork=1,...,rdo
chronously (i.e. they wait for the responses of their neigh- 26: for all j € nghbs(i) do
bors). Finally, the procedure MINWTMAXMATCH(¢, G) SEND(ct1d(7), §)
calculates the minimum weight maximum matching on ctld(j) < Rov(y)
the graph G using to this end, the cost function ¢, and 27: end for
boolean expressions contained in square brackets get > reconsider the answer in light of the values
evaluated (to True or False). from the neighbors current answer
Remark 3 Note that Algorithm 1 can be easily adapted 28 ctld(i) ¢ ct1d(i) jeng/h\bs(i) celd(j)
to cover the case where each subsystem only has one in- 29: end for
coming neighbor. In this case, instead of considering B, > return True if the system is structurally con-
as the bipartite graph associated to thei—th subsystem and trollable and False otherwise
all its incoming neighbors, we use the outgoing neighbors 30 return ct1d(i)

31: end procedure




instead. o

The next result concerns the correctness and complexity
of Algorithm 1.

Theorem 4 Algorithm 1 is correct, i.e., it verifies the
sufficient conditions given in Lemma 2 for an arbitrary
serial system. Moreover, it has computational complexity
© <¢Pf???7r N’?))’ with Ni = mi + 3 jez,0(:) ny» where
m; and n; are the dimensions of the input and state space
for the i—th subsystem, and Z; C {1,...,r} is the set of
subsystems which output to the i—th subsystem. o

Proof: To prove the correctness of Algorithm 1, we start
by proving the claim that a minimum weight maximum
matching M of B; w.r.t. the weight-function ¢; defined
in step 14 induces maximum matchings on B(A4;), as well
as on B(A;) for any subsystem (A;, B;) with nonzero
connection matrix F; ;: let M; be the matching result-
ing from restricting M to the edges of B(A;), and in or-
der to derive a contradiction, assume that M; is not a
maximum matching of B(A;). As a direct consequence
of Berge’s theorem (see for example Theorem 1 in Berge
(1957)) the set of right-unmatched vertices of any match-
ing contains the right-unmatched vertices of some maxi-
mum matching, so let M/ be a maximum matching such
that Ur(M!) C Ur(M;). Furthermore, let S; C M be
the set of edges from a vertex not in X; to a vertex in A},
and let S/ be those edges in S; that end in some vertex
in Ug(M]). Now, (M \ (M; U S;))U M/ U S! is a match-
ing of B; with the same number of edges as M (since it
has the same number of right-unmatched vertices) and
with an overall weight lower than that of M (since by
hypothesis S] C S;), which contradicts the fact that M
is a minimum weight maximum matching. The same ar-
gument works for the matching M; of B(A;) with j # i,
replacing left-unmatched vertices with right-unmatched
vertices.

Now, since (A, B) is a serial system, there is at most one
k # i with nonzero matrix Ej ;. Therefore, we let M’
and M"” be the maximum matchings of B(4;) resulting
from the maximum matchings of B; and By, respectively.
Then, by Lemma 4 in Pequito et al. (20164), there ex-
ists a maximum matching M that has as left-unmatched
vertices those of M” and as right-unmatched vertices
those of M’. Subsequently, we only need to check for
each subsystem that there is a minimum weight maxi-
mum matching of B; (w.r.t. the weight function w;) that
has no right-unmatched state vertices. Thus, in Algo-
rithm 1, we set up the necessary structures until step 14.

Now, in step 19 the i—th subsystem computes the max-
imum matching M; of B;, and in step 20 the system
calculates the associated set of right-unmatched ver-
tices. Next, in step 21 the subsystem calculates the set
of state vertices in a non-top linked SCC of D(A4;, B;),
and in steps 22 and 23, it verifies the existence of
right-unmatched state vertices of the i—th subsystem

w.r.t. the matching M;, and the existence of in a non-
top linked SCC of D(A4;, B;). Finally the subsystem
decides if the whole system is structurally controllable
or not in steps 24-29. More precisely, after an initial
guess has been made and stored in ctld(i), the sub-
system updates this variable with the corresponding
variable of its neighbors, and repeats this r times. Note
that after k iterations of the steps 2629 the subsystem
has updated ctld(¢) with the corresponding values of
all subsystems at k edges of distance from it. Since the
condensed graph of the systems is weakly connected,
the communication between subsystems is undirected,
and there are only r subsystems, ct1d(i) = True if and
only if all subsystems had initially ct1d(j) = True. Fi-
nally, in step 30 the subsystem returns the value True
or False depending on wether or not the system satisfies
the conditions of Lemma 2.

Lastly, the complexity of Algorithm 1 is computed as
follows: since all of the steps have linear complexity ex-
cept determining the minimum weight maximum match-
ing of B; in step 19, for which the Hungarian algorithm
can be used with complexity O (|N;|?), with N; = p; +
ZjEIiU{i} nj, Al S {0,1}"ixni and Bl € {0,1}ni><pi
and Z; C {1,...,r} is the set of indexes of subsystems
incoming to the i—th subsystem Munkres (1957). This
procedure has to be applied to each of the r subsystems,
which implies that the complexity of the algorithm be-

comes O [ max N} ). |
1=1,...,r

Remark 4 Note that if the system were not serial then
there could be a subsystem, with k—th system that out-
puts to both the i— and j—th subsystems. This could mean
that when computing mazimum matchings of B; and B,
separately we could match the state vertex of the k—th
subsystem to two different state vertices, one of the i—th
subsystem and one of the j—th subsystem. Furthermore,
note that if there is a subsystem with incoming edges from
every other system, the algorithm will calculate a maxi-
mum matching in a centralized manner.

Now we move toward distributed algorithms that are
able to verify structural controllability of interconnected
dynamical systems at large. In this case, each subsys-
tem is required to share only partial information about
its structure with its neighbors. This algorithm, how-
ever, has a higher computational complexity than Algo-
rithm 1. In order to infer structural controllability, we
employ Theorem 1-(4), and begin by presenting an al-
gorithm to verify if each of the state vertices in the di-
graph associated to an interconnected dynamical system
as in (1) has a path from an input vertex to it.

Theorem 5 Algorithm 2is correct (i.e., it returns True
if and only if every state vertex in the i—th subsystem
digraph is input-reached). Furthermore, Algorithm 2 has
complexity O <max {7’2, Nr,N max nz}> , wheren; is

1=1,...,r



Algorithm 2
Distributed algorithm to verify condition (44) of Theorem 1.

1: procedure REACHED(A27 Bi,Eir, #0,E; #0,7)

2 nghI(i) < {j: Ei; # 0}

3: nghO(i) < {j: Ej.: # 0}

4: nghbs(i) < nghI(i) Ungh0(i)

5: N; #{SCCS of D(A:)}

6 sces(i) «+ {(i, N:)}

> the subsystems communicate with each other to

learn how many SCCs each subsystem has, in order
to find the necessary number of communication steps

7 fork=1,...,r do
8: for all j € nghbs(i) do
9: SEND(SCCs(3), j)

10: SCCs(j) « Rcv( /)

11: SCCs(i) < SCCs(i) USCCs(5)

12: end for

13: end for

14: N+ 377, 8CCs(j)

15: rchd(i) « {} > list of input-reached vertices
> add the vertices with incoming edges from input
vertices

16: for j=1,...,n; do

17: if 3k : (Bi)j,k =1 then

18: AppTo(z;,rchd(7))

19: end if

20: end for

21: for k=1,...,N do

> transmit to outgoing neighbors which vertices
that communicate with them have been input
reached

22: for all j € ngh0(7) do

> M, is the -th column of M
23: SEND({z; : (3,7;) € rchd(i) and (Ej,i)e, # 0},5)
24: end for
> add vertices reached from the neighbors’ input
reached vertices

25: for all j € nghI(i) do

26: avail(j) + Rcv(y)

27: rchd(i) « rchd(i) U {z: : (E; ;)i = 1,21 € avail(j)}

28: end for

> verify which vertices are reachable from the in-
puts by using k edges between subsystems steps

29: forl=1,...,n; do

30: rchd(i) + rchd(i) U {z¢ : (Ai)e,s = 1,75 € rchd(i)}

31: end for

32: end for
> return True if every state vertex the i—th subsystem
digraph is input-reached, and False otherwise

33: return [#rchd(i) == ny]

34: end procedure

the dimension of the state space of the i—th subsystem,
and N = 3", n;, where k; is the number of SCCs in the
i—th subsystem digraph.

&

Proof: Note that, since each subsystem can establish
two-way communication with its neighbors, the commu-
nication graph is strongly connected, and thus the in-
structions in steps 7-13 only need to be executed (at
most) r times in order to receive all pairs (id, #SCCs) in
the system. Subsequently the total number N of SCCs
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can be computed in step 14.

Now, assume that each subsystem has a strongly con-
nected state digraph D(A;). Then, if the system has
an input vertex, i.e., if B; # 0, each of the state ver-
tices of the i—th subsystem is added to rchd(i) in the
first iteration of the for-loop in steps 21-31, namely in
the for-loop 29-31. Furthermore, note that in the case
where each subsystem has a strongly connected system
digraph, N = r, and a path from an input vertex to a
state vertex contains at most r edges between different
subsystem digraphs. Therefore, in this case, after N iter-
ations of steps 21-31 all vertices that may be reached by
a path from an input vertex have been added to rchd(7).

Alternatively, if the +—th subsystem is not strongly con-
nected, then, assume, without loss of generahty, that
A; is a block matrix, w1th submatrices A}, ..., Al along
the diagonal so that D(All), ..., D(AY) are strongly con-
nected. Furthermore, let B}, ..., B! be the restriction of
B; to the lines in used by A},. .., Al respectively. Then,
consider the interconnected dynamical comprising, in-
stead of the i—th subsystem (A4;, B;), the subsystems
(AL, B}),..., (AL, BY) connected amongst them and to
other subsystems according to A;. By applying this pro-
cedure to every subsystem whose state digraph is not
strongly connected, we obtain an interconnected dynam-
ical system, where each subsystem has a strongly con-
nected digraph. Note also, that we didn’t change the
state digraph of the overall system, thus a state vertex in
the overall system digraph is input-reached if and only
if it was input-reached in the original system digraph.
Now, since this the number of SCCs in all subsystems
of the original system digraph of this system is N sub-
systems, from the previous paragraph we conclude that
after IV iterations of steps 21-31, every state vertex in
D(A;) that is input-reached in D(A, B) has been added
to rchd(i).

Thus, we have proven that for any interconnected dy-
namical system, every state vertex of D(A4;) has a path
from some input vertex in the overall system if and only
if #rchd(i) = n;.

Finally, we analyze the complexity of Algorithm 2.
We begin by noting that the SCCs of D(A;) can
be computed in O (n;). Now, each of the steps in
the for-loop 7-13 can be executed in constant time,
which implies that the for-loop incurs in complexity
O (r#nghbs(i)) which is bounded by O (r?). Further-
more, the steps 22-24 and 25-28 can be executed in
constant complexity, thus these loops incur in com-
plexity O (#ngh0(i)) and O (#nghl(i)), respectively.
Finally, the for-loop in steps 29-31, incurrs in linear
complexity (on the number, n;, of state variables). So
in conclusion, the complexity of Algorithm 2 becomes

O(max{ﬁ,Nr,N‘max nz}) |

i=1,...,7
Next, we present a distributed algorithm to verify struc-



tural controllability when the subsystems only have ac-
cess to neighboring subsystems. Briefly, the algorithm
consists in verifying both conditions (4i) and (4ii) of
Theorem 1 in a distributed manner. Condition (47) of
Theorem 1, can be verified by applying Algorithm 2. On
the other hand, Theorem 1—(4ii) requires one to com-
pute a maximum matching in a distributed manner. This
can be achieved by reducing the problem of finding a
maximum matching to that of computing a maximum
flow (Ahuja et al., 1993). However, since we only need to
detect the existence of right-unmatched vertices, we only
need to compute a maximum preflow (which corresponds
to a flow, where the flow on the incoming edges need not
be equal to the flow on the outgoing edges of each ver-
tex). To this end, we employ the distributed algorithm
provided in Shekhovtsov and Hlavaé (2013). In order to
achieve this reduction, one first takes the overall system
bipartite graph and provides an orientation to each edge,
from left-vertex to right-vertex; then one adds two ex-
tra vertices, called source and sink; finally one adds an
edge from the source to each of the left-vertices of the bi-
partite graph, and from each of the right-vertices to the
sink and assigns to each vertex a capacity of 1 (Ahuja
et al., 1993). The computation of the maximum flow is
then done distributedly, where each subsystem works to
maximize the flow from the source to the sink within
a region of the graph comprising the subsystems bipar-
tite graph, the source and the sink (note that the source
and sink lie in all regions, which does not impair the dis-
tribution of the algorithm, since the systems need not
keep track of the excess on the source or the sink), and
any vertices in other subsystems to which the system is
connected. This is achieved through a push-relabel algo-
rithm, briefly described as follows: each of the vertices in
a region keeps track of an excess (which corresponds to
the difference between the incoming and outgoing flow),
and a label or height. The excess is then pushed from
higher labels to lower labels increasing the flow through
the edges between them until it reaches the sink, or the
boundary. Once this is achieved, the excess accumulated
in the boundary is passed to the corresponding neigh-
boring region, and the iterations begin again. However,
the existence of boundary vertices limits the paralleliza-
tion, as two instantiations of the algorithm can only (in
general) be computed simultaneously, if the regions do
not share vertices other than the source or the sink.

From this point onwards we refer to the individual in-
stances of the parallell region discharge algorithm pre-
sented in Shekhovtsov and Hlavaé (2013) as PRD. Fur-
thermore, we assume PRD considers the following pa-
rameters: the digraph on which it operates, the capacity
function, and the neighbors with which it shares vertices
other than the source or the sink. Also, PRD returns a
maximal preflow on the digraph.

Theorem 6 Algorithm 3 is correct, i.e., it verifies (4)
of Theorem 1. Furthermore, it has a computational com-
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Algorithm 3
Distributed algorithm to verify condition (4) of Theorem 1.

1: procedure CONTROLLED(A“ B, El r # 0, Ek i Z0,7)

2: nghI(i) < {j: Es; # 0}

3: ngh0(i) < {j : E;,; # 0}

4: nghbs(i) « nghI(i) UnghO(7)
> verify if every state vertex is input-reached by de-
ploying Algorithm 2

5:  rchd(i) + REACHED(A;, By, E;  # 0, Ex; #0,7)
> we set up the graph for applying the Parallel region
discharge, where s and ¢ correspond to the source and
sink, respectively, the z and u vertices correspond to
state and input vertices. The upper index 7 is the
index of the subsystem they belong to, and the upper
index R and L indicate if they are right or left vertices

6 Vi (s, U (ot el Y Uul,
7 Eii  {(ay" al™)  (Ad)yy = U {(uf,237) = (Bi)yr; = 1)
8: for all j € nghbs(i) do
9: Vij {xi’R : (Eji)ke # 0}
10: Eij {(l‘f yop™) s (Bja)ed = 1}
11: Vji {x : ( ii)ek 7 0}
12: Eji = {(@" 2y R) D(Big)ie =1}
13: end for
14: Es {5} x {a"}ri,
15: E  {abTymi x {t}
16: £+ E&UGUEU U (£:U&n)
jEnghbs(i)
17: V«Vviu U V:UVi;)
j Enghbs(4)
18: «— (V&)
19: function c(e € &;)
20: return 1 > all edges have unitary capacity
21: end function
> Deploy a Parallel Region Discharge algorithm to
obtain a preflow f on D, with capacity function ¢
22: f < PRD(D, c¢,nghbs(i))
23: mchd (i) < [ Y. f(e) == ny]
ec&y
> check if the whole system can be structurally con-
trollable according to wether the conditions are sat-
isfied in the current system or not
24: ctld(¢) < rchd(i) A mchd(z)
25: fork=1,...,rdo
> reconsider the controllability of the overall system,
in light of the data received from the neighbors
26: for all j € nghbs(i) do
27: SEND(ct1d(4), j)
28: ctld(j) « Rcv( /)
29: ctld(i) < ctld(i) A ctld(j)
30: end for
31: end for
32: return ctld(s)

> return True if the system is structurally control-
lable and False otherwise
33: end procedure

plexity of
O<max{r2,Nr,N max n;,73° max nf})
1=1,...,r i=1,...,r

where 3 is the number of boundary vertices, and the re-



maining variables are the same as described in Theo-
rem 9. o

Proof: In order to verify the correctness of Algorithm 3,
we have to check if both conditions (4¢) and (4ii) of
Theorem 1 are verified. Furthermore, in order to per-
form this verification in a distributed manner, each sub-
system must verify that all vertices in its digraph are
input-reached in D(A, B), which is done by employing
Algorithm 2 in step 5; and that none of its state vertices
are right-unmatched w.r.t. some maximum matching of
B(A, B). Once this has been achieved, it was already
argued in the proof of Theorem 4, that the for loop in
steps 25—31 determines if these conditions are violated
in any of the subsystems.

Now, to verify that Algorithm 3 determines if there are
right-unmatched vertices in the i—th subsystem, we note
that in steps 6-21 we generate the digraph D comprising
the right- and left-vertices of the i—th subsystem bipar-
tite graph, and the boundary vertices of the i—th region
according to the precepts in Shekhovtsov and Hlavaé
(2013). Once the digraph D is computed, we apply PRD
to it in step 22, thus obtaining a preflow from source to
sink on D which is maximum amongst preflows on the
whole graph. By the guarantees provided in Shekhovtsov
and Hlava¢ (2013), together with the equivalence be-
tween the maximum matching and maximum flow prob-
lems, presented in Ahuja et al. (1993) we guarantee that
>~ f(e) is equal to the number of right-matched vertices
ecéy

in a maximum matching of the system bipartite graph,
that are state vertices of the i—th subsystem. So, by com-
paring > f(e) with n; in step 23, we are able to infer

ec&,

if there are right-unmatched vertices in the ¢~th subsys-
tem w.r.t. some maximum matching B(A, B). Thus the
algorithm returns True if and only if every state vertex
of the system digraph is input-reached, and there are no
right unmatched vertices in the system bipartite graph.

Now, since all of the steps of the algorithm have lin-
ear complexity except for step 5 and step 22, the
complexity of Algorithm 3 is given by the maximum
of these. Knowing that step 5 has a complexity of
O (max{rQ,Nr,NlmaX nz}

: (see Theorem 6, where
1=1,...,7

N is the number of SCCs on each of the subsystems), all
that remains to infer is the complexity of step 22. This al-
gorithm, as described in Shekhovtsov and Hlavaé (2013),
iteratively performs a push-relabel procedure, followed
by pushing the accumulated excess in the boundary to
a neighboring system. The push-relabel algorithm has
complexity O (nf’) (Ahuja et al., 1997; Goldberg, 2008),
and the necessary iterations of the region discharge that
each subsystem has to complete, can be bounded by /32
where [ is the number of boundary vertices in the whole
system bipartite graph (that is, the number of vertices
in the bipartite graph that have to be shared by sev-
eral subsystems). Also, in the worst-case scenario where
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each of the subsystems is connected to every other sub-
system, the region discharge steps have to be executed
sequentially. So, the complexity of step 22 is given by
@ (rﬂQ max n?), resulting in an overall complexity
i=1,...,r

of O (max{rQ,Nr,N 'Erllax {nZ,TBan’}}> [ ]

Remark 5 The computational complexity of Algo-
rithm 4 is dominated by the PRD, since Algorithm 2,
which is required to assess reachability in a distributed
fashion, has lower computational complexity. In par-
ticular, if the network is connected, then n; > 0 and
rB%n3 > n; for each subsystem i, where 0 < r < J3.
Subsequently, the computational complezity of the PRD

i -
1=1,.

algorithm reduces to O (Nrﬁ2 “max n3> o
LT

5 Illustrative Examples

Now, we provide a small example of how Algorithm 3
(and Algorithm 2, which is required as a subroutine)
runs on the interconnected dynamical system depicted
in Figure 4-1. In particular, we aim to emphasize the
distributed nature of Algorithm 3.

i LM‘ ?g’)j S ZJ%\'SA—L‘
\YJT R

NGNS ”\J?A‘;‘\”
‘)A > | ! L}:}A |
\v//f\

Fig. 4. Example of the procedure of Algorithm 2 applied to
the system digraph presented in Figure 4-1, comprising 4
different subsystems (depicted inside of the dashed boxes),
only one of which has an input edge (labeled u1). In each sub-
figure, the blue edges represent those that comprised a path
from an input vertex, and the green edges denote those that
were added in this iteration or communication step of the al-
gorithm. Finally, the even-labeled subfigures correspond to
an iteration of Algorithm 2, and the odd-labeled ones corre-
spond to a communication step between subsystems.




In Figure 4-1, we present the digraph associated to an
interconnected dynamical system comprising four sub-
systems. Since only subsystem (A;, B;) has an input
vertex, it readily follows from Theorem 1 that none of
the other subsystems can be structurally controllable.
Now, we employ Algorithm 3 to verify the structural
controllability of the interconnected dynamical system.
After the initialization steps are completed, we use Algo-
rithm 2, the iterations of which can be seen in Figure 4-2
to Figure 4-8: in each iteration (even-labeled subfigures)
new vertices are seen to be input-reached (the targets of
the green edges), and in each communication step (odd-
labeled subfigures) the subsystems communicate to its
outgoing neighbors which of their vertices are reached
after the iteration has been completed. As can be seen
in Figure 4-8, all vertices have been reached after four
iterations, which in this case, corresponds to the number
of SCCs in all subsystems.
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Fig. 5. Example of the PRD algorithm applied to the veri-
fication of structural controllability of the system presented
in Figure 4-1. For convenience of referencing, the vertices
are given labels rather than colors (x4 being the black vertex
in each subsystem and the others can be easily inferred). At
the left of each left-vertex and at the right of each right-ver-
tex we insert two numbers, the one in green represents the
excess of the corresponding vertex, whereas the red number
represents its label. Edges in red represent those where the
capacity has been saturated; and right-vertices in red repre-
sent the ones for which the edge to the sink has been sat-
urated. Finally, the vertices in blue represent vertices that
belong to other regions, i.e., boundary vertices. In order to
simplify, in this, we do not include boundary vertices from
incoming subsystems. Note also, that in this instance, we can
run the algorithm in all regions simultanously, since by not
considering the incoming edges from other regions in the re-
gion graph, we do not allow for flow to be sent back through
these edges.

In Figure 5, we consider an example of a run of the region
discharge algorithm running on the bipartite graph asso-
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ciated to the digraph in Figure 4-1. In this example, we
begin applying PRD in step 1 by initializing the labels
at 2 for each left-vertex, and at 1 for each right-vertex; we
also saturate all edges from the source, which makes it so
that all of the left-vertices start with an excess of 1. By
successive pushing and relabeling, we reach the configu-
ration in 2 where all the excess has either been pushed to
the sink (and thus the corresponding right-vertex is pre-
sented in red) or to the boundary of the region. In step 3,
we discharge the excess from the boundary into the ad-
jacent regions so that, for example, the right-vertex x3
in each of the regions has now an excess of 1. Finally,
by applying push-relabel again in each of the regions,
we reach step 4 where all the edges from right-vertices
to the sink have been saturated (and are thus displayed
in red) showing that there is a maximum pre-flow satu-
rating all edges to the sink, and equivalently that there
is a maximum matching with no right-unmatched ver-
tices. So, in combination with the analysis of Figure 4
we conclude that the interconnected dynamical associ-
ated to the digraph system in Figure 41 is structurally
controllable.

Remark 6 The computational complexity of solving the
mazimum-flow in a centralized versus the distributed ver-
ston implemented by the PRD, whose implementations
are available in Shekhovtsov and Hlavdc (2011a) and dis-
cussed in detail in Shekhovtsov and Hlavdc (2011b). More
specifically, it is provided a trade-off between the CPU
time required and the number of nodes and the number
of subsystems with the same number of nodes. In partic-
ular, the PRD takes in average twice the computational
time required by the centralized algorithm to solve the
maximum-flow. Furthermore, we notice that Algorithm 2
amounts to a depth-first search, which performance is
essentially the same as the distributed verification algo-
rithm proposed. o

6 Conclusions and Further Research

In this paper, we have provided several necessary and /or
sufficient conditions to verify structural controllabil-
ity for interconnected linear time-invariant dynamical
systems based on the local information accessible to
each subsystem. Subsequently, we have provided dis-
tributed and efficient (i.e., polynomial in dimension of
the state and input) algorithms to verify a necessary
and sufficient condition for structural controllability.
The results presented readily extend to discrete time-
invariant interconnected dynamical systems, since the
controllability criterion stays the same. Furthermore,
by duality between controllability and observability
the results also apply to structural observability ver-
ification of discrete/continuous linear time-invariant
interconnected dynamical systems. Whereas the re-
sults presented pertain to verify structural conditions,
it would be of interest to address design problems; for
instance, which state variables need to be actuated, or
which inputs should be used, to ensure a given struc-



tural property. On the other hand, it would be of in-
terest to understand if the conditions provided could
be adapted to the case where some of the entries in the
structure of the subsystems and their interconnections
are known exactly (which corresponds to the case where
only some of the components of the overall system are
assumed to be reliable). Ultimately, such an extension
would shed light on the relationship between structural
and non-structural system-theoretic properties; hence,
leading to a better understanding of the resilience and
performance of interconnected dynamical systems.
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