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Abstract

This paper studies the problem of, given the structure of a linear-time invariant system and a set of possible inputs, finding
the smallest subset of input vectors that ensures system’s structural controllability. We refer to this problem as the minimum
constrained input selection (minCIS) problem, since the selection has to be performed on an initial given set of possible inputs.
We prove that the minCIS problem is NP-hard, which addresses a recent open question of whether there exist polynomial
algorithms (in the size of the system plant matrices) that solve the minCIS problem. To this end, we show that the associated
decision problem, to be referred to as the CIS, of determining whether a subset (of a given collection of inputs) with a prescribed
cardinality exists that ensures structural controllability, is NP-complete. Further, we explore in detail practically important
subclasses of the minCIS obtained by introducing more specific assumptions either on the system dynamics or the input set
instances for which systematic solution methods are provided by constructing explicit reductions to well known computational
problems. The analytical findings are illustrated through examples in multi-agent leader-follower type control problems.

Key words: Large-Scale Control Systems Design, NP-completeness, Structural Controllability, Multi-agent Networked Control.

1 Introduction

Research on large-scale control systems has grown con-
siderably over the last few years, triggered by techno-
logical advances in sensing and actuation infrastructures
and relatively low cost of deployment. Such pervasive
sensing and actuation present tremendous opportuni-
ties for enhanced system control, although, at the cost
of handling and processing enormous amounts of sensor
data for system state inference and subsequently coor-
dinating generated control signals among the actuators
distributed throughout the system. Thus, it is of impor-
tance to understand which subsets of sensors and actu-
ators (hence the smallest amount of data that need to
be processed and coordination required) are crucial for
achieving desirable system monitoring (observability)
and control (controllability) performance. These and re-
lated questions form the core of the input/output selec-
tion problems [5,13,14] in large-scale control systems. In
this paper, we focus on the problem of, given a possibly
large scale linear-time invariant system and a set of pos-
sible inputs, finding the smallest subset of input vectors
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that ensures system’s controllability. Notice that, by du-
ality between controllability and observability for linear-
time invariant systems, another problem can be posed
in terms of determining the minimal number of outputs
that ensure observability, whose solution is straightfor-
ward from knowing how to solve the related controlla-
bility problem.

Now, consider the system

z(t) = Ax(t) + Bu(t) (1)
where x € R" is the state, © € RP and y € R™ denote
the input and output vectors, respectively. Additionally,
let A € {0,+}"*™ denote the zero/nonzero or structural
pattern of the system matrix A, whereas B € {0, *}"*P
is the structural pattern of the input matrix B; more
precisely, an entry in these matrices is zero if the corre-
sponding entry in the system matrices is equal to zero,
and a free parameter (denoted by a star) otherwise. No-
tice that the structural matrices defined above determine
the coupling between the system state variables, and the
state variables actuated by the inputs deployed in the
system. The structural matrices are the object of study
in structural systems theory [4], where the pair (A, B) is
said to be structurally controllable if there exists a nu-
merical realization (A, B) in (1) with the same structure,
i.e., having zeros in the specified locations, as (A, B) that
is controllable. In fact, a stronger characterization holds,
and it can be shown that the set of non-controllable nu-
merical realizations (A, B) of a structurally controllable
pair (A, B) has zero Lebesgue measure in the product
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space R"*™ x R"*P; in other words, almost all numerical
realizations of a structurally controllable pair are con-
trollable [4]. Hereafter, we restrict attention to structural
system theoretic properties. More specifically, given the
structural matrix and possible input configurations, the
minimum constrained input selection (minCIS) problem
consists of identifying the smallest subset of inputs that
ensure structural controllability and may be formally
posed as follows

P; Given A € {0,%}™*" and B € {0,x}"*P, determine

f g ; 2
J g min |71 (2)

s.t. (A, By) is structurally controllable,

where J is a subset of indices associated with the inputs
and B 7 corresponds to the subset of columns in B with
index in J. o

Remark 1 The results that we obtain for the minCIS
problem Py readily extend to the corresponding output se-
lection problem by the duality between observability and
controllability in linear systems, and, hence, in what fol-
lows, we focus on the minCIS only. In addition, note
that the current setup considers continuous time systems,
however, all our results apply to the discrete time setting
as well due to similar controllability criteria. o

Problem P; has been previously explored by several au-
thors, see [1] and references therein. In fact, [1] provided
the motivation for the present paper, in which the fol-
lowing question was posed: Is there a polynomial solu-
tion to P17

In this paper, we address the above question in general
scenarios.

In what follows, we use some concepts of computational
complexity theory [2], that addresses the classification of
(computational) problems into complexity classes. For-
mally, this classification is for decision problems, i.e.,
problems with an “yes” or “no” answer. Further, for a
decision problem, if there exists a procedure/algorithm
that obtains the correct answer in a number of steps
that is bounded by a polynomial in the size of the input
data to the problem, then the algorithm is referred to as
an efficient or polynomial solution to the decision prob-
lem and the decision problem is said to be polynomially
solvable or belong to the class of polynomially solvable
problems. A decision problem is said to be in NP (i.e.,
the class of nondeterministic polynomially problems) if,
given any possible solution instance, it can be verified
using a polynomial procedure whether the instance con-
stitutes a solution to the problem or not. It is easy to
see that any problem that is polynomially is also in NP,
although, there are some problems in NP for which it is
unclear whether polynomial solutions exist or not. These
latter problems are referred to as being NP-complete.
Consequently, the class of NP-complete problems are the

hardest among the NP problems, i.e., those that are ver-
ifiable using polynomial algorithms, but no polynomial
algorithms are known to exist that solve them. Whereas
the above classification is intended for decision problems,
it can be immediately extended to optimization prob-
lems, by noticing that every optimization problem can
be posed as a decision problem. More precisely, given
a minimization problem, we can pose the following de-
cision problem: Is there a solution to the minimization
problem that is less than or equal to a prescribed value?
On the other hand, if the solution to the optimization
problem is obtained, then any decision version can be
easily addressed. Consequently, if a (decision) problem
is NP-complete, then the associated optimization prob-
lem is referred to as being NP-hard. We refer the reader
to [6] for an introduction to the topic, and Section 2 for
further discussion.

In fact, one of the main results of the present paper
consists in showing the NP-completeness of the decision
version of the minCIS problem, which we refer to as
constrained input selection (CIS) problem, and given as
follows.

P Is there a collection of indices J C {1,...,p} with
at most k elements (i.e., |J| < k) such that (A, By) is
structurally controllable?

The NP-completeness of CIS is attained by polynomi-
ally reducing the set covering problem to it. Hence, in
particular, polynomial complexity algorithms that solve
general instances of the CIS and minCIS are unlikely
to exist. Nevertheless, there could be subclasses of the
minCIS that admit polynomial complexity algorithmic
solutions, as is the case with a practically relevant sub-
class of minCIS problems identified in this paper; more
precisely, when the input matrix B is restricted to be
structurally similar to the n x n identity matrix L (but
A is arbitrary).

In addition, since the CIS is NP-complete, the minCIS
may be polynomially reduced to other (more standard)
NP-hard problems, through polynomial reductions be-
tween their decision versions. Practically, such reduction
may lead to efficient (polynomial complexity) approxi-
mation schemes for solving the minCIS with guaranteed
suboptimality bounds. While we do not provide such re-
ductions from general minCIS instances to other NP-
hard problems, for a certain restricted subclass of min-
CIS problems (with some additional conditions on the

1A structural input matrix B that is structurally similar
to the n X n identity matrix is referred to as a dedicated
input configuration, in that, each input can actuate or is
connected to at most a single state variable. Such dedicated
input configurations are common in several large-scale multi-
agent networked control systems such as the power system,
see [7], for example.



dynamic matrix structure) we explicitly construct a re-
duction to the minimum set covering problem. This re-
duction builds upon the complexity remarks elaborated
in [1], yet it holds for a larger class of instances, and only
relies on a condition on the structure of the dynamics.
Furthermore, this restricted class is practically relevant
and, as shown later, subsumes important applications
in multi-agent control such as leader-follower problems
[8,9]; as a demonstration, we show how our reduction
can be used to solve the leader-selection problem and a
more general variant of it, which we refer to as the con-
strained leader-selection problem.

The main results of the paper are threefold: (i) we show
that CIS is NP-complete, which implies that the minCIS
is NP-hard; (ii) we identify a subclass of minCIS prob-
lems that are polynomially solvable; more precisely, un-
der the assumption that the input matrix is structurally
similar to the identity matrix; and (iii) we provide a
polynomial reduction of the minCIS problem to a mini-
mum set covering problem under a mild assumption on
the structure of the dynamic matrix (given in Assump-
tion 1), that hold for several interconnected dynamical
systems, as well as leader-selection problems like those
introduced in Section 4.

The rest of this paper is organized as follows: Section 2
introduces some preliminaries on computational com-
plexity theory, associated complexity classes and poly-
nomial reductions between problems. Additionally, we
review some concepts and results in structural systems
theory to be used in the sequel. Section 3 presents the
result that the CIS is NP-complete, and, subsequently,
minCIS is NP-hard. In Section 4, a polynomial reduction
from the minCIS to the minimum set covering problem
is provided, under certain assumptions on the minCIS
instances. Finally, an illustrative example is described in
Section 5.

2 Preliminaries and Terminology

In this section, we review the minimum set covering prob-
lem, and its decision version, referred to as the set cov-
ering problem [3]. In addition, some necessary and suffi-
cient conditions that ensure system’s structural control-
lability, required to obtain the results presented in the
paper, are introduced in Section 2.1.

A (computational) problem is said to be reducible in
polynomial time to another if there exists a procedure
to transform the former to the latter using a polynomial
number of operations on the size of its inputs. Such re-
duction is useful in determining the qualitative complex-
ity class [6] a particular problem belongs to. The follow-
ing result may be used to check for NP-completeness of
a given problem.

Lemma 1 ([6]) If a problem P4 is NP-complete, Pg is
in NP and P4 is reducible in polynomial time to Pg, then
Pp is NP-complete. o

Now, consider the set covering (decision) problem: Given
a collection of sets {S;},;=1,... p, where S; C U, is there a
collection of at most k sets that covers i, i.e., UjeIC S; =

U, where K C {1,...,p} and |K| < k?

This is the decision problem associated with the mini-
mum set covering problem, a well known NP-hard prob-
lem, given as follows.

Definition 1 ([3]) (Minimum Set Covering Problem)
Given a set of m elements U = {1,2,...,m} and a
set of n sets S = {S1,...,8n} such that S; C U, with

i€ {l,---,n}, and USi = U, the minimum set cov-

i=1
ering problem consists of finding a set of indices T* C
{1,2,...,n} corresponding to the minimum number of

sets coveringU, i.e.,
7* = argmin |Z|
7C{1,2,...,n}
s.t. U= U S; .

i€l >

In particular, the set covering problem is used in the
present paper to show the NP-completeness of P{, by
considering the following result.

Proposition 1 ([6]) Let P4 and Pp be two optimiza-
tion problems, and P& the decision versions associated
with Pp. If a problem Pa is NP-hard, an instance of
Pl can be efficiently verified and Pa is polynomially re-
ducible to Pg, then P% is NP-complete. In particular,
Pp is NP-hard. o

2.1 Structural Systems

Structural systems provide an efficient representa-
tion of a linear-time invariant system as a directed
graph (digraph). A digraph consists of a set of wver-
tices V and a set of directed edges £y of the form
(vi,v;) where v;,v; € V. If a vertex v belongs to
the endpoints of an edge e € &y y, we say that the
edge e is incident to v. We represent the state di-
graph by D(A) = (X,Ex.x), ie., the digraph that
comprises only the state variables as vertices de-
noted by X = {x1,---,2,} and a set of directed
edges between the state vertices denoted by Ex x =
{(zi,x;) € X x X : Aj; #0}. Similarly, we represent
the system digraph by D(A, B) = (X UU,Ex x Uy x),
where U = {u1,--- ,up} corresponds to the input ver-
tices and &ua = {(usz;) €eUX X : B;j#0} the
edges identifying which state variables are actuated
by which inputs. Further, we say that an input wu; is
assigned to a state variable x; if B; ; # 0.

A directed path between the vertices vy and vy is a se-
quence of edges {(vy,v2), (v2,v3),..., (vg—1,vg)}. If all
the vertices in a directed path are different, then the



path is said to be an elementary path. A cycle is a di-
rected path such that v; = vy and all remaining vertices
in the direct path are distinct.

We also require the following graph theoretic notions [3]:
A digraph D is strongly connected if there exists a di-
rected path between any two vertices. A strongly con-
nected component (SCC) is a maximal subgraph Dg =
(Vs,Es) of D such that for every u,v € Vg there exist
paths from v to v and from v to u.

By visualizing each SCC as a virtual node, we can build
a directed acyclic graph (DAG) representation, in which
a directed edge exists between vertices belonging to two
SCCs if and only if there exists a directed edge con-
necting the corresponding SCCs in the original digraph
D = (V,€). The construction of the DAG associated
with D(A) can be performed efficiently in O(|V|+€]) [3].
In Figure 1, we present a digraph and its DAG repre-
sentation: by convention, the arrows connecting the dif-
ferent SCCs are facing downwards, which motivates the
classification of the SCCs in the DAG as follows.

Definition 2 ([10,11]) An SCC is said to be linked if
it has at least one incoming/outgoing edge from another
SCC. In particular, an SCC'is non-top linked if it has no
incoming edges to its vertices from the vertices of another

Fig. 1. In a) the SCCs are depicted by dashed boxes, labelled
by N; (i = 1,...,6), and the non-top linked SCCs A7 and N>
are depicted in red. In b), these SCCs correspond to vertices
(M1 and N2) in the DAG representation.

Given D = (V,€), we can construct a bipartite graph
B(S1,82,€s,.s,), where 81,82 C V and the edge set
551,52 = {(51,52) e & s1 € 81,85 € &y } Such
bipartite graphs will be used throughout in connec-
tion with the minCIS and we provide some elemen-
tary concepts associated with bipartite graphs. Given
B(S1,82,E€s, s,), amatching M corresponds to a subset
of edges in &s, s, that do not share vertices, i.e., given
edges e = (s1,82) and ¢ = (s},s5) with s1,s] € &
and s9, 8, € S, e,e’ € M only if s1 # s} and sy # sb.
A maximum matching M* is a matching M with the
largest number of edges among all possible matchings.
Note that, in general, a maximum matching may not
be unique. A maximum matching can be computed effi-

ciently in O(1/|81 U S2||€s, ,s,1) using, for instance, the
Hopcroft-Karp algorithm [3].

Given a matching M, an edge is said to be matched with
respect to (w.r.t.) M, if it belongs to M. In addition, we

say that a vertex v € V; U Vs is matched if it is inci-
dent to some matched edge in M, otherwise we say that
the vertex is free w.r.t. M. Incident and free vertices can
be further characterized as follows: a vertex in Sy is a
right-matched vertex if it is incident to an edge in M™,
otherwise, it is an right-unmatched vertex. A maximum
matching in which there are no free vertices (or equiv-
alently, either left /right-unmatched vertices) is called a
perfect matching.

Given a state digraph D(A) = (X,€Ex x), a particular
bipartite graph of interest is its bipartite representation
denoted as B(A) = B(X, X, Ex x), and we refer to it as
the state bipartite graph. The state bipartite graph may
be used to characterize all possible structurally control-
lable pairs (A, B), see [10]. In particular, in the sequel,
we will use the following result.

Proposition 2 ([10,11]) Given D(A) = (X,Ex.x)
and its DAG representation, constituted by k SCCs,
denoted by {N;}r_,, where N; = (X;,Ex, x,), let
Niys...N;,, be the non-top linked SCCs in the DAG
representation with {i1,...,im} C {1,...,k} and B(A)
the state bipartite graph. If B(A) has a perfect matching,
then (A, B) is structurally controllable if and only if for
each non-top linked SCC there exists an input (corre-
sponding to a column in B) assigned to, i.e., connected
to, at least one of its state variables. O

3 Main Results

In this section, we show that the minCIS presented in
P, is NP-hard (Corollary 1), by showing that its deci-
sion version, the CIS, is an NP-complete problem (Theo-
rem 1). Then, we identify a subclass of minCIS problems
that are polynomially solvable (Theorem 2).

We start by showing that CIS is NP-complete, as pro-
vided in the following result.

Theorem 1 The constrained input selection (CIS)
problem presented in P{ is NP-complete. o

Proof The proof follows by using Proposition 1; more
precisely, by presenting the polynomial reduction from
the minimum set covering problem to minCIS, and notic-
ing that P{ is in NP, i.e., there exist polynomial algo-
rithms to verify if (A, B(J)), for some J C {1,...,p}is
structurally controllable [1].

To obtain the polynomial reduction, consider a gen-
eral minimum set covering problem instance with sets
{Si}icz, the index set Z = {1,...,p} and universe Y =

J Si, where || = n. Subsequently, construct A €
i€T

{0, %}™*™ to be a diagonal matrix with nonzero entries,
i.e., *, in its diagonal. Additionally, select B € {0, *}"*P,
such that its (¢/, 7/)-th entry is given as follows:

Bi/,j' =

{*, if i’ € S

0, otherwise,



fori' € {1,...,n} and j' € {1,...,p}.

Note that such D(A) = (X,Ex x), consists of n non-
top linked SCCs and the associated state bipartite graph
B(A) has a perfect matching. Now, recall that, by Propo-
sition 2, (A, B(J)), for some J C {1,...,n}, is struc-
turally controllable if and only if each non-top linked
SCC of D(A) contains a state variable that is connected
from an input (corresponding to a nonzero column in

B(7)).

Subsequently, we first show that a feasible solution to
the minCIS leads to a feasible solution of the minimum
set covering problem, and secondly, a (minimal) solu-
tion to the minCIS leads to a (minimal) solution of the
minimum set covering problem. To show feasibility, let
B(J), for some J, be a feasible solution to the minCIS,
ie., (4, B(J)) is structurally controllable. It then fol-
lows that there exists edges from the inputs associated
with indices in J to all the state variables (corresponding
to the non-top linked SCCs in D(A)), which implies by
the construction of B that the family of subsets {S; } ;e
cover U.

To obtain minimality, suppose, on the contrary, that
J* constitutes a (minimal) solution to the minCIS, but
the family {S;};c7+ is not a minimum covering of U.
Then, there exists J' C {1,...,p} with |J'| < |J*|
such that the family {S,},;es covers Y. This, in turn,
by the construction of B and Proposition 2 implies that
the pair (A, B(J')) is structurally controllable. Since
|T'| < |T*|, we conclude that B(J*) is not a (minimal)
solution to the minCIS, which is a contradiction. |

From Theorem 1, we obtain one of the main results of
this paper.

Corollary 1 The minimum constrained input selection
(minCIS) problem is NP-hard. o

The fact that the minCIS is NP-hard, however, does
not rule out the possibility that there exist subclasses
of the minCIS (with restricted input instances) that ad-
mit polynomial complexity algorithmic solutions (in the
size of the system plant matrices). In fact, a particularly
interesting subclass of the minCIS is one in which the
collection of inputs initially given consist of all possible
dedicated inputs, i.e., the matrix B consists of n inputs
each of which is assigned to a single distinct state vari-
able. Formally, we have the following result.

Theorem 2 Let A € {0,x}"*" be a given structural
dynamic matrix and B = 1, a n X n diagonal input
matriz with nonzero diagonal entries. The problem of
determining J* such that

J arg | _min |7 (3)

s.t. (A, (J)) is structurally controllable,

where 1,(J) corresponds to the columns of 1, with in-
dices in J, referred to as the minimum dedicated input
selection problem, can be solved polynomially. More pre-
cisely, in O(n?). o

Proof See Appendix. |

In Theorem 2, upon a restriction in B, we obtained a
subclass of minCIS problems that can be solved polyno-
mially. Next, we impose some restrictions in A, and we
show that the problem can be systematically solved by
resorting to a minimum set covering problem.

4 Partial Polynomial Reduction of the minCIS
to the Minimum Set Covering Problem

In Section 3 we have showed that P§ is an NP-complete
problem without explicitly deriving a polynomial reduc-
tion from P{ to an NP-complete problem, or equiva-
lently, without explicitly deriving a polynomial reduc-
tion from minCIS to another (standard or known) NP-
hard problem. In this section, we provide a partial poly-
nomial reduction from the minCIS to the minimum set
covering problem (see Theorem 3 below). By partial re-
duction we mean that it is only valid if the state di-
graph satisfies certain additional properties, to be made
precise in Assumption 1. Notably, the set of state di-
graphs satisfying Assumption 1 for which the proposed
reduction holds, include dynamical systems commonly
encountered in multi-agent networked control applica-
tions (see Section 4.1 for details). Further, in Section 4.2
we show how the polynomial reduction obtained in Sec-
tion 4.1 can be used to solve leader-selection problems
in multi-agent networks.

Throughout this section, we assume that the system dy-
namic matrices, i.e., the A matrices in the minCIS, sat-
isfy the following condition.

Assumption 1 The structural dynamic matrix Aissuch
that the state bipartite graph B(A) = B(X, X, Ex x) as-
sociated with A, has a perfect matching. In other words,
the set of right-unmatched vertices associated with any
maximum matching of B(A) is empty. o

Remark 2 ([10,11]) In fact, Assumption 1 can be in-
terpreted in terms of the state digraph as follows: the
state bipartite graph B(A) has a perfect matching if and
only if D(A) is spanned by a disjoint union of cycles, or,
alternatively, it corresponds to a structural matriz such
that almost all of its numerical instances are full rank.¢

We now provide a polynomial reduction from the
minCIS to the minimum set covering problem under
Assumption 1.

Theorem 3 Consider the minCIS problem with system
matriz instance A € {0,%}"*" and input matric B €
{0,%}™*P where A satisfies Assumption 1. Denote by



Ni i =1,... .k, the k non-top linked SCCs of D(A).
The minCIS problem can then be polynomially reduced
to the minimum set covering problem with universe U =
{1,...,k} and sets {S;}j=1,...p, where S; = {i € U :
B, =%, x, € N} o

Proof The proof requires two steps: 1) to show that
the stated reduction to the set covering problem can be
achieved by performing a polynomial number of oper-
ations with respect to the size of A and B; and 2) to
prove the correctness of the reduction, i.e., to show that,
under Assumption 1, the solution to the minCIS can be
readily determined from the minimal solution of the set
covering problem.

The proposed reduction is polynomial since the non-top
linked SCCs of D(A) can be determined polynomially,
for instance, by computing the DAG associated with
D(A) (see Section 2.1). Subsequently, the sets S; and
the universe U, constituting the minimum set covering
problem, can be constructed with linear complexity in

the number of state variables in D(A).

To show correctness, suppose, on the contrary, we have
J* C{1,...,p} such that {S;};c s~ is a (minimal) solu-
tion to the minimum set covering problem, and B(J™)
is not a (minimal) solution to the minCIS. Hence, there
exists J~ C {1,...,p}, with |J~| < |J*|, such that
B(J ™) is a solution to minCIS. Now note that since A
satisfies Assumption 1, the bipartite graph B(A) con-
sists of a perfect matching, and hence, by Proposition 2,
for each non-top linked SCC N of D(A), there exists an
input corresponding to an index in J~ that is assigned
to a state variable in N,

Thus, by construction of the minimum set covering prob-
lem, the family {S;},c7- covers U = {1,...,k}. Since
|T | < |J*|, it follows that the family {S;};e 7+ is not
a minimal set covering of U, a contradiction. ]

In the next section, we introduce a class of multi-agent
networked control problems, referred to as leader-
selection problems. Further, we explain how the reduc-
tion obtained in Theorem 3 can be used to solve these
leader-selection problems.

5 Illustrative Example

To illustrate the results established in Section 4, we
introduce two (structural) variants of leader-selection
problems stated in [12], namely, (i) the structural (un-
constrained) leader-selection, and (ii) the structural con-
strained leader-selection, as presented next in £1 and Lo
respectively. We will also show that although the pro-
posed method to solve both problems requires the so-
lution of a set covering problem, problem £; is consid-
erably easier to solve than Lo; more precisely, although
the set covering problem is in general dificult to solve,
the class of problems in £; and the associated instances
of the minimum set covering problems can be solved by
resorting to polynomial algorithms.

The structural (unconstrained) leader-selection problem
can be posed as follows: Consider a multi-agent network
consisting of N agents, where each agent ¢ has the ability
to transmit scalar data to its neighbors and perform
updates given by a linear combination of the states it
receives as well its own. Let W € {0, %}V > denote the
sparsity induced by such linear combination rules, and
In = diag(x,...,*) € {0,x}V*¥ a structural pattern of
a diagonal matrix without zeros on it; further, we assume
that W has nonzero diagonal entries. In addition, let
each agent be equipped with an input that only actuates
directly its own state, i.e., a dedicated input, which can
be represented by letting the input matrix to be ly.
The structural (unconstrained) leader-selection problem
aims to determining the minimum collection of agents
that are required to use their inputs to ensure structural
controllability. Formally, we have the following problem:

£, Determine J* where

J arg | min T (4)

s.t. (W, 1x(J)) is structurally controllable.

Alternatively, in the structural (constrained) leader-
selection problem, we can consider similar dynamics
structure W’ € {0,*}V > (assumed with non-zero di-
agonal entries), but instead of considering that each
agent is equipped with a dedicated input, we assume
that they receive input signals from external entities.
These entities, can be understood as leaders labelled as
L=A{1,---,L}, corresponding to the set of L potential
leaders whose goal is to control the collection of N fol-
lowers, in this case the agents. Furthermore, denote by
B € RN¥XL ¢ {0, %} the structure of the input matrix
representing the actuation exercised by the potential
leader agents, i.e., the entry By, indicates how leader
I € L actuates the follower f € {1,---,N}. Finally,
given a subset J C L, B(J) denotes the collection
of columns in B corresponding to indices in J. The
structural (constrained) leader-selection problem can
be posed as follows:

L5 Determine J* where

J* = arg Inin |T| (5)
s.t. (W', B(J)) is structurally controllable.

We now show that £, Lo can be solved using set cover-
ing problems by employing the reduction developed in
Theorem 3.

Proposition 3 The structural dynamics matrices
W, W' € {0,x}V*N associated with the leader-selection
problems L1, Lo satisfy Assumption 1. o



Proof Let A € {0,x}V*" denote the structural ma-
trix W or W’ (depending on which problem we con-
sider). The proof follows by noticing that D(A) con-
sists of self-loops on all the state vertices, correspond-
ing to the nonzero diagonal entries in A. Consequently,
the matching M* = {(z;,2;), ¢ = 1,...,n} is a maxi-
mum matching associated with the state bipartite graph
B(A), which is a perfect matching. In other words, the
set of right-unmatched vertices of B(A) is empty, and
hence Assumption 1 holds. |

Because Assumption 1 holds for the problems £; and Lo,
by invoking Theorem 3, it follows that we can solve the
structural leader-selection problems using a minimum
set covering problem.

Corollary 2 The problems L1, Ly can be polynomially
reduced to minimum set covering problems as given in
Theorem 3. o

Now, consider the system state digraphs depicted in Fig-
ure 2. The agent states are depicted by black vertices (la-
beled as x;, i = 1,...,9), and the inter-agent dynamical
coupling by the black directed edges. Furthermore, con-
sider potential input vertices depicted by blue vertices
(labeled as u;, ¢ = 1,...,4), where we have the following
two cases: in Figure 2 a) we pose the structural uncon-
strained leader-selection problem, whereas, in Figure 2
b) , we consider a structural constrained leader-selection
problem, in which the blue directed edges (from the in-
puts to the agents’ states) represent which leaders can
actuate which agents.

Hereafter, we illustrate how, both the structural leader-
selection problems can be solved using the polynomial
reduction developed in Theorem 3 (see also Corollary 3).

Structural (Unconstrained) Leader Selection Problem

The goal is to solve the leader-selection problem L, as
formulated in (4) with the structure of the dynamics
matrix induced by the state digraph represented by the
black vertices and edges as depicted in Figure 2 a). To
this end, note that, by Proposition 1 and Corollary 3,
L1 can be reduced to a set covering problem (see The-
orem 3). From Theorem 3, to set up the set covering
problem, we obtain S; = () for [ € {1,...,9} since none
of the (potential) inputs ug,...,ug, i.e. the dedicated
inputs assigned to agents 1 to 9 respectively, are as-
signed to variables in non-top linked SCCs. In addition,
810 = {1}, 311 = {2}, 812 = {3}, 813 = {4} ,Where each
set comprises the index of the non-top linked SCC it be-
longs to, and subsequently the universe U = {1,2,3,4}.
It is readily seen that the solution to the set cover-
ing problem is unique and comprises the sets Sy, with
I’ € {10,11,12,13}. Hence, from the viewpoint of leader-
selection, agents 10 to 13 should be designated as lead-
ers, which uniquely solves the leader-selection problem.
Thus, an input must be assigned to the state variables
xp (I' € {10,11,12,13}), as depicted in Figure 2 a) by
the blue vertices. It is important to note that in general

Fig. 2. The non-top linked SCCs are depicted by gray dashed
boxes and all agents have self-loops (not drawn to keep the
illustration simple). In a) we depict the inter-agent commu-
nication graph (the agents are depicted by black vertices
with associated states as labels) given by the black edges. In
addition potential leaders (the vertices u1, u2, us depicted in
blue) are shown to which a dedicated input may be assigned.
Alternatively, in b) we depict a communication graph and
possible locations for leaders (the vertices u1, u2, us depicted
in blue).

the set covering problems resulting from structural un-
constrained leader-selection problems have the charac-
teristic that the sets S;’s comprise at most a single state
variable. It is readily seen that such instances of the set
covering problem may be solved using polynomial com-
plexity algorithms (recall the set covering problem is
NP-complete in general); in fact, to cover the universe,
we only need to consider a set for each of the elements in
the universe. This is in accordance with the fact that (3)
can be solved using a polynomial complexity algorithm
(see Theorem 2).

Structural Constrained Leader Selection Problem

Now consider the constrained leader-selection problem
Ly as formulated in (5), with the state digraph induced
by the structural dynamics matrix given by the black
vertices and edges as depicted in Figure 2 b) and the set
of potential leaders depicted by the blue vertices. Ad-
ditionally, the set of followers actuated by the potential
leaders is depicted by the blue edges, i.e., B € {0,%}2*4
with all entries equal to zero except: Bi; = By 1 = *
corresponding to input u; assigned to state variables x;
and zp respectively and, similarly, Bao = Bsa = =,
3373 = B4,3 = %, B774 = B8,4 = x. Now note that,
by Proposition 1 and Corollary 3, £, can be reduced
to a set covering problem (see Theorem 3). From The-
orem 3, to set up the set covering problem, we obtain
S1 = {1}, S = {1,2}, S3 = {2} and S; = 0. In other
words, agent 1 can only actuate followers from the non-
top linked SCC A!, agent 2 can actuate followers from
the non-top linked SCCs N'', N2 and so on. Addition-
ally, the universe is i = {1, 2} and in this particular ex-
ample (note that in general the minimum set covering
problem is NP-hard), it is straightforward to see that
the solution of the set covering problem consists of the
set Sz only. Thus agent 2 should be designated as the
leader, which is the solution to the structural constrained
leader-selection problem.



6 Conclusions and Further Research

In this paper, we have showed that the decision version
of the minimum constrained input selection (minCIS)
problem is NP-complete; hence, the minCIS is NP-hard.
Consequently, in general, efficient (polynomial complex-
ity) solution procedures to the minCIS are unlikely to
exist. Nevertheless, we have identified one subclass of
problems, of interest for control systems applications,
where the minCIS is efficiently solvable, namely, min-
CIS instances with dedicated inputs, which can be solved
polynomially. The NP-completeness of the decision ver-
sion of the minCIS further implies that it is polynomially
reducible to other NP-complete problems. Subsequently,
for a restricted subclass of minCIS problems, which sub-
sumes practically relevant multi-agent networked con-
trol applications such as leader-selection problems, we
have explicitly constructed a polynomial reduction from
the minCIS to the minimum set covering problem. As
future research, it may be worthwhile to obtain reduc-
tions from more general instances of the minCIS to other
standard NP-hard problems, notably the ones with good
approximation guarantees, such as the MAX-SAT — the
optimization version of the SAT problem [6].

Appendix

To prove Theorem 2, we first introduce and review
some of the results presented in [10,11]. More precisely,
consider the minimal structural controllability problem
stated as follows: Given A € {0,%}"*", determine B*
such that

B* =arg _ min B0 (6)
Bre{0,x}nxn

s.t. (A, B) is structurally controllable

HB‘J”OSL j:]-w"vna

where B_; corresponds to the j-th columns of B and

[|M |0 counts the number of nonzero entries in the matrix
M € {0, *}mx"2,

The problem (6) (in fact, a more general variant of (6))
was shown to be polynomially solvable in [10,11], from
which we readily conclude that the minimum dedicated
input selection (and output selection, by duality) is poly-
nomially solvable. Further, we note that the sparsity
minimization objective (as in (6)) is not generally equiv-
alent to the minCIS, which is consistent with the fact
that the minCIS general instance is NP-hard, whereas,
the sparsest input/output design problems addressed
in [10] are polynomially solvable. Nevertheless, we can
use (6) to prove Theorem 2 as follows.

Proof of Theorem 2: The proof follows by noticing that a
solution to (6), is of the form B* = [If 0,,x(n—|7))] (up
to permutation), where I corresponds to the columns of
I, with indices in J, and 0y, (n—| 7)) is the n x (n —|TJ|)

matrix of zeros. Further, we have that ||B*|lo = |7,
and since B* is a solution to (6), it follows that |J] is
minimum. Consequently, (A, 1) in (6) is structurally
controllable, and it readily follows that (A,1,(J)) in (3

is structurally controllable. Because, by definition, Iy
in (6) is the same as 1,,(J) in (3), the minimality in the
latter holds. Hence, from a minimal solution to (6), it is
possible to retrieve a minimal solution to (3). [ ]
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