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Abstract— This paper introduces the concept of structural
hybrid systems to address, as a particular case, the model
checking problem of switching (possible large scale) linear
time invariant systems. Within the proposed setup, we provide
necessary conditions to ensure properties such as controllability,
at each time. We show that such model checking controllability
properties can be implemented using efficient algorithms (with
polynomial complexity). An example, based on the IEEE 5-bus
power system, is presented which illustrates our model checking
and design methodologies.

I. INTRODUCTION

This paper is motivated by the lack of efficient and scalable
methods to design and verify properties of hybrid dynamical
systems, commonly referred to asmodel checking[1]. In
particular, we focus on the important subclass corresponding
to switching systemsthat can model the behavior of several
physical phenomena, including circumstances where a con-
trol module has to switch [2-4], with examples ranging from
simple thermostats to an electrical power grid.

Informally, model checking consists of two main steps:
first, a possible design of the dynamic system of interest,
i.e., themodel; second, the procedure ofcheckingif a desired
property of the model holds or not; if not, the design step is
revisited and a new model is constructed. The majority of the
tools for model checking are computationally cumbersome
and, in particular, the hybrid automata (i.e., a common tool
used to do model checking for hybrid dynamical systems)
is, in general, undecidable [2]. In fact, even approximation
methods exhibit numerical instabilities and suffer from the
curse of dimensionality, see [3], [4] and references therein.

Common properties of interest in model checking include
(but are not restricted to)reachability and safety [5]. In
this paper, we focus on controllability, i.e., the ability of
driving the system state toward a goal, by proper selection
of the system’s inputs. From the design point of view, the
problem of finding the minimum number of inputs (actuators)
to ensure system’s controllability has recently been shownto
be an NP-hard problem [6], which implies that designing the
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minimum number of inputs that ensure a switching system to
be controllable is at least as difficult. Therefore, alternative
design approaches have been proposed, see, for example, [7].
In this paper, using structured systems theory [8], we obtain
necessary conditions to ensure controllability for switching
linear systems. Such property is of fundamental interest in
several critical systems, such as the electric power grid,
where it is critical to ensure that the system state stays within
imposed standards in the face of dynamic mode changes
often triggered by uncertain events like transmission line
failures or faults.

To achieve this, we propose the concept of astructural
hybrid system, hinged on the graph theoretic representation
of a structural switching system [8], in which each mode
system operating corresponds to a directed graph (digraph),
and mode transitions are captured by switching between
distinct digraph representations. We demonstrate that the
above concept enables efficient model checking for switching
systems and, in particular, provides easy-to-verify necessary
conditions that ensure controllability.

Formally, we would like to address the following problem:
P1

GivenA(σ(t)), whereA ∈ R
n×n andσ(t) : [0,+∞[−→

R is a piecewise switching signal, that may only switch at
most once in a given dwell-time[t, t + ε[, ε > 0, for all
t ≥ 0, we are interested in obtainingB(σ(t)) ∈ R

n×p such
that

ẋ(t) = A(σ(t))x(t) +B(σ(t))u(t), (1)

is controllable for allt ≥ 0 andB(σ(t)) comprises at most
one non-zero entry for each column, i.e., usesdedicated
inputsonly. ⋄

Given that this problem is hard to solve (see [6], for
example), hereafter we focus on addressing itsstructural
reformulationP2, which provides necessary conditions for
the all-time controllability requirement inP1.

Problem Statement

P2

Given structural matrices̄A(σ(t)), with Ā ∈ {0, ⋆}n×n,
where⋆ stands for a non-zero entry, andσ(t) : [0,+∞[−→
R is a piecewise constant switching signal satisfying the
dwell-time property for someε > 0, find B̄(σ(t)) ∈
{0, ⋆}n×p such that the (structural) dynamical system

ẋ(t) = Ā(σ(t))x(t) + B̄(σ(t))u(t), (2)

is structurally controllable (to be defined precisely soon)for
all t ≥ 0 andB̄(σ(t)) comprises at most one non-zero entry
for each column, i.e., uses dedicated inputs only. ⋄



In addition, in this paper, we restrict the analysis of
problemP2 to the case wherēA satisfies a specific structural
constraint, to be made precise in AssumptionA1, that is
consistent with several practical physical systems, such as
the electric power grid as modeled in [9]. Such structural
treatment of dynamical properties of switching systems (i.e.
switching systems where only its structure is considered)
and, in particular, obtaining necessary conditions to ensure
structural controllability, has been considered in prior work,
see [10], [11], for instance. In [10] a (vector) dynamical
system was modeled as a multi-agent network with each
agent corresponding to a single scalar state variable of the
dynamical system, and the design goal was to obtain the
minimal placement of sensors such that system structural ob-
servability (the dual of structural controllability) is retained
in the face of arbitrary agent departures (such departure
events correspond to mode changes and are captured by
deleting all the edges in the nominal system digraph incident
to the departed agent). Similarly, in [11] a similar multi-
agent networked system setting, mode changes consisted of
potential removal of bi-directional edges between physically
coupled agents (states), and the minimal placement of actua-
tors necessary to retain structural controllability was sought.
However, both the approaches were limited to systems in
which the digraph representation had the special structureof
being the disjoint union of strongly connected components,
i.e., with no edge between the components. In contrast,
the design and verification methodologies introduced in this
paper are more general, include as instances the scenarios
studied in [11], [12], and, in particular, applicable to systems
in which the digraph representation may consist of several
strongly connected components with directed edges between
them.

The main contributions of this paper are twofold: first, we
introduce the concept of structural hybrid system; second
we provide an efficient model checker (i.e., with polynomial
time complexity) to ensure the system’s structural controlla-
bility at all times.

The rest of this paper is organized as follows. Section II
reviews and introduces some concepts in structural systems
theory, establishing their relations with graph theory andre-
view basic definitions of hybrid systems. Section III presents
the main contributions of this paper. In Section IV we discuss
possible extensions to other properties for model checking,
followed by an illustrative example in Section V. Finally,
Section VI concludes the paper and discusses avenues for
further research.

II. PRELIMINARIES AND TERMINOLOGY

In this section, we review some concepts of structural
systems [12] and some basic concepts of hybrid dynamical
systems and hybrid automata [2] in connection with linear
switching systems.

A. Structural Systems Theory

Consider a linear time invariant system (LTI) described as

ẋ(t) = Ax(t) +Bu(t), (3)

where x ∈ R
n represents the state andu ∈ R

p denotes
the input. The system (3) is controllableif and only if the
controllability matrix

C =
[

B AB A2B . . . An−1B
]

(4)

has full rank, i.e., rank(C) = n. Informally, a structural
system consists of an equivalence class of systems, where
genericproperties are studied based only on the zero/non-
zero pattern of the matrices in (3). The structural version of
controllability is as follows:

Definition 1: Given a pair(Ā, B̄) of structural matrices,
we say that the pair(Ā, B̄) is structurally controllable,
if and only if there exists a controllable system (3) such that
(A,B) is a numerical realization of(Ā, B̄), i.e., has the same
structural pattern as(Ā, B̄). ⋄

Definition 2: Given specific numerical instances of the
non-zero entries in(Ā, B̄), we say that we have arealization
(A,B) with the same structural pattern of(Ā, B̄). ⋄

Structural systems provide an efficient representation of
the system as a directed graph (digraph). Each digraph
is associated with a set ofvertices V and a set ofdi-
rected edgesE of the form (vi, vj) where vi, vj ∈ V .
We represent the state digraph byD(Ā) = (X , EX ,X )
i.e. the digraph that comprises only the state variables
as vertices denoted byX = {x1, · · · , xn} and a set
of directed edges between the state vertices denoted by
EX ,X =

{

(xi, xj) : xi, xj ∈ X and Āj,i 6= 0
}

. Similarly,
we represent the system digraph byD(Ā, B̄) = (X ∪
U , EX ,X ∪ EU ,X ), where X , EX ,X are given as in the
state digraph andU = {u1, · · · , xp} and EU ,X =
{

(ui, xj) : ui ∈ U , xj ∈ X and B̄i,j 6= 0
}

.
Given a digraphD, a digraphDs = (Vs, Es) such that

Vs ⊂ V and Es ⊂ E is said to besubgraphof D. If
Vs = V , Ds is said to span D. A sequence of edges
{(v1, v2), (v2, v3), . . . , (vk−1, vk)} is an elementary pathif
all the vertices are distinct. If onlyvk = v1, the sequence is
called acycle.

In addition, given a collection of digraphsDi =
(Xi, EXi,Xi

), i ∈ {1, . . . ,m}, the union digraph of these

digraphs is given byD = (
m
⋃

i=1

Xi,
m
⋃

i=1

EXi,Xi
).

We also require the following graph theoretic notions [13]:
A digraphD is said to be strongly connected if there exists
a directed path between any two pairs of vertices. Astrongly
connected component(SCC) is a maximal subgraph (there
is no other subgraph, containing it, with the same property)
DS = (VS , ES) of D such that for everyu, v ∈ VS there
exists a path fromu to v and from v to u. Remark that
a path fromu to v on an SCC may not be unique and
it may be composed by some vertices that are not in the
path from v to u. We can create adirected acyclic graph
(DAG) by visualizing each SCC as a virtual node, where
there is a directed edge between vertices belonging to two
SCCs if and only ifthere exists a directed edge connecting
the corresponding SCCs in the digraphD = (V,E), the
original digraph. The DAG associated withD(Ā) can be



computed efficiently inO(|V |+ |E|) [13]. The SCCs in the
DAG may be further categorized as follows.

Definition 3: [12] An SCC is said to be linked if it has
at least one incoming/outgoing edge from another SCC. In
particular, an SCC isnon-top/non-bottom linkedif it has
no incoming/outgoing edges to/from its vertices from/to the
vertices of another SCC. ⋄

Given D = (V,E) we can associate it with thebipartite
graph B(S1, S2, ES1,S2

), whereS1, S2 ⊂ V and the edge
setES1,S2

= {(s1, s2) ∈ E : s1 ∈ S1, s2 ∈ S2 }.
A matching M , with respect to the bipartite graph

B(S1, S2, ES1,S2
), is a subset of edges inES1,S2

, where
there are not two edges sharing vertices in neitherS1 nor
S2. Therefore, a maximum matchingM∗ is a matching
M with the largest number of edges among all possible
matchings. Note that in general it may not be unique. The
maximum matching problem can be solved efficiently in
O(

√

|S1 ∪ S2||ES1,S2
|) using, for instance, the Hopcroft-

karp algorithm [13]. A vertex inS1/S2 is a left/right-matched
vertex if it belongs to an edge inM∗, otherwise, it is an
left/right-unmatched vertex. A maximum matching where
there are no unmatched vertices is called aperfect match.

Remark that due to the equivalence between the system
digraph and the pair of matrices(Ā, B̄) of the system (3),
given the state digraphD(Ā) = (X , EX ,X ), we say that a
subset of state variablesSu ⊂ X is a feasible dedicated
input configuration(FDIC) if, by assigningdedicated inputs
(i.e., an input that is assign to a single state variable) to the
state variables inSu, and denoting byU , EU ,X the dedicated
inputs and its corresponding assignments, then we have
that D(Ā, B̄) = (X ,U , EX ,X ∪ EU ,X ) corresponds to the
digraph representation of a structurally controllable system
associated with(Ā, B̄). The following result may be used to
characterize minimal FDICs [12].

Theorem 1 (Minimal FDIC):Let D(Ā) = (X , EX ,X ) de-
note the system digraph andB ≡ B(X ,X , EX ,X ) its bipartite
representation. A setSu ⊂ X is a minimal feasible dedicated
input configuration if and only ifthere exist two disjoint
subsetsUR andAc

u such thatSu = UR∪Ac
u, UR corresponds

to the set of right-unmatched vertices of some maximum
matching ofB with maximum number of right-unmatched
vertices in different SCCs, andAc

u comprising only one state
variable from each non-top linked SCC ofD(Ā) without a
right-unmatched vertex fromUR. ⋄

Therefore, it is easy to see that any FDIC contains a set of
right-unmatched vertices with respect to (w.r.t.) a maximum
matching of the state bipartite graphB and at least one
state variable from each non-top linked SCC. To illustrate
Theorem 1 we have the example depicted in Figure 1.

B. Hybrid Dynamical Systems

We now provide some basic definitions and properties
of hybrid dynamical systems to be used later in the paper,
mainly, to discuss possible extensions of the proposed model
checker to verify other properties of interest, for instance, the
ability to keep the state of the system within a prespecified
set of values, commonly known as thesafety problem.
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Fig. 1. (a) representsD(Ā) = (X , EX ,X ) and its SCCs represented by
the dashed rectangles, where the red edges correspond toM∗, a maximum
matching associated withB = B(X ,X , EX ,X ) and the red vertices the
correspondingUR set of right-unmatched vertices. (b) depicts the set of
right-unmatched vertices of some maximum matching ofB with maximum
number of right-unmatched vertices in different SCCs, the vertices and
edges in red, respectively. (c) reproducesD(Ā, B̄), where the green vertices
are the input variables connected with the green edges to theset Su of
Theorem 1.

A hybrid dynamical system is a dynamical system that
exhibits both continuous and discrete behavior, that is, a
system that alternates between flows and jumps (see [14]
for instance).

A particularization of the notion of hybrid dynamical sys-
tem leads to the useful concept of hybrid automaton, which
consists of: a continuous state spaceR

n; a finite directed
graph: verticesQ (modes), edgesE (control switches); the
flows ϕq, whereϕq(t;x) ∈ R

n is the state reached after
staying in modeq ∈ Q for time t ≥ 0 when continuous
evolution starts in statex ∈ R

n; the evolution domain
constraintsinvq ⊆ R

n (invariants) forq ∈ Q; jump relations
jumpe ⊆ R

n × R
n for edgese ∈ E usually comprising

guard on current state and reset relations.

A particular class of hybrid dynamical systems for which
we are interested in ensuring certain properties is the one
of switching systems. These properties can be, for instance,
restrictions of the state to certain domains or constraintsin
the quantitative behavior of the dynamical system.

A collection of techniques for the automatic analysis and
verification of the system properties is often calledmodel
checking.

Recall that most of the available model checking tools are,
in general, undecidable [2], and even approximation methods
exhibit numerical instabilities and suffer from the curse of
dimensionality, see [3], [4] and references therein.



C. Controllability and Structural Controllability of Switch-
ing Systems

We now provide some results about the controllability
and structural controllability of switching systems. In what
follows we assume that the switching signalσ satisfies the
dwell time property. First, if a system is controllable in each
state, then it follows that it is controllable, formally, wehave:

Proposition 1 ([15]): Given a switching system (2), if
each mode of the switching system is controllable, then the
switching system is controllable. ⋄

The next result relates Proposition 1 with structural con-
trollability, and follows by definition of structural controlla-
bility.

Corollary 1: Given a switching systems (2), if each mode
of the switching system is structurally controllable, thenthe
switching system is structurally controllable. ⋄

An alternative interpretation may be obtained as follows:
Proposition 2 ([8]): A switching linear system (2) with

state digraphsDi, i ∈ {1, . . . ,m} is structurally controllable
if its union graphD is structurally controllable. ⋄

Therefore, if a mode in the structural switching system
is structurally controllable, it follows that the union of
the digraphs corresponding to the states of the structural
switching system is structurally controllable. Once again,
recall that our goal consists in ensuring that each state of
the structural switching system is structurally controllable,
hence the system is structurally controllable at all times.

Next, in Section III we present the concept ofstructural
hybrid systemsthat leads to an efficient model checker that
ensures properties, of interest, as for example, structural
controllability at all times.

III. MAIN RESULTS

In this section we introduce the main results of the paper,
that are two fold: we start by introducing the concept of
structural hybrid system; second, we explore the procedure
to model check necessary controllability properties of the
structural hybrid system, i.e., design the input matrix that
solvesP2. Informally, structural hybrid system stands for
a linear switching system as (2), where each state consists
of a digraphD(Ā(σ(t)), B̄(σ(t))), associated with system
represented by the pair(Ā(σ(t)), B̄(σ(t))), that changes over
time.

To motivate the notion of structural hybrid system, con-
sider a simple switching system with two modes and its struc-
tural representation. By recalling the definition of structural
controllability, and its application to each of the modes ofthe
switching system and their structural representations, some
properties can be established, as depicted in Figure 2.

In particular, we have the following result:
Proposition 3: A switched system is structurally con-

trollable if for each modeq the digraphD(Āq , B̄q) (or
equivalently, the pair(Āq, B̄q)) is structurally controllable.
⋄

Proof: The result follows immediately by Proposition 2.

HA1,B1L

Controllable
HA2,B2L

Controllable

DHA1,B1L

Structurally
Controllable

DHA2,B2L

Structurally
Controllable

Guard1

Guard2

Ai ,j = ø ® Ai ,j = 0

Almost
surely

Fig. 2. In bottom we depict a switching system with two controllable
states and in the top its structural correspondence. In addition, the digraph
representation of the structural representation in the bottom corresponds
to a structural hybrid system with two states, where possible transition is
identified, by a change in the structure of the dynamic systemmatrix, i.e.,
Āi,j = ⋆ → Āi,j = 0.

Formally, a structural hybrid systemcan be defined as
follows.

Definition 4: [Structural Hybrid System ] A structural
hybrid system is a hybrid dynamical system constituted by:

• a state space:
a set of structural directed graphs withn state vertices
andp input vertices

Dn = {D(Ā, B̄) : Ā ∈ {0, ⋆}n×n, B̄ ∈ {0, ⋆}n×p};

• a finite directed graph:
verticesQ (modes, which are directed graphs), edgesE

(switches);
• jump relationsjumpe ⊆ Dn ×Dn for edgese ∈ E:

if q1 = D(Ā1, B̄1) ∈ Q andq2 = D(Ā2, B̄2) ∈ Q, then
(q1, q2) ∈ jumpe if (Ā1, B̄1) differs from (Ā2, B̄2) in,
at least, one entry. ⋄

Observe that in a structural hybrid system, each change of
mode corresponds to a change in the digraph representation.
An example is depicted in Figure 5, where we depict two
possible transitions from the initial mode described by the
digraphD(Ā, B̄), where

Ā =









0 ⋆ 0 0
⋆ 0 ⋆ ⋆

0 ⋆ 0 0
0 ⋆ 0 0









, B̄ =









⋆ 0
0 0
0 ⋆

0 0









and 1) only the system’s dynamic matrix structure changes
but the input configuration (i.e., the input matrix structure)
remains the same; and 2) both system’s dynamic matrix and
input matrix structure changes.

A more interesting question to ask, from a system designer
point of view is: What should bēB such that at each mode,
the system digraph associated with(Ā, B̄) is structurally
controllable. In other words, what is the solution to problem
P2? We address this problem in a restricted setting, more
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Fig. 3. Structural hybrid system representation of some discrete transitions
from the initial directed graph, in the top-left, 1) only thesystem’s dynamic
matrix structure changes but the input configuration (i.e.,the input matrix
structure) remains the same; and 2) both system’s dynamic matrix and input
matrix structure changes.

precisely, we only consider systems whose associated DAG
representations always consist of the same non-top linked
SCC across mode changes, and the remaining SCCs satisfy
an additional constraint. Otherwise, the edge set of each
SCC may vary with mode (structural) transitions, caused,
for instance, by failures or natural switches.

Specifically, from this point onwards we consider the
following additional assumption:
A1 The DAG representation ofD(Ā) has only one non-

top linked SCC and all the other SCCs originate1 a
perfect matching.

There are several physical systems with this property, in
particular, electric power grids as modeled in [9], which we
explore later in the paper (see Proposition 4). Also, note that
requiring an SCC to originate a perfect matching is not a
very restrictive assumption, since, in practice, most of the
diagonal entries in the system matrix are non-zero, which
correspond to self-loops in the system’s digraph and may
contribute edges to the maximum matching. In particular, if
all states in an SCC have self-loops, it readily follows that
such an SCC originates a perfect matching.

Now, we show the feasibility of assumptionA1 in the
electrical power grid as modeled in [9], where a single loss
of a transmission line corresponds to the loss of two edges
on the system digraph, and where the DAG representation
of the system remains the same.

Proposition 4: For any power electrical grid modeled as
in [9] and for any single transmission line failure, we have
that the system digraph is composed of several SCCs, where
only one is a non-top linked SCC and the others SCCs
originate perfect matchings. ⋄

Under assumptionA1, we now obtain a set of results that
provide an understanding of why the solution toP2 can be

1We say that a subgraphDS = (XS , EXS ,XS
) originates a perfect

match if the maximum matching associated with the bipartitegraph
B(XS ,XS , EXS ,XS

) has no right-unmatched vertices.

restricted to the analysis of a single (non-top linked) SCC
and a maximum matching problem on the bipartite graph,
associated with the system digraph. Such understanding will
constitute the basis of the design procedure in our model
checker, stated in Theorem 2.

Proposition 5: GivenD(Ā) with its DAG representation,
constituted by{Ni}

n−1
i=0 SCCs, whereNi = (Xi, EXi,Xi

).
Let N0 be the only non-top linked SCC andBi ≡
B(Xi,Xi, EXi,Xi

) the bipartite graph associated withNi,
i = 0, . . . , n− 1. If M∗

i is a maximum matching associated
with Bi ( i = 0, . . . , n − 1) andM∗

i is a perfect matching

for i = 1, . . . , n − 1, thenM∗ =
n−1
⋃

i=0

M⋆
i is a maximum

matching ofB(X ,X , EX ,X ). ⋄
The previous Proposition follows immediately by noticing

that if the matchingM∗ was not maximum, then some of
the M∗

i was not maximum, which leads to a contradiction.
Consequently, we have the following result.

Corollary 2: Under the same assumptions of Proposi-
tion 5, to computing the set of right-unmatched vertices we
only need to compute a maximum matchingM∗

0 of B0. ⋄
Corollary 2 states that if a system fulfills the conditions of

Proposition 5, then, to construct̄B, we just need to consider
the design of dedicated inputs restricted to the non-top linked
SCC, where the system become structural controllable, by
noticing that set of right-unmatched vertices is a FDIC, as
stated in Theorem 1.

Now, suppose we consider a transition between modes
in the structural hybrid system. If a structural change in
the digraph occurs, two scenarios are possible: 1) the
placement of inputs previously considered ensures structural
controllable; or 2) a new placement of inputs needs to be
considered, i.e., the system must be redesigned to ensure
structural controllability. Next, we explore the implications
of the structure change in the system’s dynamics, through the
edges present in the non-top linked SCC, and corresponding
maximum matching.

Proposition 6: Let S be a structural hybrid system with
at least two modes, one associated with the directed graph
D(X , EX ,X ) and the other toD(X , EX ,X \ {(u, v)}), where
(u, v) ∈ EX ,X and letB(X ,X , EX ,X ) andB(X ,X , EX ,X \
{(u, v)}) be their bipartite representations, respectively. Ad-
ditionally let M ⊆ EX ,X be a set of edges corresponding
to a maximum matching onB(X ,X , EX ,X ) and UR the
set of its associated right-unmatched vertices. If(u, v) 6∈
M , then M is also a maximum matching with respect to
B(X ,X , EX ,X \ {(u, v)}) and, consequently, the set of its
associated right-unmatched vertices is alsoUR. ⋄

As an immediate consequence we have the following
result.

Corollary 3: Let S be a structural hybrid system with
at least two modes, associated with the strongly con-
nected directed graphsD(X , EX ,X ) and D(X , EX ,X \
{(u, v)}), where (u, v) ∈ EX ,X and letB(X ,X , EX ,X ) and
B(X ,X , EX ,X \ {(u, v)}) be their bipartite representations,
respectively. Additionally, letM ⊆ EX ,X be a set of edges
corresponding to a maximum matching onB(X ,X , EX ,X )



andUR the set of its associated right-unmatched vertices. If
(u, v) 6∈ M , thenD(X , EX ,X \ {(u, v)}) is also structurally
controllable with the same set of inputsUR. ⋄

If the eliminated edge belongs to a specific maximum
matching of the non-top linked SCC, we obtain the following
result.

Proposition 7: Let S be a structural hybrid system with
at least two modes, one associated with the directed graph
D(X , EX ,X ) and the other toD(X , EX ,X \ {(u, v)}), where
(u, v) ∈ EX ,X and letB(X ,X , EX ,X ) andB(X ,X , EX ,X \
{(u, v)}) be their bipartite representations, respectively. Ad-
ditionally let M ⊆ EX ,X be a set of edges corresponding
to a maximum matching onB(X ,X , EX ,X ) andUR the set
of its associated right-unmatched vertices. If(u, v) ∈ M ,
then there exists a maximum matchinĝM with respect to
B(X ,X , EX ,X \ {(u, v)}) such thatUR ⊆ ÛR (set of right
unmatched vertices with respect tôM ) iff M̂ = M \{(u, v)}
is a maximum matching forB(X ,X , EX ,X\{(u, v)}) or there
exists an augmenting path inB(X ,X , EX ,X \{(u, v)}), with
respect toM \ {(u, v)} ending inv. ⋄

Now, recall that the complexity of finding an augmenting
path has complexityO(|EX ,X |), which implies an efficient
method to verify which edges jeopardize the structural con-
trollability.

As a particular case of the previous Proposition 3 we have
the following.

Corollary 4: Let S be a structural hybrid system with at
least two modes, associated with the strongly connected di-
rected graphsD(X , EX ,X ) andD(X , EX ,X \{(u, v)}), where
(u, v) ∈ EX ,X and letB(X ,X , EX ,X ) andB(X ,X , EX ,X \
{(u, v)}) be their bipartite representations, respectively. Ad-
ditionally, let M ⊆ EX ,X be a set of edges corresponding
to a maximum matching onB(X ,X , EX ,X ) andUR the set
of its associated right-unmatched vertices. If(u, v) ∈ M and
there exists an augmenting path with respect toD(X , EX ,X \
{(u, v)}) ending in v, thenD(X , EX ,X \ {(u, v)}) is also
structurally controllable with the same set of inputsUR. ⋄

Recall that verifying if a graph is strongly connected
has complexityO(|X |+ |EX ,X |) using the Tarjan’s strongly
connected components algorithm [13].

Theorem 2:Let Ā(σ(Il)) represent the structure
of A(σ(Il)) on the time interval Il = [tl, tl+1[,
(Ā(σ(Il)), B̄(σ(Il))) denote the l-th state of the
structural hybrid system,D(Ā) = (X , EX ,X ) and
Σ = {σ(Il), l = 0, 1, . . .} such that |Σ| ≤ p(|X |),
where p is a polynomial on the number of state variables
|X |. The solution ofP2 can be found with the following
procedure: First, consider the initial state of the structural
hybrid system and findB̄(σ(I0)) that ensures structural
controllability by the following steps

1) Create the DAG representation ofD(Ā);
2) Compute the maximum matchingM∗ for the non-top

linked SCC;
3) ConstructB̄(σ(I0)) as corresponding to assign dedi-

cated inputs to the right-unmatched vertices associated
with M∗;

For each possible state corresponding to the system with
Ā(σ(Il+1)) determineB̄(σ(Il+1)) as

1) Detect the set of removed edges from
(Ā(σ(Il)), B̄(σ(Il))), denoted byEl;

2) For eache ∈ El use the results of Proposition 7 and 6
for designingB̄(σ(Il+1)).

The complexity of this procedure isO((
√

|X ||EX ,X | +
EX ,X |)|EX ,X |p(|X |)). ⋄

In the above, we only considered the case where one edge
in the directed graph fails, however, the results can be readily
extended to the case with multiple edge failures. In the latter
case, ifn edges fail simultaneously, for analysis purposes,
the failures may be viewed as happening sequentially one at
a time and the previous results are applicable. Specifically,
under the assumptions of Proposition 7, if we lose a set of
edgesE ⊆ M , if there is a maximum matching with respect
to D(X , EX ,X \E) with the same right unmatched vertices,
then it is structurally controllable with the same set of inputs
UR, otherwise we have a new set of right unmatched vertices
ÛR with |ÛR| ≤ |UR|.

In the next section, we explore how to extend the concept
of structural hybrid system to verify other properties.

IV. EXTENSION TO OTHER PROPERTIES FOR MODEL

CHECKING

Additionally, structural hybrid systems can be used to
perform model checking for other properties, such assafety,
i.e., if a system can keep its state within certain values.
In order to do such reasoning, we start with a comparison
between the structural hybrid system and hybrid automaton.

Now, suppose that the evolutions of the hybrid automaton
imposes changes on the domain of the system. For instance,
suppose that we have a linear system with continuous time
ẋ(t) = A1x(t) + B1u(t), x ∈ Ω1 it can evolve to another
linear systemẋ(t) = A2x(t) + B2u(t), x ∈ Ω2, with the
transition of the system given by a guard on the state variable
x(t), depicted in Figure 4.

x  =A1x+B1u
xÎW1

x  =A2x+B2u
xÎW2

Guard1

Guard2

Fig. 4. Hybrid system with two states and two discrete jumps,where each
state represents a SLS system with the state variable on a certain domain.

Proposition 8: Consider a linear systeṁx(t) = Ax(t) +
Bu(t) , let Ω be an open and connected set. If the pair
of matrices (A,B) is controllable then we can ensure that
x(t) ∈ Ω. ⋄

The next results follows immediately.
Corollary 5: Given a switching system (2), using Proposi-

tion 8 applied to each mode, the result holds for the switching
entire system. ⋄



Observe that, if the structural hybrid system is structurally
controllable, then, almost surely, using Corollary 5, it is
controllable.

Now, with Proposition 8 in mind, we can abstract our
previous model and reasoning about the controllability of the
pair of matrices(A1, B1) and (A2, B2) where the system
transition is, once again, a guard on the state variablex(t) .
We refer the reader to Figure 5 for a graphical representation
of the new aforementioned abstraction.

Nevertheless, notice that the reverse implication is not true,
as depicted in Figure 8. The following counter-example illus-
trates a case where the implication does not hold. Consider
the following dynamic system:

ẋ(t) = Ax(t) +Bu(t), x(0) = 0

with B = 0 and Ω = Bε(0), ε > 0. The controllability
matrix of the dynamic system is

C = [B AB . . . AnB] = 0

andrank(C) 6= n. Therefore, the system is not controllable.

HA1,B1L

Controllable
HA2,B2L

Controllable

x  =A1x+B1u
xÎW1

x  =A2x+B2u
xÎW2

Guard1

Guard2

Guard1

Guard2

X

Fig. 5. Relationship between the hybrid system abstractionbased on the
pair of matrices(A,B) of the linear systems and the the original hybrid
system.

V. ILLUSTRATIVE EXAMPLE

In this section we provide an illustrative example of the
structural hybrid systems in the context of power electrical
grids, where link failures, may occur due to fatigue and over
heat of transmission lines.

The IEEE 5-bus power system, depicted in Figure 9,
is a standard benchmark model used as proof-of-concept
for different methodologies suggested in power systems.
It corresponds to a electric power grid composed by 5
buses (depicted by black rectangles), interconnected through
transmission lines (depicted by solid lines), and which rep-
resents the network topology. Here, we consider three power
generators, denoted byGi (i = 1, 2, 3) and two power
loads Li (i = 1, 2), coupled through the network topology.
Additionally, we adopt the cyber-physical modeling of the
generators (as Steam-Turbine-Generators) and loads (as in-
duction machines), similar to the proposed approach in [16],
where the linear system is obtained by linearization. For the
complete description of our model, see [17].

l2 l3

G1 G2

L1

G3

L1

l1 l4

l5

l6

Fig. 6. Graph representation of a 5-bus system.
TABLE I

STATE VARIABLES OF THE GENERATORS AND L OADS

Descriptions Node Number
frequency ofG1 (ωG1

) 1
turbine output mechanical power ofG1 (PT1

) 2
steam valve opening position ofG1 (a1) 3

frequency ofG2 (ωG2
) 4

turbine output mechanical power ofG2 (PT2
) 5

steam valve opening position ofG2 (a2) 6
frequency ofG3 (ωG3

) 7
turbine output mechanical power ofG3 (PT3

) 8
steam valve opening position ofG3 (a3) 9

random noise ofL1 (ωL1
) 15

load consumed ofL1 (L1) 16
random noise ofL2 (ωL2

) 17
load consumed ofL2 (L2) 18

In Table II, we describe the variables of interest, i.e.,
the variables of the generators and loads, of the system
digraph corresponding to the system’s structure as depicted
in Figure 7 and 8. Remark that the remaining variables/nodes
in the system digraph correspond to the interaction variables
interconnecting the different bus/generators/loads.

Now we want to solveP2, given the dynamic system de-
rived by considering the IEEE 5-bus power system depicted
in Figure 6, and assuming that only a single transmission
line failure can occur. First, notice that assumptionA1 holds
for the original system digraph, as well as for the system
digraph where one transmission line fails, accordingly with
Proposition 4. For illustrative purpose, consider Figure 7and
Figure 8, that depict the system’s original digraph and under
the failure of transmission linel1.

Now, let us consider the design/selection of the dedicated
inputs ensuring the structural controllability of the system.
Therefore, we can use the procedure of Theorem 2 in order so
design the matrix̄B. Since for each possible connection line
failure the SCCs of the system digraph still have a perfect
matching, by Theorem 1, we only need to assign one input
to any state variable belonging to the non-top link SCC in
order to ensure structural controllability. However, fromthe
physical point of view, we can only actuate the variablesωGi

(i = 1, 2, 3) of the generators. Hence, we can designB̄ as one
of the canonical vectors in{e1, e4, e7}, whereei ∈ {0, ⋆}18

is a vector with⋆ in the i-th position and zero elsewhere.

To complement the proposed analysis, in [17] we consid-
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Fig. 7. Depicts the 5-bus digraph of its state systems dynamics, where each
set of vertices with the same color correspond to a component(generator
or load). Each SCC is represented inside each dashed polygon, where the
SCCs in the rectangles are non-bottom linked and the other SCC is the one
of interest, the non-top linked.

ered the design of the inputu for the original system and
for each system under a transmission line failures.

x1

x2

x3

x14

x4

x5
x6

x15

x7

x8

x9

x16

x10

x17

x11

x12

x18

x13

Fig. 8. Depicts the 5-bus digraph of its state systems dynamics, when link
l1 fails, corresponding to the digraph depicted in Figure 7 without the edges
(1, 17) and (10, 14). Each set of vertices with the same color correspond
to a component (generator or load). Each SCC is represented inside each
dashed polygon, where the SCCs in the rectangles are non-bottom linked
and the other SCC is the one of interest, the non-top linked.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper we introduced the concept of structural hybrid
system and provided a systematic method with polynomial
complexity (in the number of the state variables) to obtain
the input matrices of the structural hybrid system that ensure
structural controllability, for all time.By duality, these results
readily extend to the structural observability and correspond-
ing output design. As part of future research, interesting open
questions consist in integrating fault detection and isolation
for the detection of a jump in the structural hybrid system,
as well as its implications on the quantitative performance
of the physical system.
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