A Multiple Model Adaptive Wave Filter for
Dynamic Ship Positioning *

Vahid Hassani,* Anténio M. Pascoal,* A. Pedro Aguiar, *
Michael Athans

* Institute for Systems and Robotics (ISR),
Instituto Superior Técnico (IST), Lisbon, Portugal
e-mail: {vahid,antonio,pedro,athans)@isr.ist.utl.pt
Tel: (+351) 21 841 8054, Fax: (+351) 21 841 8291
** Michael Athans is also Professor of EECS (emeritus), ML.L1.T., USA.

Abstract: This paper addresses a filtering problem that arises in the design of dynamic
positioning systems for ships subjected to the influence of sea waves. Its key contribution
is the use of a multiple model adaptive wave filter that relies on measurements of the ship’s
position and heading only. To this effect, a bank of Kalman filters is designed for a finite number
of parameter values, each corresponding to a different peak frequency of the assumed wave
spectrum model. Tools from multiple model adaptive estimation (MMAE) theory are exploited
to blend the information provided by the different observers, yielding position and velocity
estimates of the ship. These estimates are then be used in an appropriately designed feedback
control law. Simulations illustrate the efficacy of the MMAE techniques proposed.
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1. INTRODUCTION

Dynamic positioning systems came to existence in the
1960s for offshore drilling applications, due to the need to
drill in deep waters and the realization that Jack-up barges
and anchoring systems could not be used economically
at such depths. Early dynamic positioning systems were
implemented using PID controllers. In order to restrain
thruster trembling caused by the wave-induced motion
components, notch filters were used with the controllers.
However, notch filters restrict the performance of closed-
loop systems because they introduce some phase lag
around the crossover frequency, which in turn tends to
decrease phase margin. An improvement in performance
was achieved by exploiting more advanced control tech-
niques based on optimal control and Kalman filter theory,
see Balchen et al. [1976]. These techniques were later
modified and extended in Balchen et al. [1980a;b], Grimble
et al. [1980a;b], Selid et al. [1983], Fossen et al. [1996],
Serensen et al. [1996], Grovlen and Fossen [1996], Strand
[1999], Fossen [2000] and Torsetnes et al. [2004]. One of the
most fruitful concepts introduced in the course of the body
of work referred above was that of wave filtering together
with the strategy of modeling the total vessel motion as the
superposition of low-frequency (LF) vessel motion and
wave frequency (WF) motions. It was further recognized
that in order to reduce the mechanical wear and tear of the
propulsion system components, the estimates entering the
DP control feedback loop should be filtered by using a so-
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called wave filtering technique so as to prevent excessive
control activity in response to WF components. In practice,
position and heading measurements are corrupted not
only with sensor noise but also with colored noise caused
by wind, waves, and ocean currents; thus the need for an
observer to achieve wave filtering and “separate” the LF
and WF position and heading estimates (see Fossen et al.
[1996], Fossen [2002] for details).

In Serensen et al. [1996], WE filtering is done by exploiting
the use of Kalman filter theory under the assumption
that the kinematic equations of the ship’s motion can be
linearized about a set of predefined constant yaw angles
(36 operating points in steps of 10 degrees, covering
the whole heading envelope); this is necessary when
applying linear Kalman filter theory and gain scheduling
techniques. However, global exponential stability (GES) of
the complete system cannot be guaranteed. In Fossen and
Strand [1999], a nonlinear observer with wave filtering
capabilities and bias estimation was designed using pas-
sivity. An extension of this observer with adaptive wave
filtering was described in Strand and Fossen [1999]. Gain-

scheduled wave filtering was introduced in Torsetnes et al.
[2004].

Except for the work in Strand and Fossen [1999] and
Torsetnes et al. [2004], the design techniques mentioned so
far assume that sea state (and the WF model parameters)
do not change during operation and that the WF model
parameters are known a priori. In practice, the sea state
may undergo large variations and therefore the observer
in charge of reconstructing the LF motion should adapt to
the sea state itself. The nonlinear passive observer tech-
nique introduced in Strand and Fossen [1999] for recursive
adaptive filtering is a very important contribution to-



wards meeting the above goal. However, the task of filter
tuning may meet with difficulties. In Torsetnes et al. [2004]
the observer gains are parameterized by the wave peak
frequencies and spectral analysis techniques are used to
estimate the wave spectrum in surge, sway, and yaw from
position and heading measurements. This approach is
sensitive to measurement noise and may have latency
problems because it requires that the samples acquired
be buffered to estimate the Power Density Spectrum of
the measurement time series.

In this paper, inspired by previous pioneering work
on dynamic ship positioning, we propose the use of
a multiple model adaptive wave filter that relies on
measurements of the ship’s position and heading only.
To this effect, a bank of Kalman filters is designed for a
finite number of parameter values, each corresponding to
a different peak frequency of the assumed wave spectrum
model. The main emphasis of the paper is on the use
of MMAE for adaptive wave filtering; however, for the
sake of completeness, in the numerical simulations a
multivariable PID is used to control the position of the
ship.

The structure of the local observers builds upon steady
state Kalman filters; see Anderson and Moore [1979].
Tools from multiples model adaptive estimation (MMAE)
theory are exploited to blend the information provided
by the different observers, yielding position and velocity
estimates of the ship. For the necessary background
information and the mathematical framework used in the
analysis and design of MMAE filters the reader is referred
to Aguiar et al. [2008], Hassani et al. [2009a;c;b] and the
references therein. In the set-up adopted, the observers
run in parallel and at each instant of time their residuals
are used to compute, for each observer, the probability
that the peak frequency of the assumed wave spectrum
model is the true peak frequency of the wave disturbing
the ship motion. The state estimate is a probabilistically
weighted combination of each observer estimate.

The structure of the paper is as follows. Section 2 is a brief
introduction to important issues that arise in dynamic ship
positioning. A representative ship model is also described.
Section 3 summarizes the main ideas behind MMAE;
it also reviews the basic structure of local obsevers. An
example is described in Section 4 that illustrates the strat-
egy proposed, via computer simulations. Conclusions and
suggestions for future research are summarized in Section

2. DYNAMIC POSITIONING: FILTERING AND SHIP
MODELING

In dynamic positioning (DP) systems, the key objective is
to maintain the ship’s heading and position within desired
limits. Central to their implementation is the availability of
good heading and position estimates, provided by prop-
erly designed filters. In practice, position and heading
measurements are corrupted not only by sensor noise but
also by colored noise caused by wind, waves and ocean
currents. In general, measurements of the vessel velocities
are not available. Consequently, estimates of the veloc-
ities must be computed from corrupted measurements
of position and heading through a state observer. Fur-

thermore, only the slowly-varying disturbances should be
counterbalanced by the propulsion system, whereas the
oscillatory motion induced by the waves (1st-order wave
disturbances) should not enter the feedback control loop.
To this effect, the DP control systems should be designed
so as to react to the low frequency forces on the vessel only.
This is accomplished by using so-called wave filtering
techniques, which separates the position and heading
measurements into a low-frequency (LF) and a wave
frequency (WF) position and heading estimate (Fossen
[1994; 2002]). Fig. 1 illustrates this concept graphically. It
was this interesting circle of ideas that motivated the work
reported in the present paper on multiple model adaptive
wave filtering.
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Fig. 1. The total motion of a ship is modeled as a LF
response with the WF motion added as an output
disturbance (adopted from Fossen and Strand [1999]).

In what follows, the ship model that we adopt is by now
standard. See Fossen and Strand [1999] and Torsetnes et al.
[2004]. The model admits the realization
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where (1) and (5) capture the 2nd-order wave induced
motion in surge, sway, and yaw, w; € R? is a zero mean
Gaussian white noise vector, 7, € R3 is the vessel’s WF
motion due to first-order wave-induced disturbances, and

O3x3  Izx3 03x1
Ao = [—st3 —A3x3]’ Eo = [hxl]’
Cow = [03x3 Iax3],
with
Q= diag{wél,wéz,w§3},
A = diag{2C;wo1, 2Cw02, 2C3wos},
where wy; and (; are the dominating wave frequency and
relative damping ratio, respectively. The vector 7 € R3
consists of earth-fixed position (x, y) and heading 1 of the
vessel relative to an earth-fixed frame, v € R3 represents

the velocities decomposed in a vessel-fixed reference, and
R(3) is the standard orthogonal yaw angle rotation matrix



(see Fossen [2002] for more details); b € R® is a vector
of unknown (but constant) bias terms due to waves,
wind, and currents in earth-fixed coordinates. Equation
(4) describes the ship’s LF motion at low speed (see Fossen
[1994; 2002]), where M € R3*® is the generalized system
inertia matrix, D € R®S is the linear damping matrix and
7 € R? is a control vector of generalized forces generated
by the propulsion system, that is, the main propellers aft of
the ship and thrusters which can produce surge and sway
forces as well as a yaw moment. Finally, in (5) 1, € R3
is the vessel’s WF motion due to 1st-order wave-induced
disturbances.

Clearly, the model (1)-(5) is nonlinear because of the
presence of the rotation matrix R. However, it can be
linearized dynamically by defining a new coordinates of
vessel parallel coordinates introduced in Fossen [2002] and
Fossen and Perez [2009]. Vessel parallel coordinates are
defined in a reference frame fixed to the vessel, with axes
parallel to the earth-fixed frame. Vector 1, € R® consists
of position (x,, y,) and heading ¢, of the vessel expressed
in body coordinates and is defined as

ny = RT ). (6)

Using the low-speed assumptions () ~ 0), which is the
case in dynamic positioning, it follows that:
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Exploiting the vessel parallel coordinates, the vessel
model (1)-(5) is given by
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Nw = Cwl (11)

Yy=1p+n,+0o (12)
where w; € R3, i = 1,2,3, are independent zero mean
Gaussian white noise processes that capture model uncer-
tainty and (12) represents the position and heading mea-
surement equation. In the above, 1, € R3 is the vessel’s
WF motion due to 1st-order wave-induced disturbances
and v € R? is a zero-mean Gaussian white measurement
noise vector. Equations (7)-(12) can be rephrased in a
standard form as

X = A(wg)x + Bu + Gw,
y=Cx+v,

(13a)

(13b)
where x = [éTngbgvT]T € RY is the state vector, Bu = 1
and u € R? is the control vector, w = [w] wiwi]" € R is a
zero-mean Gaussian white noise vector that represents the
plant disturbance vector, v € R? is a zero-mean Gaussian
white measurement noise vector, and
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3. THE CONTINUOUS-TIME MULTIPLE-MODEL
ADAPTIVE ESTIMATOR

One of the earliest uses of multiple-models was motivated
by the need to accurately estimate the state of a stochastic
dynamic system subjected to significant parameter un-
certainty. In many applications, the estimation accuracy
provided by standard KFs was not adequate. This led
to the consideration of Multiple Model Adaptive Estima-
tion (MMAE) techniques. For some early references on
Multiple-Model Adaptive Estimator (MMAE) see Magill
[1965], Anderson and Moore [1979], Baram and Sandell
[1978]. Fig. 2 shows the architecture of a MMAE system.
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Fig. 2. The MMAE architecture.

Itis assumed that a linear time-invariant plant G is driven
by white noise and a known deterministic input signal
and that it generates measurements that are corrupted
by white measurement noise. If there is no parameter
uncertainty in the plant, then the Kalman filter (KF) is
the optimal state-estimation algorithm in a well-defined
sense; see, for example, Anderson and Moore [1979].
Moreover, under the usual linear-gaussian assumptions,
the KF state-estimate is the true conditional mean of
the state, given the past controls and observations. If
the plant has an uncertain real-parameter vector, say
wp, one can imagine that it is “close” to one of the
elements of a finite discrete representative parameter set,
Q = {w),@},...,w})}. One can then design a bank of
standard KFs, where each KF uses one of the discrete
parameters wj, inits implementation, i € {1,..., N}. It turns
out that, if indeed the true plant parameter is one of the
discrete values, then the conditional probability density of
the state is the sum of gaussian densities. In this case, the
MMAE of Fig. 2 will generate the true conditional mean
of the state and one can compute the true conditional



covariance matrix; see, for example, Anderson and Moore
[1979]. The structure of MMAE, in Fig. 2, consists of: i)
the dynamic weighting signal generator (DWSG) and ii)
a bank of N KFs, where each local estimator is designed
based on one of the representative parameters. The state
estimate is generated by a probabilistically weighted sum
of the local state-estimates produced by the bank of KFs.

Multiple Model Adaptive Estimation for continuous time
LTI systems was introduced in Lainiotis [1971]. However,
no proof of convergence of the state estimate or dynamic
weights was given. Later on, in Dunn and Rhodes [1973]
and Dunn [1974], a new approach to compute dynamic
weights in a stochastic setup was presented. Again, no
proof of convergence of the state estimate or the dynamic
weights was offered. In Aguiar et al. [2007], using the
dynamic weights introduced previously in Dunn and
Rhodes [1973] and Dunn [1974], it was shown for the first
time that the estimation error is bounded; however, there
was no proof of convergence of the dynamic weights. To
tackle this problem, in Aguiar et al. [2008] a different
method was proposed to generate dynamic weights.
Interestingly enough, with the reformulated expression
for dynamic weights, convergence of the latter was
proven under a certain distinguishability condition. It was
further shown that the estimation error is bounded and
converges to zero when the true plant parameter is one of
the discrete values. The distinguishability condition was
later relaxed in Hassani et al. [2009b]. The reader will
find in Hassani et al. [2009b] a thorough discussion of
convergence analysis when the actual plant parameter is
not one of the discrete values adopted during the design
phase.

In what follows, we assume the plant model G is subjected
to parameter uncertainty wy € R/, that is, G = G(wp). In
what follows we consider multiple-input-multiple-output
(MIMO) linear plant models of the form

2(t) = A(wo, Hx(t) + B(t)u(t) + G(t)w(t), (15a)
y(t) = C(E)x(t) + v(t), (15b)

where x(f) € R" denotes the state of the system, u(t) € R™
its control input, y(t) € R7 its measured noisy output,
w(t) € R" an input plant disturbance that cannot be
measured, and v(t) € R7 is the measurement noise. Vectors
w(t) and o(t) are zero-mean white Gaussian signals,
mutually independent with intensities E{w()w’(7)} =
Q6t — 7 and Ef{o(t)o’ (1)} = Rét — 1. The initial condition
x(0) of (13) is Gaussian random vector with mean and
covariance given by E{x(0)} = 0 and E{x(0)xT(0)} =
2(0). Matrix A(wp) contains unknown constant parameters
indexed by wy.

Consider a finite set of candidate parameter values QO =
{w), @?,...,w)} indexed by i € {1,...,N}. We propose the
following MMAE. The state estimate is given by

N
2(t):= ) pilt)H), (16)
i=1

where %(t) is the estimate of the state x(t) (at time t) and
pi(t) is the conditional probability that wy = ), given
the measurements record. In (16), each %;(t);i = 1,...,N
corresponds to a “local” state estimate generated by the i
steady state Kalman filter (Anderson and Moore [1979]),

0 = A(@p)Zy; + Ly AT (wp) + GQGT
- L, C'RTICE,;, (17a)
£i(t) = Awp)(t) + Bu(t) + Hyy (y(t) - CE(1),  (17b)
9i(t) = Cxi(h), (17¢)

where [A(w}), G] and [A(w}), C] are assumed to be stabi-
lizable and detectable, respectively fori =1,...,N.

In the sequel we introduce dynamic weights that weigh
the local estimations (16).

As mentioned before, the (stochastic) continuous-time
MMAE (CT-MMAE) was introduced in Lainiotis [1971],
Dunn and Rhodes [1973], Dunn [1974]. A priori probabil-
ities for each estimator were derived, but no convergence
results were given either for the dynamic weights or the
estimation error. In Aguiar et al. [2008], the continuous
counterpart of the weight generator that was introduced
in discrete-time MMAE by Baram and Sandell [1978],
and Anderson and Moore [1979] was used in the CT-
MMAE structure for the first time. The new resulting
structure shed light into the process of proving not only
convergence of dynamic weights in the CT-MMAE but
also boundedness of the estimation error. In this case,
the dynamic weights are generated by a continuous time
differential equation, the structure of which can be found
in Aguiar et al. [2008], Hassani et al. [2009b]. This structure
will be used in the sequel.

In the proposed MMAE, the dynamic weights p;(t) € R,
i=1,...,N satisfy

pi(t) = —/\<1 _ Bi(He i ®

Y1 piBB(te
where A is a positive constant, §;(f) is a signal assumed
to satisfy the condition ¢; < B;(t) < ¢, for some positive
constants ¢y, ¢, and m;(+) is a continuous function called an
error measuring function that maps the measurable signals
of the plant and the states of the i local estimator to a
nonnegative real value. An example of an error measuring
function and a f;(t) function, which used throughout
this paper, are m;(t) = %lly(t) - yi(t)llé_1 and B;(t) =

@, respectively, where S; is a uniformly bounded

i, (18)

1
positive definite weighted matrix and ||x|s = (XTSJC)2 . The

matrices Sy, are important to scale the energy of estimation
error signals in order to make them comparable. In
what follows, we refer to equation (18) as the dynamic
weighting signal generator (DWSG).

We impose the constraint that the initial conditions p;(0)
be chosen such that p;(0) € (0,1) and Zfil pi(0) = 1.
The parameters Q, R and the functions f;, m; are tuning
parameters/functions of the CT-MMAE chosen by the
designer based on the system being modeled.

4. ILLUSTRATIVE EXAMPLE

To illustrate the performance of the DP system with mul-
tiple model adaptive wave filtering, the Marine Systems
Simulator (MSS) was used (Fossen and Perez [2004]). In
the simulation, a model of the CyberShipll was used.



It was assumend that the ship was subjected to wave
disturbances with a fixed but unknown spectrum peak
frequency in the interval [0.25 1.4]rad/s covering sea
states from calm and glassy to very high and phenomenal.
A set of eight candidate values of the peak frequency were

selected as {0.3,0.45,0.6,0.75,0.9,1.05,1.2,1.35} rad/s.!

For each candidate value, a KF was developed and a
MMAE was derived with the dynamic weights given by
(18). A multivariate PID controller was designed that uses
f, and ¥ provided by MMAE to control the position of the
ship. Because the emphasis of this paper is not on control,
but rather on filtering, we eschew the details of controller
design. All the parameters used in the simulation are
given in Appendix A.

Fig. 3 shows the dynamic weights in the multiple model
adaptive wave filtering when the true parameter wy is
0.93 rad/s, which is not included in the original design set.
Notice how the the fifth observer, which was designed
based on wy = .9rad/s is selected in about one minute.
Figs. 4 and 5 show the time evolution of the low fre-
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Fig. 3. Evolution of dynamic weights in multiple model
adaptive wave filtering (wo = 0.85rad/s).

quency estimates of the surge and sway motions and the
measured motions of the ship. During the simulation, at
t = 40 (s) the vessel position was commanded to change
10 (m) forward; this simple maneuver was executed with
the multivariate PID control law referred to above.

5. CONCLUSIONS AND FUTURE RESEARCH

This paper proposed a new technique for adaptive wave
filtering, with application to dynamic ship positioning. Its
key contribution was the use of MMAE techniques to yield
a filter that adapts to sea state variations. Future work
will included the application of the method developed to
a more realistic ship model.
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Appendix A. SIMULATION PARAMETERS

To illustrate the performance of the DP system with
multiple model adaptive wave filtering, the model of
the CyberShipll was used (Fossen and Perez [2004]). The
dynamics for Cybershipll can be described by (9) where

258 0 0 20 0
M=| 0 338 10115(, D=(0 7 01]|. (A1)
0 1.0115 276 00105

In process of designing bank KFs the intensity matrices
Q =diag{Q1,Q>, Q3} and R were considered as

(009 0 O 0% 0 0
Q;=| 0 009 0 ] sz[ 0 102 0 ]
| 0o 0 10 0o 0 10
(10 0 0 0% 0 0
Qs=| 0 102 0 |, R=| 0 10* 0 (A.2)
0o 0 10 0 0 1078

During the Simulation a multivariable PID controller with
the following gains were used to control the position of
the ship.

Kp = 0 3.212 0.0445
0 0.0952 7.652

127685 0 0 }
13162 0 0
K=| 0 3162 —0046|

| 0 0.0054 4.4721
[10.1192 0 0 l

Kp = 0 9.3138 0.2638
0  0.3949 6.0549

(A.3)




