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Abstract: We analyze the observability properties of an underwater vehicle (moving in 2D)
performing single beacon navigation for two specific classes of maneuvers, whereby the vehicle
measures its distance to a fixed transponder located at a known position using an acoustic
ranging device. We show that in the presence of known ocean currents, the system is found to
be globally observable for constant relative course and constant (nonzero) relative course rate
inputs in the sense of Herman and Krener. On the other hand, with unknown ocean currents the
system fails to be locally weakly observable with constant relative course but we characterize
the set of indistinguishable states from a given initial position and ocean current configuration.
Interestingly, observability can be achieved with constant (nonzero) relative course rate in the

presence of unknown, constant ocean currents.
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1. INTRODUCTION

In marine robotics, accurate knowledge of the position of a
vehicle is necessary for precise navigation. The position of
a marine vehicle can be estimated using different sensors
suites and methods. In recent years, single beacon navi-
gation using range measurement has received widespread
attention because of its potential low cost application but
at the present time is still a challenging problem. A rigor-
ous observability analysis of the single beacon navigation
using range measurement is necessary before designing a
good estimator.

In the literature, different types of models have been stud-
ied for single beacon navigation in 2D/3D. Further, the
observability issue has been addressed using different ap-
proaches such as linearization, (Gadre and Stilwell, 2004)-
(Gadre and Stilwell, 2005), geometric methods (Arrichiello
et al., 2011) and algebraic methods (Jouffroy and Reger,
2006). In (Gadre and Stilwell, 2004), a nonlinear system
with position and heading (assuming negligible sideslip) as
the state vector is considered while the linear velocity and
heading rate is considered as an input. The output func-
tions are the 2D range and heading. The nonlinear system
is linearized about a nominal trajectory and the standard
observability results of Linear Time Varying (LTV) are
used to analyze the observability properties (Rugh, 1996).
In (Gadre and Stilwell, 2005), unknown constant ocean
currents are augmented into the state vector and the same
procedure of (Gadre and Stilwell, 2004) is applied.
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The authors in (Arrichiello et al., 2011) exploited the
nonlinear observability concepts of a nonlinear inter-
vehicle ranging system using Herman-Krener observabil-
ity rank conditions of local weak observability (Hermann
and Krener, 1977) and the results obtained are validated
experimentally in an equivalent single beacon navigation
scenario. Moreover, they compute analytically two unob-
servability metrics, given by the inverse of the minimum
singular value and the ratio between the maximum and
minimum singular values of the observability matrix for
the proposed system.

In (Jouffroy and Reger, 2006), the authors study the po-
sition estimation problem for the 2D kinematic model of
an underwater vehicle using a single acoustic transponder
with knowledge of the body-fixed velocities and the head-
ing of the vehicle. The heading rate is not included in state,
as it can be measured using an IMU. The model is then
converted into polar coordinates. Further observability
analysis is carried out in the algebraic set-up. In other
words, the state is expressed by a function whose argu-
ments are the output of the system and its first derivative
in polar coordinates.

In (Parlangeli et al., 2012), the observability of the 3D
nonholonomic floating vehicle based on range only mea-
surements is investigated. The problem considered in this
paper is the relative localization of two vehicle using
the distance between the vehicles as measurement, and
linear and angular velocities as inputs. Using analytical
approach, sets of indistinguishable states from a given
initial position and orientation configuration is computed
for two specific inputs, namely, i) both vehicles have zero



linear velocity ii) one vehicle with zero linear velocity and
the other nonzero linear velocity.

Recently, in (Bayat and Aguiar, 2012) the observability
problem of the Simultaneous Localization and Mapping
SLAM) process of an Autonomous Underwater Vehicle
AUV) equipped with inertial sensors, a depth sensor,
and an acoustic ranging device that provides relative
range measurements to stationary beacons is investigated.
For trimming trajectories, it is shown that the set of
indistinguishable states from a given initial state with the
knowledge of either one of the beacon position or the AUV
position, contains only the zero vector with exception of a
distinct case where there is an additional isolated point.

For Linear Time Invariant (LTI) systems, observability
can be verified using the well-known observability matrix
and the kernel of the observability matrix that represents
the unobservable subspace (Rugh, 1996). Further, for LTI
system it is sufficient to check the observability of the
system at the origin and the unobservable linear subspace
for any nonzero initial configuration can be obtained from
the unobservable subspace of the zero configuration (which
is an affine hyperplane). Furthermore, for the LTI case,
the input does not affect the observability. More precisely,
if the LTI system is observable, then the LTI system is
also observable for any admissible input. However, in the
context of nonlinear systems, which is the case considered
in the paper, the set of indistinguishable states (that
are not necessarily a linear subspace) depends on the
initial configuration and actuator-sensor configuration of
the system.

Note that most of the existing results on the observability
of nonlinear systems in the literature only give informa-
tion about local observability and does not provide any
information about the set of indistinguishable states from
a given initial configuration, that is, the set of all initial
configurations that produce identical output time-histories
from a given initial configuration for every admissible
input. Further, Herman-Krener rank condition is also a
sufficient condition (Hermann and Krener, 1977) for local
observability and suffers from the fact that it do not pro-
vide any information about set of indistinguishable states
of the system from a given initial state when the rank
condition fails. On the other hand, when the nonlinear
system is locally observable at a given initial state in
the sense of Herman-Krener, it means that there exists
an input which can distinguish every state in an open
neighborhood of the given initial condition from the given
initial condition. Notice that, this does not mean that
every admissible input is able to do so. Hence, practically,
there is a need to identify a class of admissible inputs with
the property that every input has the ability to distinguish
every pair of initial configurations through the outputs.

In this paper, we analyze the observability properties of an
underwater vehicle moving in 2D performing single beacon
navigation for two specific classes of maneuvers, whereby
the vehicle measures its distance to a fixed transponder
located at a known position using an acoustic ranging
device. We show that in the presence of known ocean
currents, the system is found to be globally observable for
constant relative course and constant (nonzero) relative
course rate inputs in the sense of Herman and Krener. On
the other hand, with unknown ocean currents the system
fails to be locally weakly observable with constant relative
course but we characterize the set of indistinguishable
states from a given initial position and ocean current
configuration. Interestingly, observability can be achieved

with constant (nonzero) relative course rate in the presence
of unknown, constant ocean currents.

The organization of the paper is as follows. In Section
3, we introduce the basic definitions of observability in
the context of nonlinear systems. In Section 4, we address
the single beacon modeling issue and in the subsequent
section, we analyze the observability properties of the
single beacon system for two important but simple class
of inputs. In Section 6, we conclude our results. We begin
with mathematical preliminaries that are used in the rest
of the paper.

2. MATHEMATICAL PRELIMINARIES

Given (a,b) € R x R such that a? + b? # 0, we let
atan2(b, a) denote the unique angle 6 € [0,2 ) satisfying

sinf = b/va? + b2 and cos = a/va? + b2. Given a,b €

R, we write a = b mod 27 if there exists k € Z such
that a = b+ 2km. Given x := [21 22] € R2\ {0}, define

O(x) e atan2(zq, z1).

We denote the Euclidean norm in R? by || - || and the

determinant of a matrix A € R™ ™ by det(A). Given

¢ € [0,27), we define the orthonormal vectors @(¢) ef

[cos ¢ sing]” € R2 and @' (¢) def [~sing cosg]” € R,
that is, [a(¢)| = [la" (o) = 1 and a(¢) u"(¢) =
0. Given (1,02 € [0,27), it is easy to show that
4(B1) " 0(B2) = cos(BL—Ba) and w(B1)Tu (B2) = sin(By —
B2). We denote the set of all k times differentiable func-
tions defined between X and Y by C*(X;Y).

3. OBSERVABILITY OF NONLINEAR SYSTEMS

Consider the nonlinear control system
F(m,u),
Yy = h(w)

where F' is a complete and smooth vector field on R",
the input vector u takes values in a compact subset 2 of
RP containing zero in its interior, and the output function
h: R" — RY has smooth components. We restrict u to
be piecewise constant control inputs and for each u € €,
F, := F(-,u) is a smooth vector field. Define D :=

F,:uecQ}. We recall the following definitions from

Hergnann and Krener, 1977; Nijmeijer and der Schaft,
1990).

Definition 3.1. Two states z, 2" € R™ are indistinguishable
for the system (3.1) on [0, ¢] if, for every admissible input
u, the solutions of (3.1) satisfying the initial conditions
x(0) = z and x(0) = 2’ produce identical output-time
histories on [0, ¢y].

T

(3.1)

For every z € R”, let Z(z) C R"™ denote the set of
all states that are indistinguishable from z. Note that
indistinguishibility is an equivalence relation.

Definition 3.2. The system (3.1) is observable at z € R"™
if Z(z) = {z}, and is observable if Z(z) = {z} for every
z e R".

Definition 3.3. The system (3.1) is locally weakly observ-
able at z € R™ if z is an isolated point of Z(z) and is
locally weakly observable if it is locally weakly observable
at every z € R™.

Note that observability (O) implies local weak observabil-
ity (LWO).
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Fig. 1. Geometrical representation of course, heading and
sideslip angles

4. 2D SINGLE BEACON MODEL

In this section we describe the 2D single beacon model
considered in the paper.

Definition 4.1. (Relative course angle x). In the absence
of currents, this is the usual course angle defined from
the x-axis of the North-East-Down (NED) frame to the
velocity vector v of the vehicle, positive rotation about
the z-axis of the NED frame using the right-hand screw
convention. In the presence of currents, the angle is defined
with respect to the relative velocity of the vehicle with
respect to the water, that is, the total inertial velocity
minus the current velocity.

Definition 4.2. (Heading (yaw) angle ¢). The angle from
the NED x-axis to the body x-axis, positive rotation about
the z-axis of the NED frame by the right-hand screw
convention.

Definition 4.5. (Sideslip (drift) angle 8). The angle from
the body x-axis to the relative velocity vector of the
vehicle, positive rotation about the body z-axis frame by
the right-hand screw convention.

Note that from the geometry of figure (1), it is clear that
X = % + B and the sideslip angle 8 = sin™!(vy/|v]]).
Further, for small sideslip 8 & vs/||v||. In fact, when the
sway velocity vo = 0, the heading angle equals the course
angle, that is, there is no sideslip.

The 2D kinematic model of a marine vehicle measuring
the distance to a single transponder located at a known
position vector b € R? is given by

&(t) =v(t) u(x(t)) + ve(t), (4.1)
ve(t) =0, (4.2)
y(t) = |l(t) — bl|, (4.3

where t € J % [0,¢7] ¢ R, K % [0,27), 2(t) € R?\ {b}

is the instantaneous inertial position vector, v.(t) € R? is
a disturbance ocean (constant) current vector, y € U C
CF(J;K), k > 0, is the known relative course angle input,
and v € V C CY(J;R,), [ >0, is the linear velocity of the
vehicle in the body-frame.

Assumption 4.4. Without loss of generality, we assume
that the beacon is at the origin.

Note that, if b € R? \ {0}, we can define a transformation

(#,0.) © (@—b,v.). Then, (&, v.) = (&, v.) and § = ||&].
In the new variable (&, d.), the beacon is at the origin.

5. OBSERVABILITY ANALYSIS OF SINGLE
BEACON NAVIGATION

Equations (4.1)-(4.3) define a nonlinear input-affine sys-

tem with state (x,v.) € M L R2 \ {0} x R2, drift vector
field F(x,v.) = (v.,0), control vector field Gy (x,v.) =
(va(e),0), and the output function h(x,v.) = ||x||. The
solution for the initial state xg := (2o, vc,) € M at time
t € J with input w := (v,v) € U xV is denoted by P} (%)
and is given by

P (x0) = x0 + va0t+/o v:)ﬁ(X(T))dT )

where

. _
t ot /U(T)COSX(T)dT

/”(T)ﬂ(X(T))dT = [70:
0 /’U(T)SinX(T)d’T
0

while the output is given by

h(®} (x0)) =

t
mo—l—cht—i-/ o(r) u(x(r))dr|| .
0

At this point, we will make use of the following result
in order to simplify the observability analysis. The result
essentially means that the observability properties of the
system (4.1)-(4.2) with range squared measurement and
range measurement are equivalent.

Lemma 5.1. The system (4.1)-(4.2) with range squared
measurement is GO (respectively, LWO) if and only if
the system (4.1)-(4.2) with range only measurement is GO
(respectively, LWO).

Proof. First, suppose the system (4.1)-(4.2) with range
squared is observable. Then, for every distinct pair of
initial conditions x,z9 € M, there exists t* € J and an
input w* € U x V such that h(®L (x0))? # h(PY (z0))?
or, equivalently, h(®% (xo)) # h(®X (z0)), which means
that the system (4.1)-(4.2) with range is observable. The
converse follows similarly. This proves the claim.

In this paper we study the observability properties of
model (4.1)-(4.3) for three distinct cases, in the presence
of two classes of inputs. The three cases are: i) No ocean
current, i4) Known ocean current, i) Unknown ocean
current. The two classes of inputs are constant relative
course and nonzero constant relative course rate, that is,

i) Ueon & {x(t) = 6, Yt €T : ¢ € K},

i) Uy & {x(t) =wt+ ¢, VEET:w>0,¢€K}.

In the following sections, we characterize set of indistin-
guishable states for cases (i) — (i4¢) subject to the above
two classes of inputs.

5.1 NO OCEAN CURRENTS

The system without ocean currents is described by

& =v(x), (5.1)
y = |l (5.2)

with state x € M := R?\ {0} and input u = (v,x) € U x
V. Let Z;(xo) be the set of indistinguishable states from



a given state &y € M associated with system (5.1)-(5.2).
Note that in this case x and x are the same.

Assumption 5.2. Without loss of generality, we assume
that v > 0 is a constant.

The reason for assuming constant v is as follows. Re-write
(5.1) as follows

1 dx .
T (x)- (5.3)
Pick § > 0 and define a transformation § 7(t) = v(t).
Then, (5.3) becomes
dax dx dt .
E = E E = 6u(X) (5.4)
We can assume § = 1. Without loss of generality, we

assume that v is constant.

Suppose v = 0. Then, for every zg € M, h(P}(xo)) =
|lzo|| for all ¢ € J which is a constant. Hence, for v = 0,
it follows that Z;(z¢) = {z € M : |z|*> = ||zo|*}. Hence
we assume that v > 0.

Constant relative course  The following result character-
izes the set of indistinguishable states for the system (5.1)-
(5.2) with Ueon-

Proposition 5.3. Consider the system (5.1)-(5.2) and let
Ucon be the set of admissible inputs. Then, Z; (zg) = {xo}
for every &g € M.

Proof. Consider y € M and let z € Z;(xp). Then, by
the definition h(®}(z)) = h(P¥(xp)) for every t € J,
X € Ueon and v > 0. This implies that ||z +va(x)t|? =
o + vi(x) %, that is, |2 + 20 ¢ 2Ta(x) = |oll® +
2v txfu(y) for every t € J, x € Ueon and v > 0. This is
true only if ||z]|2 = ||zo]|? and zTu(x) = zFu(x) for every
X e Z/[C()n

Since zTu(x) = zfu(y) for every x € Ueon, we conclude

that z = x(. Consequently, Z;(xg) C {xo}. The reverse
inclusion is trivial. This completes the proof.

Remark 5.4. Note that for a given initial condition xg €
M, every input x € Ui does not distinguish every
other point z € M from xy. Further, the unique input
X = O(xg) € Ueon distinguishes every other point z € M
from the given point xg.

Remark 5.5. Given an initial condition &g € M, for every
input x # O(xg) € Uecon, the initial condition zy =
lzoll w(2x — O(xp)) is indistinguishable from the given
point xg.

Constant (nonzero) relative course rate  The solution of
the system (5.1)-(5.2) for the initial condition xg € M and
inputs x(t) = wt+ ¢ € Ueir, w > 0, ¢ € K, v > 0, at time

t € J is given by
(o) = o +vw [0 (¢) — w (Wi + ¢)).
From the above equation, it immediately follows that
|19} (o) — ae||* = R, V t € J,

where ze < @ + vw Lt (¢) and R % vw=?!, which is
an equation of a circle with center . € R? and radius
R > 0. In particular, . = 0 represents a circular motion
about the beacon with radius vw™!. The following result
characterizes set of indistinguishable states for the system
(5.1)-(5.2) subject to input class Ueiy.

Proposition 5.6. Consider the system (5.1)-(5.2) and let
U.ir be the set of admissible inputs. Then, Z; (xo) = {zo}
for every &g € M.

Proof. Consider £y € M and let z € Z;(xp). Then
h(®H(2z)) = h(DP¥(xo)) for all t € J, x € Ueir, v > 0,
implies that ||z + ¢(t)]|* = r2(¢), where

c(t) L vw (o) — ut (wt + ¢)),
r2(t) < Jlao + (1)
Define B % M, {z0 € M: ||zo +c(t)|]2 = r2(t)} .

Clearly, o € B and hence B # (. We claim that B = {x}.
To show the claim, assume that B # {x¢} and consider
zo € B such that zg # xg. Then, for all t € J, z( satisfies
|20 + c(t)||* = r2(t). In particular, at time ¢t = 0, we have
llzo||* = ||@o||?. Further evaluating at ¢t = 0.5w™! 7 and
t =w™ 7w, we have

(Ilzoll? = ll@ol|?) + 2vw™ (20 — @o)Ta(d) + @ (¢) = O,
(||Z0H2 - H%Hz) +4vw ! (zo — fBo)TﬁL(ﬁb) =0.

Using |20]|> = ||zo]|?> the above two equations can be
written in matrix form A zg = A xg, where

cos ¢ + sin ¢
cos ¢ )

A= [cosqﬁsingb

—sin¢

and it is easy to verify that det(A) = +1. Hence zg = xo,
which contradicts our assumption that zg # xg. Hence
B= {330}

Thus we have shown that zg € Z;(xo) implies zo € B
@xo}. From this it immediately follows that Z;(xg)
o }. This completes the proof.

Remark 5.7. Note that, for every initial state xqg € M,
lzt)||> = ||zo||* for every t € J if and only if g = vw™?
and ¢ — O(xg) = nm + 0.5(—1)" 7, n € Z. Notice also
that under this condition the motion is a circular motion
around the beacon.

The following corollary follows from propositions 5.3 and
5.6.

Corollary 5.8. Consider &y € M. Then (4.1)-(4.2) is
observable with respect to Ueo, and Ui,

5.2 KNOWN OCEAN CURRENTS

Consider the single beacon with known current

(1) =vi(x(t)) + ve, (5.5)
y(t) = |z (), (5.6)

with state z € M := R?\{0} and input u = (v, x) € UXV.
Let Zz(xp) be the set of indistinguishable states from a
given state ¢y € M associated with system (5.5)-(5.6).
If vo = 0, then (5.5)-(5.6) is same as that discussed in
Section 5.1. Hence we assume that v, € R? \ {0}. Since
v is known, we consider it as an additional input to the

system. For simplicity we define vt(t) ef ve +vua(x(t)).

= ||zo + vct||. Hence
We therefore make the

Suppose v = 0. Then h
it follows that T (xo) {two}
following assumption.

Assumption 5.9. We assume that v > 0 is constant.

Constant relative course  The solution of (5.5) with
initial condition zy € M for the inputs x € U.n and
v > 0 is given by ®}(xg) = xo + v¢ t, while the output is
given by h(®¥(xo)) = ||xo + vt t]|. Note that if vy = 0,



then for every t € J, ®¢(xg) = xo and y(t) = |zl
which is a constant. It now follows that, if vy = 0, then
To(xg) = {z € M: ||z|| = ||zo|l} for every g € M.
Hence we assume that vy # 0

Proposition 5.10. Consider the system (5.5)-(5.6) and let
Uecon, be the class of admissible inputs. Then, Zo(xg) =
{zo} for every xg € M.

Proof. Consider &y € M and let zy € Zo(xg). Then
h(®¥(zg)) = h(@;‘(wof) for every t € J and x € Ucon, v >
0. This implies that |z + v t]| = ||@o + v t]| for every
t € J and ¢ € Ueon, where vy = ve + v @(¢). This further
implies (||zo||? — ||zol|?) + (20 — 2o)Tvs = O for every
t € J and ¢ € Ueon, which is true only if ||zo]|? = ||zo]?
and (zg — zo) v = 0.

Since (29 — xo)Tvy = 0 for every ¢ € Ueon, we conclude
zo = xp. Consequently, Zo(xo) C {xo}. This completes
the proof.

Remark 5.11. Note that for a given initial condition xy €
M, every input x € Ueon does not distinguish every
other point z € M from xg. Further, the unique input
{x € Ueon: O(vy) = O(mg)} distinguishes every other
point z € M from the given point x.

Remark 5.12. Given an initial condition xy € M, for
every input in the set {x € Ueon: O(vy) # O(xo)}
the initial condition zg = |@ol| w(20(vy) — O(xg)) is
indistinguishable from the given point x.

Constant (nonzero) relative course rate  The solution
of (5.5)-(5.6) with initial condition &g € M for inputs
X(t) :=wt+ ¢ € Ueiy and v > 0 is given by

% (z0) = o +vw L ('&L(qﬁ) —at(wt+ ¢)) F oot

We have the following result.

Proposition 5.13. Consider the system (5.5)-(5.6) and let
U,y be the class of admissible inputs. Then, Zs(xg) = {zo}
for every &g € M.

Proof. Consider zy € Z(xz). Then h(®¥(zo)) =
(P} (x)) for every t € J and x € Ugiy and v > 0. At t = 0,
we have ||zo|? = ||zo||? which implies zg = ||zo| %(a), a €
K. Att=057w ! and t = Tw™!, we have

ve [i(a) — w(O(x0))] = k [@(O(xo)) — a(a)] T [i(¢) +a (9)],
v [(a) 712(@(%))} = k [4(0(20)) — w(e)] " a(9),

where k := 27! v. Equating the right-hand-side of the
above two equations ylelds

() — @(O(x0))] " [a(e) +at(9)] = [u

This can be simplified as [u(«
0. Further note that (a)Tu(¢ ) =
w(O(xo))Tu(p) = cos(O(xy) — ¢). This implies that
cos(a — @) = cos(O(xg) — ¢) which implies o = 2kw +
O(xzp) or a =2k +2¢—0O(xp), k € Z. To conclude zg =
X, assume that &g and zg = ||zo|| @ (2 p—O(xy)) are indis-
tinguishable. Then, h(®} (o) = h(P}*(z0)) for every t € J
implies that ¢T[vw ™! (ﬁJ‘ (¢) —a*(wt + d))) +ve, t] =0

for all ¢ € [0,ty) where ¢ = w(O(xo)) — w(2¢ — O(x0)).
This implies that all the time derivatives are also zero.
By evaluating the third and fourth time derivative at time
t = 0, we have [&(6(0)) — @(26 — O(@o))| " (¢) = 0
and [@(O(x)) — (2 ¢ — O(x))]Tit(¢) = 0. From this we
conclude that ©(xg) = ¢ and hence zy = x¢. This implies
that the system is observable. This completes the proof.

[i@(a) — @(O(xo))] T a ().

u(O(xo))] T u(d) =
cos(e¢ — ¢) and

Remark 5.14. Note that for a given initial condition xy €
M, every input x € U, distinguish every other point
z € M from xg.

The following corollary follows from propositions 5.10 and
5.13.

Corollary 5.15. Consider g € M. Then (5.5)-(5.6) is
observable with respect to Ueon and Ui,

5.8 CONSTANT, UNKNOWN OCEAN CURRENTS

Consider the single beacon positioning problem with con-
stant, unknown ocean current

Z0] =[] + fOs®)  6a
y(t) = 20| (53)

where the state (z,v.) € M = R?\ {0} x R? and x € U is
the known relative course input, and v € V is the known
speed of the vehicle. Let Zz(xg,vc,) denote the set of
indistinguishable states from a given state (zg,vc,) € M
associated with system (5.7)-(5.8).

Assumption 5.16. We assume that v is a positive constant.

Constant relative course  The solution of (5.7) for the
inputs ¢ € Ueon and v > 0 corresponding to the initial
state (zo,ve,) € M is given by

T v, (U
(w0, ve) = |30 |+ [P
and the output is given by h(P¥(xo,ve,)) lzo +
v, (¢) t]| where vy, (u) o U(p) + ve,- We have the
following characterization for the unobservable subspace
from a given initial position and current.

Proposition 5.17. Consider the system (5.7)-(5.8) and let
Ucon be the class of admissible inputs. Consider xq¢ :=
(z0,ve,) € M and define §(¢) def O(xg) — O(v4,(¢)) and
v, (U) = v U(P) + v, for every ¢ € Ueon. Then, for every

6 cony
T3(x0) = { ([zol[i(cx + 5(9)), [lve, ()] () — vit(g)) : a € [0,2m)}
U{(HmOllﬁ(a = 8(8)), [lvee (w)]| @(a) — vit(¢)): o € [0,2m) }.
Proof. Consider x¢ := (xg € M and let zy :=

, Ve )
(20, we,) € Z3(x0). Then h(@"(zo)) = h(®¥(xp)) for all
t € J and x € Ueon, v > 0 which implies that

[zoll = llzoll, (5.9)
[we, (D)) = [[ve, (D)), (5.10)
zOtho (¢) = wgvto (), (5.11)

where wy, (u) = v @4(P) + we,. Note that we have four un-
known variables (zg, w.,) and three equations. Hence the
solution space is one-dimensional manifold and requires
one parameter to parametrize the solution space. Now
lzo]l = llzoll and g, (w)]| = [log, ()] are respectively
equivalent to

G. = {||xo|| @(a.) €R?: a, €[0,27)},
Gt = {||vg, (w)]| B(ae) € R?: a. € [0,27)}.
Since zg = ||@o|| @(.) € G, and wy, := ||ve, ()| @(ac) €

Gy, the third condition Zotho = onvtO implies that
cos(a; — ) = cos dp, where dg = O(xg) — O (v, (u)), that



is, either a, —ae = 2k 7w+ or o, —ae = 2k m—0dg. In other
words, either o, = 2k 7w+ (ae+0d0) or o, = 2k w7+ (ae—0p).-

Note that G, and Gy are parametrized by two variables
and o, respectively. Further p := ||vg, || u(ae) = va(g) +
we, € Gy, from which we, can be parametrized by o, as

Ge = {[lve, | @(ac) —vir(¢) € R*: ac € [0,2m)}.

Thus we have shown that zo € Z5(x) implies that zg € 7,
and consequently Z3(xq) C J, where

T = {([zolla(ac + do), [[ve, (w) [ @(ae) — v@(9)) : ac € [0,2m)}
U{(Ilwollﬁ(ac —80); [[veg (w)]| @(ac) —va(9)) : ac €[0,2m)}.

In order to show the reverse inclusion, consider zg € J.
Then either zg = (||zg||@(ac+0p), [|vi, (w)]|@(ac) —va(p))
or zg = (||zo|| @(ae — o), [|vg, (w) | @(ac) — v i(9)), where
ae € [0,2m), v > 0 and ¢ € Ucon. Now it can be easily
verified that for both the cases

h(®3(20)) = [lzo + v, (w) ]| = (P (x0))
for every t € J, v > 0, and x € U.n- Consequently,
J C Z3(xg). Hence the equality follows.

Constant (nonzero) relative course rate

Proposition 5.18. Consider the system (5.7)-(5.8) and let
U.ir be the class of admissible inputs. Then, Z3(xq) = {xo}
for every xg € M.

Proof. Consider x¢ := (x9,v¢,) € M and let zy :=
(z,we) € I(xp). Then h(P¥(xg)) = h(PH(zp)) for all
te J,v>0and x € U, In particular at ¢ = 0, we have
2112 o]l or, equivalently, z = [lzo] #(8), 4 € [0, 2).

Choose vg,wp > 0 and ¢ € [0,27) such that x(¢) =
wot + ¢p. Define ¢t — g(t) given by g(t) := h(P¥(x)) —
h(®¥(z0)), t € J. Note that g is a function of ¢ and we
have the condition g(¢) = 0. This implies all the higher

order derivatives of g at ¢ = 0 are zero. The third, fourth,
fifth, and sixth time derivatives of g at ¢ = 0 are given by

wlit (90) = v, i (d0) = ' (wo — 20)"il60),  (5.12)
wii(g0) = vg,i(do) + 7 (@0 — z0) it (d0).  (5.13)
wiit (¢0) = vdy i (40) = 5 (w0 — 20) (o). (5.14)
wii(g0) = v, (o) + ¢ (o — z0) i (60).  (5.15)

Since wy > 0, equations (5.12) and (5.14) imply that
(ro — 20)T(¢hg) = 0, while (5.13) and (5.15) imply that

(z0 — z0)Ta " (¢o) = 0. Since {@(o), @ (¢o)} is linearly

independent, (29— zo)T@(¢o) = 0 and (g — 20) Y@ (¢o)

0 =
0 imply that zop = z(. Consequently, (5.12) and (5.13
imply that we = ve,. Thus we have shown that zg € Z(x¢
implies zg = xo and hence Z(xq) C {xo}. Since vy, wo,
and ¢ were chosen to be arbitrary, we conclude that
Z(x0) C {x0}. Hence the result follows.

The following corollary follows from propositions 5.17 and
5.18.

Corollary 5.19. Consider ¢y € M. Then (5.7)-(5.8) is
not locally weakly observable with respect to U, and is
observable with respect to Uc;,.

We summarize the results in Table 1.
6. CONCLUSIONS

In general, it is difficult to obtain a necessary and suffi-
cient condition for the observability of the single-beacon

[ System | Straight line motion | Circular motion
No ocean current O (@)
Known ocean current O (@)

Unknown ocean current| Neither LWO nor O (@)

Table 1. Observability analysis for constant
relative course and constant (nonzero) relative
course rate

navigation system due to the fact that the observability
of the system depends on the class of admissible relative
course inputs. In this paper we studied the observability
properties of 2D single-beacon navigation using range mea-
surements for two class of inputs, namely, constant relative
course and constant relative course rate. We have shown
that for relative constant relative course the system with
known constant ocean currents is globally observable in
the sense of Herman and Krener. On the other hand, the
system fails to be locally observable with unknown ocean
currents for relative constant relative course inputs, where
as global observability can be achieved with a relative
constant nonzero relative course rate. Thus we have elab-
orated that with a simple class of relative course inputs it
is possible to achieve global observability. Importantly, by
the concatenation of constant relative course and constant
relative course rate inputs (concatenation of line and circu-
lar arcs), it is possible to achieve an observable system. Fu-
ture work involves characterizing set of admissible inputs
that make the system globally observable and extending
the results to 3D.
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