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Abstract— In this paper, convergence and performance prop-
erties of a sample-data continuous time model predictive
control (MPC) scheme with economic performance index are
developed. In particular, we provide sufficient conditions for
convergence of the close loop state trajectory to a steady
state and constructive methods to design a terminal set and a
terminal cost to satisfy them. Further, considering an average
performance index, sufficient conditions under which the system
in closed loop with the MPC controller outperforms the system
operated at the economically optimal steady state are derived
for the case of convergent and non convergent behaviors. Two
numerical examples are presented to illustrate the different
design techniques.

I. INTRODUCTION

In a classic MPC scheme, the main goal is to drive the state
of a given system to a desired steady state or state trajectory.
To this end, a performance index is chosen that penalizes the
distance from the current state to the desired one. Using this
approach many MPC schemes have been proposed in the
literature; the reader is referred to, e.g., [17], [16], [19] for
an overview of methods that utilize the so-called terminal set
and terminal weight, and [11] for the terminal-set-free case.
Moreover, for the continuous time case we refer to, e.g, [14],
[4], and [9]. In addition to the approaches mentioned above,
in [1] an extra economic performance index, which is not a
measure of the distance to the set-point, is used to influence
the closed loop transient behavior.

In Economic MPC, the performance index captures an
economic performance that we wish to optimize. Since such
index can not be arbitrarily chosen, finding guarantees on
the closed loop behavior associated to an Economic MPC
schemes is generally a challenging task. In the works [5], [2],
[3], the economically optimal steady state is precomputed
and used to constrain the terminal state of the prediction
with a terminal equality [5], [2], or inequality [3], constraint.
Sufficient conditions for convergence to such optimal steady
state are provided in [5] and later generalized by [2], [3]
using a dissipativity property of the system. In [10] the
terminal constraint is dropped and sufficient conditions for
convergence to an arbitrarily small neighbourhood of the
optimal steady state are derived. The case of changing
performance index is addressed in [7]. In [6] a generalized
terminal set, consisting of all the feasible steady states, is
considered and the terminal cost is chosen to be the product
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of a constant term β and the stage cost, where the latter
is enforced to be not increasing for consecutive solutions
of the MPC optimization problem. Sufficient conditions for
convergence to a steady state are provided together with an
analysis of the effect of β on the asymptotic behaviour.
For the same scheme, in [18] the authors exploit a time
varying β to improve closed loop average performance. In
[12] a given control Lyapunov function (CLF) defined over
the desired region of attraction, is exploited to design a dual
mode scheme where, in a first phase, the controller minimizes
the economic cost enforcing the state within a level set of the
CLF, and in a second phase, triggered at an arbitrarily given
time, a Lyapunov decrease is enforced and convergence is
achieved.

Although, these control methods are commonly applied to
control continuous time systems, all the results are presented
in the discrete time domain leaving it to accurate discretiza-
tion procedures to close the gap between theory and practical
applications. The only exception is the work in [12], although
as main restriction, the method requires a given CLF defined
over the whole desired region of attraction.

Motivated by these observations, this work proposes a
continuous time economic MPC scheme where a generally
local CLF is used to design a suitable terminal set and
terminal cost (similarly to the discrete time version [3] but
with different methods for terminal set/cost design).

The remainder of this paper is organized as follows: Sec-
tion II contains the problem definition. The convergence and
performance properties of the proposed scheme are discussed
in Section III. Section IV presents constructive methods to
design a terminal set and a terminal cost for convergence
guarantee. These methods are illustrated with two numerical
examples in Section V, followed by Section VI with some
conclusions.

II. PROBLEM DEFINITION

Consider the continuous time dynamical system

ẋ(t) = f(x(t), u(t)), x(0) = x0 (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and the input
vectors at time t ≥ 0, respectively, and x0 = x(0) is the
initial state. The system is subject to the following constraints

(x(t), u(t)) ∈ X × U ⊆ Rn × Rm, t ≥ 0, (2)

where the sets X and U denote the state and input constraint
sets, respectively. Next, the open loop MPC optimization
problem P(·) is defined.



Definition 1 (Open loop MPC problem): Given z ∈ Rn
and a horizon length T ∈ R>0, the open loop MPC
optimization problem P(z) consists of finding the optimal
control signal ū∗([0, T ]) that solves

J∗T (z) = min
ū([0,T ])

JT (z, ū([0, T ])) (3a)

s.t. ˙̄x(τ) = f(x̄(τ), ū(τ)) ∀τ ∈ [0, T ]

(x̄(τ), ū(τ)) ∈ X × U ∀τ ∈ [0, T ]

x̄(0) = z, x̄(T ) ∈ Xaux

with JT (z, ū([0, T ])) :=
∫ T

0
l(x̄(τ), ū(τ))dτ +m(x̄(T )). �

For a generic trajectory y(·), we denote by y([t1, t2]) the
trajectory considered in the time interval [t1, t2]. Moreover,
for a generic function, the dependence on the parameters is
omitted whenever it is clear from the context.

The finite horizon cost JT (·), which corresponds to the
performance index of the MPC controller, is composed of
the stage cost l : Rn × Rm → R and the terminal
cost m : Rn → R, which is defined over the terminal
set Xaux ⊆ Rn. We denote by kaux : Xaux → U a
feasible auxiliary control law defined over the terminal set,
i.e., kaux(x) ∈ U for all x ∈ Xaux. In a sample-data
receding horizon strategy, the control input is computed at
the discrete time instants T := {t0 = 0, t1, . . . }, where
ti > tj for i > j, and the MPC control law is defined as

u(t) = kMPC(x) := ū∗(t− btc;x(btc)), (4)

where btc is the maximum sampling instant ti ∈ T smaller
than or equal to t, i.e., btc = maxi{ti ∈ T : ti ≤ t}. Next
we introduce the concepts of feasible steady state set and
economically optimal steady state set needed for the problem
formulation.

Definition 2 (Feasible steady state set): Given the con-
strained system (1)-(2), the feasible steady state set S is
defined as follows: S := {(x, u) : f(x, u) = 0, (x, u) ∈
X × U} ⊆ X × U . �

Definition 3 (Economically optimal steady state set):
Consider the constrained system (1)-(2), the feasible
steady state set S of Definition 2, and an economic cost
function l(·) of the state input pair. The economically
optimal steady state set is defined as follows:
Se := {(x, u) : l(x, u) = min(x′,u′)∈S l(x

′, u′)}. �
In order to asses the economic performance of the MPC
scheme we introduce the following performance index.

Definition 4 (Average performance index): The
average performance index associated to the closed
loop system (1) with (4) is defined as follows:
lav(x0) := lim supδ→+∞

1
δ

∫ δ
0
l(x(τ), u(τ))dτ. �

Considering the constrained system (1)-(2) in closed loop
with the MPC control law (4), the goals of this paper are to
• provide sufficient conditions for convergence of the

closed loop state and input trajectories to a given steady
state (xs, us) ∈ S ⊇ Se,

• investigate under which circumstances the closed loop
system outperforms the system operated at a steady
state, i.e., lav(x0) ≤ l(xs, us),

• provide constructive methods to design a terminal set
and terminal cost to guarantee convergence.

III. CONVERGENCE AND PERFORMANCE

This section is divided in two parts, which are dedicated
to 1) the derivation of a set of sufficient conditions for closed
loop convergence to a steady state (xs, us) ∈ S and 2)
average performance analysis of the closed-loop system.

The following classic assumptions from the MPC literature
are used in both parts:

Assumption 1: The function f(·), of the system (1), is
locally Lipschitz continuous in x and piecewise continuous
in u in the region of interest. �

Assumption 2 (Initial feasibility): The optimization prob-
lem P(x0) admits a feasible solution. �

A. Sufficient condition for convergence

In the following, for a generic function g(·), the terms
gx(·) and gxx(·) denote the Jacobian and the Hessian,
respectively, of g(·) with respect to the vector x.

Assumption 3 (Sufficient conditions for convergence):
For a given feasible steady state (xs, us) ∈ S
(i) The state constraint set X and the terminal set
Xaux ⊆ X are closed, connected, and contain xs,
i.e., xs ∈ Xaux. Moreover, the input constraint set U is
compact with us ∈ U .

(ii) There exist a function λ : Rn → R, which is
continuously differentiable away from xs, such that, for
all u ∈ U , the following holds

λ̇(x) = λx(x)f(x, u) ≤ s(x, u)− α(‖x− xs‖), (5a)
s(x, u) = l(x, u)− l(xs, us) (5b)

for all x with λ(x) differentiable at x and for some
class-K∞1 function α : R≥0 → R≥0.

(iii) The function m(·) is continuously differentiable away
from xs.

(iv) There exists a feasible control law kaux : Rn → Rm,
defined over the terminal set Xaux ⊆ Rn, such that, for
the closed loop system (1) with u(t) = kaux(x) we
have x(t) ∈ Xaux ⊆ X , u(t) ∈ U and

ṁ = mx(x)f(x, u) ≤ −l(x, kaux(x)) + l(xs, us) (6)

for all the x with m(·) differentiable at x and initial
conditions x0 ∈ Xaux. �

Similarly to [2], but for continuos time systems, the
following theorem establish convergence of the closed loop
state and input trajectories of (1)-(4) to the given steady state.

Theorem 1 (Convergence of Economic MPC): Consider
the constrained system (1)-(2) in closed loop with (4) and
suppose that Assumptions 1-3 hold. Then, the state vector
x(t) converges to xs as t → ∞ with region of attraction
consisting of the set of states x for which P(x), introduced
in Definition 1, admits a feasible solution. �

1A function α : R≥0 → R≥0 is said to be belong to class K∞, or to
be a class-K∞ function, if it is zero at zero, strictly increasing and radially
unbounded, i.e., α(x) → ∞ as x→ ∞.



Proof: Due to space constraints, only an outline of
the proof is presented. Similarly to [5], [2], the dissipativity
assumption (5) is used to define an auxiliary optimization
problem Pa(·) that shares the same optimizer of the eco-
nomic optimization problem P(·) and, in contrast to P(·),
fulfills the standard conditions required in classic MPC.
Then, using standard argument from classic MPC on Pa(·)
(see, e.g., [4], [9], [1]) convergence is established.

Remark 1 (Classic MPC): The sufficient conditions for
convergence of a classic MPC scheme can be recovered
from Assumption 3 with (xs, us) = (0, 0), l(0, 0) = 0, and
by choosing λ(x) = c, for any constant c. This results in
l(x, u) ≥ α(‖x‖) for all (x, u) ∈ X × U , which fits the
classic MPC framework where the stage cost penalizes the
distance from the current state and input to the origin. �

B. Performance of the MPC controller

In this section the average performance of the proposed
scheme is analyzed using the following main assumption:

Assumption 4: (Bounded performance index) For the
closed loop (1) with (4), the performance index is uniformly
bounded, i.e., J∗T (x(t)) < +∞, ∀t > 0. �

Assumption 4 can be satisfied either using an a priori
bound on the state trajectory or by exploiting the closed loop
properties of the convergent MPC scheme proposed in the
previous section. These two scenario are represented by the
following prepositions, respectively.

Proposition 1: (Bounded behaviour) Consider the closed
loop (1)-(4) and let Assumptions 1-2 hold with U bounded.
If x(·) is uniformly bounded, then Assumption 4 holds. �

Proof: From the boundedness of the set U and the state
x, the functions l(·) and m(·) are bounded and, therefore, the
optimal performance index J∗T (·) is always bounded.

Proposition 2 (Convergent behaviour): Consider that As-
sumptions 1-3 hold, then for any x0 ∈ Rn Assumption 4
holds. �

Proof: The proof follows from the invariance of any
level set of the Lyapunov function used to proof convergence
in Theorem 1 and is omitted due to space constraints.

in Next we show that Assumption 4 is satisfied in the
case of convergent behavior, considered in Theorem 1, but
also from an a priory knowledge of a bounded closed loop
behaviour.

Theorem 2 (Performance of MPC scheme): Let Assump-
tions 1 and 4 hold, then for the closed loop system (1) with
(4) the following is true: lav(x0) ≤ l(xs, us) for all x0 such
that P(x0) admits a feasible solution and for any steady state
(xs, us) ∈ S such that the inequality (6) holds. �

Proof: The proof can be obtained following the same
steps in [3], [2], for the continuous time framework presented
in this work and is omitted due to space constraints.

IV. COMPUTATION OF THE TERMINAL SET AND
TERMINAL COST

In this section we present systematic procedures to com-
pute a terminal cost and a terminal set that satisfy As-
sumption 3. First, an auxiliary control law that exponentially

stabilizes the origin of the system and a polynomial bound
of the stage cost are considered to be given. Then, if such
elements are unknown, but the linearization of the system
around the desired equilibrium point is stabilizable, two
constructive methods are provided.

For the sake of clarity in this section we assume, without
loss of generality, that (xs, us) = (0, 0).

A. Known auxiliary law

In the following, for a given function g(·) and scalar r
we denote by L(g, r) the r-sublevel set of g(·) defined by
L(g, r) := {x : g(x) ≤ r}.

Assumption 5 (Known auxiliary law): Suppose that a fea-
sible control law kaux : Xaux → U , together with a
certificate of exponential stability of the origin of the closed-
loop system (1) with u(t) = kaux(x(t)) ∈ U are given.
Suppose also that certificate is a continuously differentiable
Lyapunov function Vaux : Rn → R≥0, with the positive
constants k1, k2, k3, and a such that

k1‖x‖a ≤ Vaux(x) ≤ k2‖x‖a (7a)

V̇aux(x) = Vx(x)f(x, kaux(x)) ≤ −k3‖x‖a (7b)

hold for all x ∈ Xaux, for some set
Xaux := L(Vaux, r) ⊆ X with r ≥ 0. �
The use of a stabilizing terminal controller with the asso-
ciated Lyapunov function is standard in MPC. The extra
requirement introduced by Assumption 5 is the exponential
stabilisability property implied by the specific bounds on the
Lyapunov condition (7).

Assumption 6 (Bound on stage cost): The control law
kaux(·) from Assumption 5 and the stage cost l(·) satisfies

l(x, kaux(x))− l(0, 0) ≤
v∑
i=1

ai‖x‖i, ∀x ∈ Xaux (8)

for some constants v ∈ N>0 and ai ∈ R, i = 1, . . . , v. �
Assumption 6 captures a wide range of economic stage

costs and auxiliary laws, e.g., any stage cost and auxiliary
law with polynomial upper bound on x, tight at the origin.

In MPC, in order to achieve optimality of the MPC control
law and closed loop stability, we would like to choose
a terminal cost to be the so-called optimal “cost-to-go”
so recovering the optimal infinite horizon control problem.
Although, since this is in general not possible, this section,
similarly to the quasi-infinite horizon approach [4], [8], [9]
but for an economic cost, shows how to choose an upper
bound of the optimal terminal cost that approximates the
optimal “cost-to-go” and provides stability guarantee. Such
bound is obtained by combining the exponential stabilization
property of the auxiliary law from Assumption 5, together
with the bound on stage cost of Assumption 6:

Proposition 3: Consider the system (1) in closed loop
with the auxiliary law from Assumption 5 and let Assump-
tion 6 hold. Then, the terminal cost function

m(x(t)) =

v∑
i=1

ai

(
k2

k1

)i/a
ak2

ik3
‖x(t)‖i (9)



and the terminal set Xaux, from Assumption 5, satisfy
Assumption 3 (iii)-(iv). �

Proof: Consider the closed-loop system (1) with
u(t) = kaux(x(t)) and x0 ∈ Xaux. The choosen
terminal set is invariant being a sublevel set of a Lya-
punov function, thus the state and the input trajecto-
ries are feasible from the inclusion Xaux ⊆ X and
by feasibility of auxiliary law kaux(·), respectively. In
order to define the terminal cost we first use (7) to
bound the time evolution of ‖x(t)‖ as (see. e.g. Theorem

4.10 [15]) ‖x(t)‖ ≤ ‖x(t0)‖
(
k2
k1

)1/a

e−k3(t−t0)/(ak2),

which combined with the bound (8) of Assumption 6
results in l(x(t), kaux(x(t))) − l(0, 0) ≤ l̄(x(t)) with

l̄(x(t)) :=
∑v
i=1 ai

(
k2
k1

)i/a
‖x(t0)‖ie−(k3i(t−t0))/(ak2).

Integrating the bound from t to +∞ we obtain the proposed
terminal cost

m(x(t)) =

∫ ∞
t

l̄(x(τ))dτ =

v∑
i=1

ai

(
k2

k1

)i/a
ak2

ik3
‖x(t)‖i.

Note that the function m(·) satisfy Assumption 3 (iii) be-
ing differentiable with x 6= 0. Moreover computing the
time derivative of m(x(t)) =

∫∞
t
l̄(x(τ))dτ , nothing that

x(t) → 0 as t → +∞, we obtain ṁ(x) = −l̄(x(t)) ≤
−l(x(t), kaux(x(t))) + l(0, 0), which satisfies Assumption 3
(iv).

B. Unknown auxiliary law and stabilizable linearization
Assumption 7 (Stabilizable linearization): The function

f(·) is twice continuously differentiable on Rn × Rm, and
the origin of the linearized system ẋ = Ax + Bu, with
A := fx(0, 0) and B := fu(0, 0), is stabilizable. �

In the following we consider the auxiliary law

kaux(x) = Kx, Acl := A+BK (10)

where K is any matrix such that Acl is Huwitz, which by
Assumption 7, always exists.

For sake of clarity, we define the following operator:
Definition 5 (The operator T (·)): Let Assumption 7 hold

and consider the constrained system (1)-(2) with 0 ∈ X and
0 ∈ U , the auxiliary law (10), and a set A ⊆ Rn with
0 ∈ A. For any positive definite matrix 0 ≺ Q ∈ Rn×n,
vector q ∈ Rn, and positive scalar β ∈ (0,−λmax(Acl))

2,
the operator T (A, Q, q, β) returns the matrix P that uniquely
solves the Riccati equation

(Acl + βI)′P + P (Acl + βI) = Q, (11)

the vector p := −(Acl+βI)′−1q, and the set X ∗ := L(V, r)
with V (x) := x′Px and where r is the optimal solution of
the optimization problem

r = max
r̄
r̄ s.t. (12a)

(2x′P + p′)e(x) ≤ 2βx′Px+ βp′x, ∀x ∈ L(V, r̄) (12b)
Kx ⊆ U , ∀x ∈ L(V, r̄) (12c)
L(V, r̄) ⊆ A (12d)

2For a given matrix A the terms λmin(A) and λmax(A) denote the
minimum an maximum real valued eigenvalue of A

with e(x) := f(x,Kx) − Aclx. We write
(P, p,X ∗) = T (A, Q, q, β). �

Lemma 1 (Properties of T (·)): Let Assumption 7 hold
and consider the constrained system (1)-(2), the auxiliary
law (10), and a set A ⊆ Rn with 0 ∈ A. For any positive
definite matrix 0 ≺ Q ∈ Rn×n, vector q ∈ Rn, and positive
scalar β ∈ (0,−λmax(Acl)), let W (x) := x′Px + p′x and
X ∗ be such that (P, p,X ∗) = T (A, Q, q, β). Then, the
following is true:
(i) The set X ∗ is always non-empty and X ∗ ⊆ A.

(ii) For any x ∈ X ∗ we have Kx ∈ U , and the following
inequality holds: Ẇ (x) ≤ −x′Qx− x′q.

If, in addition, q = 0, 0 ∈ intA3, and 0 ∈ intU , then:
(iii) The set X ∗ is compact, positively invariant, and with

non-empty interior. �
Proof:

(i) Property (i) is satisfied from the fact that r = 0 is always
a feasible solution of (12), which implies X ∗ = {0}.

(ii) Computing the first derivative of W (·), in combination
with (12b) and (11), we obtain

Ẇ = f(x,Kx)′Px+ x′Pf(x,Kx) + p′f(x,Kx)

= x′A′clPx+ x′PAclx+ p′Aclx+ 2e(x)′Px

+ p′e(x) ≤ x′(Acl + βI)′Px+ x′P (Acl + βI)x,

+ p′(Acl + βI)x, ∀x ∈ X ∗

= −x′Qx− q′x, ∀x ∈ X ∗ (13)

that, together with the constraints (12c) and (12d),
satisfy the property (ii).

(iii) Note that if q = 0 then p = 0. Moreover, from 0 ∈
intA, 0 ∈ intU , and the continuity of Kx, there
always exists an r̄ small enough, such that (12d) and
(12c) are satisfied. Moreover, from Theorem 4.7 of [15],
if Assumption 7 holds, then for any γ > 0 there exists
a δγ > 0 such that ‖e(x)‖ ≤ γ‖x‖ for all ‖x‖ < δγ .
Thus, in order to satisfy (12b) it is enough to choose γ
small enough such that the following inequality hold

x′Pe(x) ≤ γ‖x‖2‖P‖ ≤ βλmin(P )‖x‖2 ≤ βx′Px

for all ‖x‖ < δγ , which concludes the proof.

Note that, choosing q = 0, the operator T (·) returns the
standard ellipsoidal terminal set used in classic MPC, [4].

An important step in the design of the terminal cost is the
derivation of an upper bound of the stage cost. We consider
the following standard regularity assumption.

Assumption 8 (Regularity of the cost function): The
stage cost function l(·) is twice continuous differentiable on
Rn × Rm.

Lemma 2 (Quadratic bound of the stage cost): Let
Assumptions 7-8 hold and consider the auxiliary control law
(10). Then, for any compact set C the optimization problem

λ∗ = min
λ
λ s.t. l(x,Kx) ≤ lq(x), ∀x ∈ C. (14a)

lq(x) := λx′x+ lx(0, 0)x+ l(0, 0) (14b)

3For a generic set A we denote by intA the interior of A.



admits a feasible solution. �
Proof: The non-emptiness of the feasible set (14a)-

(14b) follows from the feasibility, by using Assumption 8,
of the bound computed in Lemma 22 and Lemma 23 of [2].

Theorem 3: Let Assumptions 7-8 hold and consider the
constrained system (1)-(2), with 0 ∈ intX and 0 ∈ intU ,
and the auxiliary law (10). Then, Assumption 3 is satisfied
choosing Xaux and m(·) as in the following algorithm :

1) Compute (Plin1, plin1Xlin) = T (X , Q, 0, βlin) for any
βlin ∈ (0,−λmax(Acl)) and Q � 0.

2) Compute λ∗ solving the optimization problem (14)
with C = Xlin.

3) Compute the terminal cost m(·) = x′Pauxx + p′auxx
and the terminal set Xaux solving

(Paux, paux,Xcost) = T (Xlin, λ∗I, lx(0, 0)′, βaux)

(Plin2, plin2,Xaux) = T (Xcost, Q, 0, βlin)

for some βaux ∈ (0,−λmax(Acl)). �
Proof: From the property (iii) of Lemma 1 the set

Xlin is compact, positively invariant, and by (12c) and
(12d), the associated state and input trajectories are fea-
sible. Solving the optimization problem (14) we compute
the quadratic upper bound λ∗‖x‖2 + lx(0, 0) + l(0, 0) ≥
l(x,Kx) for all x ∈ Xlin. From the property (ii) of
Lemma 1 we have ṁ(x) ≤ −λ∗‖x‖2 − x′lx(0, 0) ≤
−l(x,Kx)+l(0, 0), for all x ∈ Xcost ⊆ Xlin. Last, we solve
(Plin2, plin2,Xaux) = T (Xcost, Q, 0, βlin) to guarantee
that the invariant set Xaux is contained in Xcost.

In contrast to Theorem 3, the following result guarantees
non-empty interior of the terminal set.

Theorem 4 (MPC with terminal inequality): Let
Assumptions 7-8 hold and consider the constrained
system (1)-(2), considered with 0 ∈ intX and 0 ∈ intU ,
and the auxiliary law (10). Then, Assumption 3 is satisfied
choosing Xaux and m(·) as in the following algorithm:

1) Compute the set Xaux as
(Plin, plin,Xaux) = T (X , Q, 0, βlin) for any
βlin ∈ (0,−λmax(Acl)) and Q � 0.

2) Compute λ∗ solving the optimization problem (14)
with C = Xaux.

3) Choose m(·) as in (9) with k1 = λmin(Plin),
k2 = λmax(Plin), k3 = λmin(Q), a = 2, v = 2,
a1 = ‖lx(0, 0)‖, and a2 = λ∗. �

Proof: Following the proof of Theorem 3 until step
3 we obtain a Lyapunov function Vlin(x) := x′Plinx for
which the inequality V̇lin(x) ≤ −x′Qx ≤ −λmin(Q)‖x‖2
holds for all x ∈ Xaux, and a quadratic upper bound on
the stage cost. Thus, we can use Proposition 3 to compute
a suitable terminal state and terminal cost. By the property
(iii) of Lemma 1, the set Xaux as non-empty interior.

Remark 2: (Unknown dissipativity function) Since the
function λ(·) is not used in the design algorithms, only its
existence, and not its knowledge, is required. �

V. EXAMPLE
In the following examples MPC controllers are designed

using a uniform time sampling T = {0.05i, i ∈ N≥0}.
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Fig. 1. The feasible steady state set is denoted with the continuous blue
line in the state and input space (top) and with the associates stage cost
(bottom), of the first (left) and second (right) examples. The red dot denotes
the economically optimal steady state.

The MPC optimization problems are solved using ACADO
Toolbox [13].

A. Example 1 : Known auxiliary law

The first example is an academic system with non-
stabilizable linearization around the optimal steady state.
Consider the constrained dynamical system (1)-(2) with

ẋ = f(x, u) =

(
x1x2 + u

−x2 + 1
2x1 cos(x1)

)
, (15)

x := [x1, x2]′, constrain sets X = {x : ‖x‖∞ ≤ 5} and
U = {u : ‖u‖ ≤ 5}, and the stage cost function

l(x, u) = x2
1x2 + ux1 − x2

2

+
1

2
x1x2 cos(x1) + ‖x‖2 + ‖u‖2. (16)

The steady state set S := {(x, u) : x2 = 1
2x1 cos(x1), u =

− 1
2x

2
1 cos(x1)}, computed setting (15) to zero, is displayed

in Fig. 1 (left column) with the associated economically
optimal steady state (xe, ue) = (0, 0). Inequality (5) holds
choosing λ(x) = 1

2‖x‖
2, in fact λ̇(x) = l(x, u)− ‖x‖2 −

u2 ≤ l(x, u)− ‖x‖2. For the closed loop system (15) with

u := kaux(x) = −x1 − x1x2, (17)

i.e., ẋ =

(
−x1

−x2 + 1
2x1 cos(x1)

)
, the function

V (x) = 1
2‖x‖

2 is a Lyapunov function that certifies
the exponential stability of the origin. In fact, computing
its time derivative we obtain V̇ = ẋ1x1 + ẋ2x2 =
−x2

1 − x2
2 + 1

2x1x2 cos(x1) ≤ −x2
1 − x2

2 + 1
2‖x1‖‖x2‖ ≤

−x2
1−x2

2 + 1
4 (x2

1 +x2
2) = − 3

4‖x‖
2, where the last inequality

follows from ‖x1‖‖x2‖ ≤ 1
2 (x2

1 + x2
2). Considering the

cost (16), the control law (17), and the Lyapunov function
V (·), Assumption 5 is satisfied with a = 2, k1 = k2 = 1

2 ,
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Fig. 2. The state (top) and input (bottom) trajectory for the system closed
loop for example 1 (left) and 2 (right) with different initial conditions are
denoted with the continuous blue line. The dotted red line represents the
auxiliary constraint set (top) and the input constraints (bottom).

k3 = 3
4 , and Xaux = L(x′Px, r) where a suitable constant

r can be obtained solving the optimization problem

r = max
r̄
r̄ s.t. kaux(x) ⊆ U ,∀x ∈ L(x′Px, r̄) ⊆ X

Moreover, combining the stage cost (16) and the auxiliary
law (17) we obtain l(x, kaux(x)) = 1

2x1x
2
2 cos(x1) + x2

1 +
x2

1 +x2
1x

2
2 +2x2

1x2 ≤ 3
2‖x‖

2 +2‖x‖3 +‖x‖4 which satisfies
Assumption 6 with v = 4, a2 = 3

4 , a1 = 0, a3 = 2,
a4 = 1. The associated convergent closed loop state and
input trajectory are displayed in Fig. 2 (left).

Remark 3 (Global convergence): Note that, for the un-
constrained case, the resulting economic MPC controller has
a global region of attraction. �

B. Example 2 : Isothermal CSTR

The model in this example is taken from [5], where a
chemical reaction in isothermal CSTR is modelled by the
following two state constrained dynamic system

ẋ =

(
0.1u(1− x1)− 1.2x1

−0.1ux2 + 1.2x1

)
, (18)

where the state vector x := [x1, x2]′, with xi ∈ [0, 1],
i = 1, 2, is a vector of molar concentrations of the materials
of the reaction and u ∈ [0, 20] is the flow through the
reactor that we are allowed to control. The economic cost,
associated to the production and separation costs, is defined
as l(x, u) = − (2ux2 − 0.5u).

The steady state set, from Definition 2, is computed by
setting the derivative of the state (18) to zero, resulting in
S :=

{
(x, u) : x2 = 1− x1, u = 12x1

(1−x1)

}
, displayed in

Fig. 1 (right column) with the associated economically op-
timal steady state (xe, ue) = ([0.5, 0.5]′, 12). Regularization
terms, taken from [5], are introduced to make the system
dissipative with λ(x) = [10, 20]′x, resulting in

l(x, u) = −(2ux2−0.5u)+0.505‖x−xs‖2+0.505‖u−us‖2.

The associated convergent closed loop state and input tra-
jectories are displayed in Fig. 2 (right) where the terminal

set and terminal cost are designed using the algorithm of
Theorem 4.

VI. CONCLUSION

An MPC scheme with terminal penalty for economic
optimization is presented together with the derivation of a
continuous time sufficient condition for convergence to a
steady state. Under an assumption on the boundedness of
the economic performance index, the closed loop system
is proved to have an average performance index not worse
that the one obtained operating the system at a steady
state. Moreover, different approaches for a systematic design
of a suitable terminal set and terminal cost to guarantee
convergence to a desired steady state are presented and
illustrated via numerical examples.
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