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Abstract—1In this paper we address a communication net-
work design problem for distributed computation with privacy
guarantees. More precisely, given a possible communication
graph between different agents in a network, the objective
is to design a protocol, by proper selection of the weights in
the dynamics induced by the communication graph, such that
1) weighted average consensus of the initial states of all the
agents will be reached; and 2) there are privacy guarantees,
where each agent is not able to retrieve the initial states of non-
neighbor agents, with the exception of a small subset of agents
(that will be precisely characterized). In this paper, we assume
that the network is cooperative, i.e., each agent is passive in
the sense that it executes the protocol correctly and does not
provide incorrect information to its neighbors, but may try to
retrieve the initial states of non-neighbor agents. Furthermore,
we assume that each agent knows the communication protocol.

I. INTRODUCTION

Distributed computation has gained renewed interest due
to the increase of data being exchanged in large-scale spa-
tially distributed systems. Such as networks of sensors, multi-
agent networks and the smart grid [1]. Several schemes
have been proposed for the distributed calculation of a
function at some agent (not necessarily the same function)
that depends on the entire state of a system, for instance,
using consensus [2] or state retrieval [3]. Nevertheless, in
several real world scenarios, not all agents are willing to
reveal their information. Secure multi-party computation is
defined as the problem of n agents computing an agreed
upon function of their inputs (initial states) in a secure way,
where security means guaranteeing the correctness of the
output as well as the privacy of the agents’ inputs [4]. Two
basic models of communication have been considered in
the literature. In the cryptographic model [5], all players
are assumed to have access to messages exchanged between
players, and hence security can only be guaranteed in a cryp-
tographic sense, i.e. assuming that the adversary cannot solve
some computational problem. In the information-theoretic
model [6], [7], it is assumed that the players can com-
municate over pair-wise secure channels, and security can
then be guaranteed even when the adversary has unbounded
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computing power. The implementation of these protocols
can be complex, although some successful applications are
known, for instance [8]. In [9] the notion of competitive
privacy in multi-agent state estimation was studied from an
information-theoretic viewpoint. The setup considered in [9]
involved a multi-agent network in which the agents obtain
noisy observations of linear combinations of their local and
neighboring states and the goal was to design a network
communication-computation scheme such that each agent
recovers its local state with high fidelity without learning
much about the states of other agents.

In this paper, motivated by the simplicity of certain algo-
rithms proposed for distributed computation (such as con-
sensus and state retrieval), we ask the following questions:
Is it possible to derive weighted average consensus protocols
ensuring privacy of the initial state shared by the agents in
a network? If so, which privacy guarantees can be obtained?

Hereafter, we assume that communications are syn-
chronous and bilateral, i.e., if agent ¢ transmits to agent j then
agent j also transmits to agent ¢. This is a common scenario
when information is broadcasted in a network of sensors
or in social networks, to name a few. Under this setup, the
communication graph (or topology) can be understood as
an undirected graph, or equivalently, a bidirectional directed
graph G = (V, £) where V contains the vertices representing
the agents and £ the pair of vertices of agents that can
communicate with each other. The induced communication
protocol consists of an averaging rule given by

Ty = Z w; ;7. (D
JEN;
where :Jc; € R denotes the state of agent 7 at time k, the
neighbors’ indices are given by A; = {j : (j,7) € £}, and
w; ; € R weighs the state of agent j received by agent i.
Without considering any privacy guarantees, given the
dynamics presented in (1) constrained to the communication
graph (i.e., w; ; = 0 if (j,4) ¢ £), it is well known how to
select the weights such that consensus is obtained, see for
instance [1]. Next, we will enhance the consensus protocols
with some privacy guarantees. To achieve this goal, we make
the following assumptions: (i) we assume that communica-
tion channels are secure and cannot be compromised. Thus,
every agent can only access the information that he receives;
(ii) the network is cooperative, i.e., each agent is passive in
the sense that he knows the entire communication protocol
and executes it correctly (i.e., he does not provide incorrect
information to its neighbors); (iii) any agent in the network
may try to infer the initial states of the agents that are not
its neighbors (via the information received from its own
neighbors over time).
Now, notice that (1) can be rewritten as



Tpy1 = Wy )

where z € R” is the collection of the scalar states of the
n agents in the network. Furthermore, the averaging rule
(1) is performed at each agent and each agent knows the
communication protocol (by assumption), which implies that
each agent ¢ knows each individual term in (1). Hence, each
agent ¢ has access to the following measurements

i =Tz, i=1,....n 3)

where I! corresponds to the rows of the n x n identity matrix
with indices in N; = N; U {i}. In other words, an agent i
has access to its own state and the state of agent j, if agent
7 belongs to its neighborhood.

Thus, given the linear system (2)-(3) an agent 7 can
retrieve an arbitrary initial state of the system if (2)-(3) is
observable [3]. Alternatively, if the system is not observable,
it is possible to retrieve some initial states. Those states
belong to the so-called observable subspace, that depends
on W and I}, which we denote by O(W, I).

Ergo, given a communication graph G (ideally) we would
like to determine a communication protocol, i.e., the weights
in W (under the constraint that w; ; = 0 if (j,7) ¢ &) such
that each agent 4, with ¢ € {1,...,n}, achieves weighted
average consensus on the initial conditions of all agents and

e; ¢ O(W,1},) for all j ¢ N, 4)

where e; denotes the jth canonical vector in R™. In other
words, agent ¢ cannot retrieve the initial state of agent j if
agent j is not a neighbor of agent <. Hereafter, we consider
a related problem, i.e., we analyze the impact that the design
of W has on the observability subspace O(W, I%).

Problem Statement
We propose to design W such that xy, LiniN 1v{ zo, with
left-eigenvector v; normalized to satisfy 1Tv; = 1, and
rank O(W, ') < n, fori=1,--- ,n, (5)

i.e., the dimension of the subspace comprising all the possi-
ble initial states that can be inferred, see for instance [10].
Since the number of canonical basis vectors contained in
the row space of O(W, I}) is upper bounded by its rank,
minimizing the rank of the matrix provides a means to limit
the number of non-neighbor initial states that are recoverabl%

To address the above problem, we use structural systems
theory [11]. Such tools have not been used before to address
privacy issues. Although, protocols with privacy guarantees
have been previously addressed, for instance in [12], [13],
[14], these commonly consider the injection of random off-
sets into the agents’ state. More precisely, in [13] the offsets
are sampled from a zero-mean distribution and introduced
once, those will cancel out in average if the number of
agents is large enough, although exact computation of the
weighted average may not be possible. In addition, since the
introduction of an offset is persistent and its model known
to all agents, additional attention has to be paid to ensure
that stochastic estimation tools cannot be used to retrieve
the initial state of the agents [15]. Alternatively, in [12] a
similar approach is considered, using ideas borrowed from
differential privacy, and a trade-off between privacy and

accuracy in probabilistic terms is derived. In [14] the offset is
introduced a finite number of times and it is chosen by each
agent under the constraint that it has to sum up to a value
previously decided by a third party. Further, these values
should sum up to zero which implies they will average out
as time evolves. Similarly, additional care is needed to ensure
that the system is not strongly observable, in other words, it
is not observable under unknown inputs [16]. Moreover, [14]
provides a verification method to classify which initial states
cannot be recovered if an agent is considered to be malicious-
curious (i.e., it does not change the protocol or injects false
data into the network). The present paper considers the
design of the network weights (dynamics) such that all agents
are potentially malicious-curious and does not required to
inject noise in its state to disguise its initial state. Finally,
we note other approaches have been proposed for the case
where the agents are active (or malicious), i.e., do not follow
the communication protocol [17].

The main contribution of this paper is to design commu-
nication protocols that achieve weighted average consensus
on the initial states of the agents, while allowing an agent to
retrieve only a small subset of the initial states of the agents
that are not its neighbors.

The rest of the this paper is organized as follows. Section 11
provides some preliminary concepts and results. In Section
IIT we present intermediate results that study the interplay
between the structure of a graph and the achievable rank
of the observable subspace for each agent. Subsequently, in
Section IV we present the main technical results (with proofs
can be found in [18]), followed by an illustrative example in
Section V. Conclusions and discussion avenues for further
research are presented in Section VI.

II. PRELIMINARIES AND TERMINOLOGY

In this section, we review some concepts of structural
systems [19]. Consider a linear time invariant system (LTT)

described as

Tpt1 = Wag, yr=Cxyp (6)

where x; € R™ represents the state and y; € R™ denotes
the measured output. If the system (6) is observable, then we
say that the pair (W, C') is observable. A system of the form
(6) is said to be a structural system if each entry of W and
C is viewed either a fixed zero or an arbitrary (independent)
free parameter. Further, if almost all numerical realizations
with the same structured system are observable then we say
that (6) is structurally observable [11].

Structural systems provide an efficient representation of
the system as a directed graph (digraph). Each digraph
is associated with a set of vertices V and a set of di-
rected edges £ of the form (v;,v;) where v;,v; € V.
We represent the state digraph by D(W) = (X,Ex x),
i.e., the digraph that comprises only the state variables
as vertices denoted by X = {z',--- 2"} and a set of
directed edges between the state vertices denoted by Ex x =
{(z%,27) : &', x7 € X and w;; # 0}, where w;; denotes
the entry in the ¢th row and jth column in matrix W.
Similarly, we represent the system digraph by D(W,C) =
(Xuy, (S,X")(Ug;(’y), where Y = {yl, cee 7ym} and (‘:X’y =
{(z,97) 197 € Y, 2" € X and ¢;; # 0}, where C = [c; ;].



Given a digraph D, a digraph D, = (V, &) such that
Vs € V and & C €& is said to be subgraph of D. If
Vs =V, Ds is said to span D. A sequence of edges
{(v1,v2), (v2,v3), ..., (Vk—1,v%)} is a directed path. If all
the vertices in a directed path are distinct then it is said
to be an elementary path. A directed path with v, = v;
(k > 1) and all other vertices distinct is called a cycle.
A digraph D is said to be strongly connected if there
exists a directed path between any two vertices. We also
use operations over graphs, such as difference, union and
intersection: given two graphs G; = (V1,&1),Go = V2, &),
the difference is given by G; \ Go = (V1 \ V2, &1\ &2), the
intersection by G1 N Go = (V1 N Vy, & N &) and union
by G1 UGy = (V1 U Vs, & U&y). For any two vertex sets
81,82 C V, we define the bipartite graph B(S1,S2,Es, .s,)
associated with D = (V, ), to be a directed graph (bipartite),
whose vertex set is given by §; US, and the edge set &g, s,
by 551_’52 = {(81,82) cf : 51 € 81,82 €S, }

Given B(S1,S2,Es,,s,), a matching M corresponds to a
subset of edges in £s, s, that do not share vertices, i.e., given
edges e = (s1,$2) and € = (s, sh) with s1,s] € S and
S9,85 € S, e,/ € M only if s1 # s} and sy # sh. A
maximum matching M* may then be defined as a matching
M that has the largest number of edges among all possible
matchings. The vertices in S; and Sy are matched vertices
if they belong to an edge in the maximum matching M™,
otherwise, we designate the vertices as unmatched vertices.
If there are no unmatched vertices, we say that we have a
perfect matching. It is to be noted that a maximum matching
M™* may not be unique.

For ease of referencing, in the sequel, the term left-
unmatched vertices (w.r.t. B(S1, Sa,Es, s,) and a maximum
matching M ™) will refer to only those vertices in S; that do
not belong to a matched edge in M*.

Lemma 1 (Minimal Path and Cycle Decomposition [19]):
Consider the digraph D(W) = (X,Ex x) and let M* be
a maximum matching associated with the bipartite graph
B(X,X,Ex x). Then, the digraph D* = (X,M")
constitutes a disjoint union of cycles and elementary paths
comprising only state variables (by convention an isolated
state vertex is an elementary path), with the ends in the
left-unmatched vertices of M*, that span D(WW). Moreover,
such a decomposition is minimal, in the sense that no other
spanning subgraph decomposition of D(V) into elementary
paths and cycles contains a strictly smaller number of
elementary paths. o

With some abuse of terminology, the notion of an elemen-
tary path extends to undirected graphs, where the edges are
considered to be undirected. Given an undirected connected
graph G(V, &), the degree of a vertex consists of the number
of neighbors a vertex shares an undirected edge with. In
addition, in this paper, when we use the term undirected
graphs we assume them to be loopless, i.e., without self-
loops. If there is exactly one (undirected) elementary path
between any pair of vertices u,v € V, then G is a tree, in
other words a tree is a connected graph with the minimum
number of edges. In a tree, any vertex that has only one
neighbor is referred to as a leaf. A special case of a tree is
given next.

Definition 1 (Star): A star is a tree with at least two
vertices where all vertices but one have degree one. In
addition, all vertices with degree one are referred to as
corners, whereas the remaining vertex is referred to as the
center. o

Remark 1: In the remaining of the paper we will identify
stars as subgraphs of an original graph, and eventually a tree.
Therefore, we have chosen to introduce the notion of corners
instead of the standard notion of leaves since the corners of
stars may not necessarily correspond to the leaves of a tree
when subgraphs are considered. o

Definition 2 ([20]): (Set Covering Problem) Given a set
of m elements U = {1,2,...,m} and a set of n sets S =
{S1,...,8,} such that §; C U, with i € J = {1,--- ,n},
and U Si = U. The set covering problem consists of finding

ieJ
the smallest set of indices Z* C J such that I/ C U S;. ¢

The set covering problem is used in the presentl EpIaper to
find the structure of the graph used in the communication
protocol.

Weighted Consensus Conditions

Recall that a matrix is called nonnegative if all its entries
are greater than or equal to zero. Additionally, a matrix is
called primitive if there exists a natural number k such that
WF has all entries greater than zero. Thus, from the Perron-
Frobenius theorem we have the following result.

Theorem 1 ([21], [1]): Let W be a nonnegative row-
stochastic primitive matrix with left eigenvector v; normal-
ized to satisfy 17w, = 1. Then, v; is strictly positive (i.e.,

all components of v; are positive) and we have klim Wk =
— 00

vrvlT. O
Generic Dimensions of Observable Subspaces

We now recover some of the results in the context of
generic observable subspaces [22]. The generic dimension
of observable subspaces (GDO) is the maximum dimension
that the observable subspaces can achieve over all numeric
realizations of the system metrics that respect the sparsity
structure.

Lemma 2 (Generic Dim. Observability Space [22]):
Let D(W) be a strongly connected graph. Given a
non-zero output matrix C, the generic dimension of the
observable space (GDO), denoted by gdo(D(W, C)) satisfies
gdo(D(W,C)) = |M}|, where M is a maximum matching
of the bipartite graph associated with D(W, C). O

Notice that the GDO is defined for a specific graph
structure and a collection of measurements. Hereafter, with
some abuse of terminology, when referring to the GDO we
implicitly consider that the output matrix C'is of the form (3),
which is closely related with the structure of the communi-
cation graph. More precisely, given a communication graph,
then the structure of the dynamics and the output matrices is
fixed, where the latter consists of dedicated outputs assigned
to the agent 7 and its neighbors.

III. INTERMEDIATE RESULTS

In this section we study the interplay between the graph
structure and the generic dimension of the observability



space (GDO), given a specified set of dedicated outputs or
measurements. Towards this goal, we proceed as follows: (1)
we introduce the notion of generic dimension of the state
space (GDS) induced by the system digraph, that is closely
related to the notion of the GDO; (2) we explicitly character-
ize these quantities for specific classes of system digraphs,
such as trees, upon which we provide a decomposition that
we shall refer to as constellation.

We start by introducing the notion of generic dimension
of the state space (GDS).

Definition 3 (Generic Dim. State Space (GDS)): Given a
strongly connected graph D(W), the generic dimension of
the state space is given by gds(D(W)) = |M*|, where M*
corresponds to a maximum matching of the bipartite graph
associated with D(W) (i.e., the state bipartite graph). ¢

Now, consider the following result (see [19] and [23])
which relates the GDS of a system digraph D(WW) with the
GDO associated with an output placement configuration C.

Proposition 1 ([23], [19]): Given state and output matri-
ces W and C, let D(W, C) be the system digraph. Suppose
C is non-zero and comprises only dedicated outputs, and the
digraph D(W) is strongly connected. Then, the associated
GDS and GDO are related as follows: gdo(D(W,C)) =
gds(D(W)) +1, where [ corresponds to the maximum num-
ber of left-unmatched vertices (state variables), with respect
to all possible maximum matchings of the state bipartite
graph B(W), measured by the dedicated outputs. o

With some abuse of notation, we use gdo(G,C) =
gdo(D(W, C)), where D(W) is the state digraph induced
by G.

Next, we introduce the notion of loopable vertices.
Broadly speaking, loopable vertices (formally defined be-
low) are vertices to which we can add a self-loop without
increasing the GDS of the state digraph. Recall that our
objective is to design W that solves (4)-(5), and hence,
we simultaneously need to ensure that the associated GDS
(consequently, GDO, by Proposition 1) is small (such that
privacy requirements are met) and that W is a primitive
matrix (to guarantee weighted consensus). It is well known
that primitivity can be ensured by adding self-loops in W,
however, in general, such self-loops may increase the GDS.
This motivates our study of loopable vertices, as introduced
in the following.

Definition 4 (Loopable-vertex): Consider a state digraph
D(W) = (X,Ex,x) and its associated bipartite graph with
a maximum matching of size p. We say that a vertex z € X is
a loopable-vertex if the maximum matchings of the bipartite
graph associated with G° = (X, Ex xU{(x, z)}) have size p.

o

Remark 2: Such loopable vertices are important in terms
of ensuring primitivity of the W matrix that we design, and,
additionally, provide more degrees of freedom in selecting
the numerical entries of W, for instance, with a view to
obtaining faster convergence. o

The notion of a loopable vertex is complemented with
the notion of critical vertices, i.e., those vertices in which a
self-loop or the assignment of a dedicated output increases
the maximum matching associated with the state and system
bipartite graphs respectively. More precisely, we have the

following definition.

Definition 5 (Critical Vertex): Consider a state digraph
DW) = (X,€xx) and let B = (X, X,Ex x) be the
associated bipartite graph. A subset of state variables X’ C
X is called a critical set if there exists a maximum matching
M of B such that X’ C Uy, where U;, denotes the set of
left-unmatched vertices of M. Moreover, a maximal critical
subset is a subset of critical vertices such that no other subset
of critical vertices has more elements. o

Remark 3: The notions of loopable and critical vertices
are complementary in the sense that vertices that are not
critical are loopable. Those notions are, to some extent,
related with the study presented in [23], where the loopable
vertices would correspond to the state variables that always
belong to the left endpoint of an edge in a maximum
matching, for all possible matchings. On the other hand, in
[23] only single state variables that may not belong to the
edges in some maximum matching were considered, whereas
the maximal critical subset consists of those variables with
respect to some maximum matching. o

We now study the interplay between structure and its
associated GDS when a tree is considered. In particular, it is
useful to consider the following decomposition of the tree.

Definition 6 (k-constellation): Let G = (V,€) be a tree
graph and, £ = {l;,...,l,} its p leaves. Additionally,
consider all the edges with one end-point in the leaves, i.e.,
P={(v,l) e E: veV, |l L} Furher,let Vp = {v:
(v,1) e P,l € L} = {v1,...,v;} correspond to the left end-
points of the edges in P. Then each subgraph S; = (V;, &;),
wherei =1,... .k, with V; = {v; }U{l: (v;,]) € P, l € L}
for each v; € Vp and &; = {(v;,1) € P : 1 € V;}, is a star
and each v; is a center. Moreover, consider each strongly
connected component of G\{{J,_; , S:}, referred to as a
chord. Denote by C;, j = 1,... ,m, the set of chords. The
collection {S;} and {C;} constitutes a unique decomposition
of the tree graph G into a disjoint union of stars and chords,
referred to as a constellation. o

A constellation, arising from the decomposition of a tree
graph as described in Definition 6, is said to be a k-
constellation if it is comprised of & (disjoint) stars.

Notice that, by Definition 1, we may have degenerate stars
with two vertices, in which case any vertex can play the
role of a center or corner (but not both simultaneously),
and the neighbors of a center in a star subgraph of the
constellation is a subset (possibly strict) of the corresponding
set of neighbors in the original graph.

1

Fig. 1. In a) we depict a star with five vertices, and in b) and c) we
have two possible decompositions using Lemma 1, both with two edges in
a maximum matching of the state bipartite graph and hence with GDS (see
Definition 3) equal to 2.

We can further classify chords as follows.

Definition 7 (Even/Odd-Chords): A chord is said to be
even if the maximum matching associated with its bipartite
graph is a perfect matching. Otherwise, it is said to be an
odd-chord. o



We now show that stars have the minimum GDS among
all possible connected bidirectional graphs.

Lemma 3: Let [G,] be the class of all connected bidirec-
tional digraphs (without self-loops) with n > 2 vertices.
Then, the star S,, on n vertices has the smallest GDS in
[Gy], ie., gds(Sy) < gds(G) for all G € [G,,]. S

We now state the relationship between the GDS of a star
state graph and the GDO associated with an agent 7, ¢ =
1,--- ,n, which receives dedicated output measurements of
its own state and those of its neighbors.

Lemma 4: LetS, = ({z1, -+ ,2n},E) be a star with n >
2 vertices where x1 is the center and the remaining vertices
are corners. Then

(i) gdo;(S,)=3ifi=2,--- ,nand n > 3;

(ii) gdo;(S,) = n, otherwise;
where gdo;(S,,) = gdo(S,, It). o

So far we have considered the relationship between the
GDS and GDO of a single star. Although stars minimize the
GDS (and hence, are desirable from the privacy viewpoint),
it is hardly the case that an inter-agent communication graph
is spanned by a single star. However, a connected inter-agent
communication graph is always spanned by a constellation,
which motivates us to extend the previous development to
structures consisting of combinations or unions of stars, and,
in particular, the case of two stars connected to each other
by an edge.

Lemma 5: Let S,,, = (V1,&1) and S, = (V2,&2) be
two disjoint stars with ni,ng > 2 vertices respectively. If
G = S USy U {e} where e = (v1,v2) with v; € V; and
v9 € Vs, then two cases are possible:

(i) if v1, vy are corners in S,,, and S, respectively, then

9ds(G) = gds(S1) + gds(S2) + 2 = 6;

(i) gds(G) = gds(S1) + gds(Sz) = 4, otherwise. o

Remark 4: From Lemma 5 we conclude that given two
disjoint stars, if we want to add an edge to connect them
to obtain a connected graph and attain minimum GDS,
we should connect them from one of the centers to the
corner/center of the other. Conversely, if two disjoint stars are
connected through their corners, the final connected graph
has an even chord and consequently the GDS increases. If
the two stars are connected through their centers, no chord
is created and we have a 2-constellation. Finally, if a center
is connected to a corner, then an odd chord consisting of a
single vertex is created in the constellation thus obtained. ¢

Further, we notice in order to obtain a constellation given
a disjoint collection of stars, we can proceed inductively as
described in Remark 4. This motivates our algorithmic pro-
cedure in Algorithm 1, which, given an arbitrary connected
graph, aims to construct a spanning constellation subgraph
culminating in the privacy guarantees described in the main
result (Theorem 3) of this paper.

IV. MAIN RESULTS

In the previous section we obtained the relationship be-
tween GDS and GDO for stars. Furthermore, by iteratively
considering a connection of stars, we obtained a constella-
tion. Hereafter we start by showing the relation between the
GDS and GDO in the case of an arbitrary constellation (The-
orem 2). Then, among the possible constellations that span

the original communication digraph we conclude that we
want to find the constellation that has the smaller number of
stars and chords. In fact, when possible, stars are preferred to
chords since stars minimize the GDS (see Lemma 3). Further,
we provide an upper-bound for the GDO of the constellation
when a specific agent is considered, see Corollary 1. Upon
this upper-bound we provide an algorithm (Algorithm 1) that
further minimizes the upper-bound, see Theorem 3. Finally,
once the structure of the loopless graph G’ that ensures a
small GDO for the different agents is determined, we show
that exists a real matrix W that ensures weighted average
consensus. To this goal, we consider the matrix structure
W’ induced by G’ with its loopable vertices, to which there
exists a numeric realization with the same structure ensuring
our goal, see Theorem 4.

We start by noticing that for a constellation the GDO and
GDS are related as follows.

Theorem 2: Let D(W') be a k-constellation that spans the
original communication graph G, with stars {S;};—; .,
chords {C;j};=1, . m. The GDO associated with D(W’, I),
i.e., for an agent iic is given as

m

gdoi(D(W") = (gds(S1) +si) + Y (9ds(C;) +¢j) ,

=1 j=1

where gdo;(D(W')) = gdo(D(W’',1},)), and sj and ¢}
denote the largest number of critical vertices in a critical
subset of the star §; and chord C; respectively, that an agent
1 measures. o

In particular, we obtain an upper-bound to gdo;(W’) as
presented next.

Corollary 1: Let D(W') be a k-constellation that spans
the original communication graph G with stars {S;}i=1._ &
and chords {C;}j=1,..m. The GDO associated with
D(W',1}), i.e., for an agent 4, is given as follows

k m
gdoi(W') < 3" gds(S) + 3 gds(Cy) + [N,
=1 j=1

where gdo;(D(W')) = gdo(D(W',I})). o
Remark 5: From Theorem 2 and Corollary 1, we have
that, in order to minimize the GDO for an agent, we need
to minimize the cumulative GDS of stars and chords in a
spanning constellation subgraph of the original communi-
cation graph G. Since stars minimize the GDS among all
bidirectional connected graphs (Lemma 3), from the design
perspective, we prefer spanning constellations of G with
more stars and fewer chords. Additionally, for stars with
more than 2 vertices the GDS is invariant to the number of
vertices (Lemma 4), and, hence, we would like to determine
spanning constellations having the smallest number of stars
with more than two vertices. o
Motivated by Remark 5, we propose Algorithm 1 that pro-
vides a procedure aimed at obtaining the spanning constella-
tion subgraph of G that minimizes the cumulative sum GDS
of stars and chords (and hence the upper bound in (7)) among
all possible constellation subgraphs of G. Subsequently, we
can upper bound the worst case GDO associated with the
constellation generated by Algorithm 1 as follows.
Theorem 3: Given an initial bidirectional communication
graph G, let {S7}jc7- be the collection of spanning stars



obtained in Algorithm 1. Then, denoting by D" the output
constellation of Algorithm 1, we have

gdoi(D") < Y gds(S;) + e+ |N;| 4T+ NG| ()

JjET*

where gds(S) = 0 if S is a degenerated star with a single
vertex, gdo;(D") = gdo(D",I}), J* denotes the number
of stars in D” (or the number of sets in the minimal set
covering in Algorithm 1), and e is the cardinality of the
subset of edges introduced in the last operation in Algorithm
1 (to ensure connectedness of D’") whose both end-points are
corner vertices belonging to distinct stars (i.e., in particular,
€ =0 if D’ in Algorithm 1 is connected.) ©

Now, note that by the definition of generic rank, any
numerical weight matrix W with the structure of D" satisfies
rank O(W; ) < gdo;(D") for all i. Hence, by Theorem
3, privacy guarantees as far as the distributed computation
problem (4)-(5) is concerned, can be ensured by generating
an arbitrary W with sparsity D”. However, since we are
interested in obtaining weighted consensus, the W needs to
satisfy certain additional conditions, specifically primitivity.
Note that any W with the structure of D’ is irreducible
and hence, to ensure primitivity, it is sufficient to introduce
self-weights (or topologically, self-loops) in W. To this end,
we study which vertices in D’ are loopable, such that
introducing self-loops at these vertices will not increase
the GDO of D” but will ensure that primitive numerical
instances W of D" exist.

Lemma 6: Given a k-constellation, we have the following:

(i) the centers of the k stars are loopable;
(i1) all vertices in an even-chord are loopable;
(iii) all non-critical vertices in odd-chords are loopable. ¢

In particular, note that the set of loopable vertices is non-
empty. It is also important to state the dual result, i.e., which
self-loops increase the GDS.

Lemma 7: Given a star S,, = (V, ) with n > 3 vertices,
adding a self-loop to a corner v € V, leads to gds(S2) =
gds(Sy) + 1, where 8% = (V,E U {v,v}). o

To summarize, we have obtained a constellation (given
by Algorithm 1) with very small GDS within the possible
spanning constellations of the communication graph. In
addition, given the constellation, we can identify the loopable
vertices (see Lemma 8). Combining the above, it can be
readily seen that a weight matrix W, in which the non-
zero entries correspond to edges in the constellation D’
(obtained in Algorithm 1) and additional self-weights (non-
zero diagonal entries) on the loopable vertices (determined
in Lemma 8), achieves agent-wise privacy guarantees as in
Theorem 8 while being irreducible with self-loops. Now,
primitivity and row-stochasticity can be ensured by selecting
the non-zero entries in W such that they are positive and
each row in W sums to 1. The above observations lead to
the main result of this paper on the design of W in (4)-(5)
that achieves weighted consensus with privacy guarantees
stated as follows.

Theorem 4: Let G = (V,&) be a communication graph.
Let the subgraph G’ = (V,&’) of G be determined using
Algorithm 1 and £° comprise the edges associated with the

self-loops of the loopable vertices. Then there exists a row-
stochastic matrix W with D(W) = G” = (V,& U &°)
ensuring weighted average consensus of (2). o

Remark 6: For instance, under the hypotheses of Theorem
4, a primitive and row-stochastic W can be designed by
simply setting W;; = 0 if (4,7) ¢ £ U E® and choosing the
non-zero entries in each row, say the i-th row, to be equal
to 1/N; where N; denotes the number of bidirectional edges
including self-loops incident on agent ¢ in the graph G”. Fi-
nally, note that under the conditions of Theorem 4, the agents
reach weighted consensus on the linear combination VlTXo
of the initial states xo; however, since the left-eigenvector v;
consists of strictly positive components, any other weighted
combination can be achieved by simply rescaling the local
initial value at each node appropriately. o

ALGORITHM 1: Determine a (connected) constellation
spanning the communication graph G

Input: Bidirectional communication digraph D = (V, £)
Output: A constellation (connected bidirectional spanning
subgraph D’ of D, see Definition 6)

Set S =Ni(=N;U{i}) andU =,_, ,Si

Find a solution to the minimum set covering problem with the
sets S;, ¢ € {1,...,n} and U, which we denote by Z*

.....

Let S; = (Vs;,Es;) (with ¢ € Z*) be a star, consisting of the
vertices with indices in S; and edges with one endpoint in <.

If the intersection between two stars is non-empty, consider
the following two (exhaustive) scenarios: (i) a center belongs
to the intersection, in which case the connection between the
stars should be established using the edge connecting centers;
else (i) let S5 and SY, correspond to the sets containing only
the corner vertices of S; and S, respectively. If |Si N S| is
greater than one, then disregard |S;’ N S7| — 1 edges ending in
different vertices in S§ N S5, and such that the degree of each
star is greater than one if possible (see Remark 5). Denote by
&' the edges obtained after applying (i)-(ii).

In addition, if D' = (V,£’) is disconnected, determine the set
of (bidirectional) edges £ C £ with minimum size such that
D" = (V,E' UE") is strongly connected, where preferentially
using those edges that do not link two corners of the stars
previously found (see Remark 4).

In the next section we provide an illustrative example that
uses the main results obtained in this section.

V. AN ILLUSTRATIVE EXAMPLE

Consider the communication graph G depicted in Figure 2,
where the directed edges are the communication links be-
tween the agents. Further, all vertices have self-loops that
are not depicted. To apply Algorithm 1, we create the sets
Si = N, = {i} UN,, with i € {1,...,14}, and set
U = {1,...,14}. A possible solution to the set covering
problem is given by the sets S}, S5, S5 corresponding to the
indices associated with the vertices in each of the dashed gray
circles in Figure 3. Now, notice that the sets S;* (I = 1,2, 3)
span G, where S; and Ss intersect at one vertex, but Ss is
disjoint from the rest. Hence, an edge connecting the red star
to the others needs to be chosen (from the set of available
communication edges given by the initial graph G to obtain
a constellation. Considering Remark 4, in order to minimize
the overall GDS, we select the edge connecting the center of
the red star to the center of the green star we select, instead



of the edges in red that connect corners of different stars.
Finally, we obtain the spanning digraph comprising the blue
edges, denoted by £’. In addition, notice that the vertex in
yellow, although initially was the corner of a star, becomes
an odd chord. The obtained constellation thus consists of
three stars and a chord. Further, the set £’ contains the
edges associated with the self-loops at the loopable vertices,
in this case the vertices 1,2, 3 corresponding to the centers
of each star in the 3-constellation. We finally obtain the
digraph D' = ({1,...,14},&* = & U E”) as the output
of Algorithm 1. Using Theorem 4 we can now design a
W matrix that achieves weighted consensus with agent-
wise privacy guarantees as given in (7). The specific W
matrix used for this example was obtained by selecting the
numerical entries as described in Remark 6.

Furthermore, to show that the privacy guarantees hold and
information leakage (see (4)-(5)) is minimized. For instance,

R=[888898999999909]

where each entry is given by R; = rank[O(W,I;,); e]].
Thus, if the entry R; > R;, then the canonical vector ¢;
associated with the initial data at agent ;7 does not belong
to the observability subspace of agent i, i.e., agent ¢ cannot

retrieve the initial condition of agent j.

Fig. 2. In this figure the communication digraph G is represented by the
bidirectional edges, whereas the sets of vertices denoted by Sl.*, i=1,2,3,
correspond to a solution of the minimum set covering problem posed in
Algorithm 1. As stated in Algorithm 1, we create stars based on these sets,
which are depicted by green/red/gray with the yellow vertex belonging to
both S, S3. The red star is seen to be disjoint from the others. Hence, an
edge connecting the red star to the others needs to be chosen. Considering
Remark 4, in order to minimize the overall GDS, we select the edge
connecting the center of the red star to the center of the green star instead
of the edges in red that connect corners of different stars. In addition, notice
that the vertex in yellow, although initially was a corner of a star, becomes
a chord, in particular an odd-chord, in the final constellation. The edges in
blue depict the edges in set £’ corresponding to the constellation found by
Algorithm 1.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper we analyzed the interplay between a spe-
cific network and its observability subspace. We proposed
a communication protocol that achieves weighted average
consensus on the initial states of the agents in the network,
while allowing an agent to retrieve only a small subset of
the initial states of the agents that are not its neighbors.
It remains to explore if there exist additional subclasses of
network topologies where similar approaches can be used, as
well as to understand to the full extent of how the choice of
parameters can lead to a smaller subset of initial states being
recovered. For this approach it may be worth noticing that
Algorithm 1 is related to the dominating set problem, which
can be used to obtain new results. Additionally, it would be
interesting to understand if specific numerical realizations
lead to subspaces where privacy is fully ensured, i.e., each
agent can only retrieve the initial state of its neighbors.
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