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Abstract— This paper addresses the problem of adaptive
leader-follower formation control (ALFC) of autonomous ma-
rine vehicles. The rationale for this study can be found in a
number of challenging geotechnical surveying missions aimed
at mapping geological structures under the seabed. Mission
specifications require that a group of surface vehicles equipped
with acoustic receivers (hydrophones) maneuver in formation
and acquire acoustic data emitted by one or more vehicles that
carry acoustic emitters. To this effect, we adopt a basic set-
up for ALFC previously proposed for mobile robots modeled
as single integrators and extend it to include explicitly the
full dynamic equations of a representative type of marine
vehicles. The paper offers a formal proof of convergence of
the resulting formation control system. Results of simulations
illustrate the performance that can be obtained with the control
law proposed.

I. INTRODUCTION

This paper addresses the general problem of making a
group of follower vehicles reach a desired (possibly time-
varying) geometric formation with respect to the reference
frame defined by two leader vehicles that move rigidly
with the same linear velocity. The latter is unknown to
the follower vehicles. In the set-up adopted, the two leader
vehicles play the role of guides and each of the follower
vehicles has access to its relative position with respect to
either the two leader vehicles or a number of neighboring
vehicles. Control laws are derived for each of the follower
vehicles that take directly into consideration their dynamic
equations of motion. In the sequel, because the overall
motion of the group of follower vehicles is effectively guided
by that of the leading vehicles and the motion of the latter is
not known in advance, the problem will simply be referred
to as Adaptive Leader-Follower Formation Control (ALFC);
see [1] for a lucid presentation of this circle of ideas in the
context of autonomous mobile robots.

The rationale for this problem can be found in a number
of extremely challenging geotechnical surveying missions
aimed at mapping geological structures under the seabed;
see for example [2], [3], and the references therein. In
this context, there is considerable interest in affording a
group of surface or semisubmerged vehicles equipped with
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acoustic receivers (hydrophones) the capability to maneuver
in formation and acquire acoustic data emitted by one or
more vehicles that carry acoustic emitters. Post-processing
of the data acquired will reveal the types of sediments and
(if there is enough penetration of the acoustic waves) of
the geological structures or extent of hydrocarbon reservoirs
under the seabed, [3]. In these conditions, allowing for the
emitter vehicles and receiving vehicles to change their rela-
tive positions (in contrast to what is classically done during
offshore seismic surveys, in which for example one emitter
vehicle actually carries an array of acoustic hydrophones and
there is no acoustic source / receiver separation) paves the
way for the exploitation of spatial diversity yielding better
accuracy in the mapping of relevant structures under the
sediments.

The ALFC problem falls in the scope of cooperative
networked motion control, a topic that has been the sub-
ject of considerable research effort recently. A network of
autonomous robots can perform tasks more efficiently than
a single agent or can accomplish more challenging tasks
not executable by a single individual. Potential applications
for multi-robot systems include collaborative search and res-
cue, environmental monitoring, exploration and distributed
reconfigurable sensor networks, see [4], [5]. Some of the
work done has been focused on cooperative path following,
where a group of vehicles is required to maneuver along
prespecified paths while keeping a desire formation pattern
(absolute formation control). See for example [6] for work
along these lines with applications in the marine field. In the
work reported, each vehicle is required to know its absolute
position and those of the neighboring vehicles. This is in
contrast with the work in [7], where the objective is not to
do absolute formation control but relative formation control
instead. In this situation, each vehicle is only required to
know the relative position of some of the neighbors in its own
reference frame. From a practical point of view, however, this
still poses formidable challenges when the vehicles move
underwater. In the same vein, the work in [8] addresses the
challenging problem of keeping an autonomous underwater
vehicle in a moving triangular formation with respect to
two autonomous surface leader vehicles by relying on the
computation of the ranges between the follower vehicle and
the leaders, that is, without computing explicitly the relative
position of the follower in the moving frame established
by the leaders. Even though the efficacy of the Range-Only
Formation (ROF) control strategy described in [8] has been
shown in practice, the approach suffers from the drawback
that the solution is not easily scalable for a large number of



follower vehicles.

Motivated by the above considerations, in this paper we
address a cooperative motion control problem where all
vehicles move at the water surface, thus making the task of
computing their relative positions straightforward by relying
on GPS data and an inter-vehicle aerial communications
network. Previous work on related problems -albeit with
applications to vehicles that are not necessarily marine
robots- appears in the literature under the heading of leader-
follower control [9], [10]. In some of the publications, it was
tacitly assumed that there is only one group leader and all
the follower robots have access to the leader’s velocity or
position. A different approach based on a cascade control
strategy has also been considered in some of the literature.
The key idea is that each follower vehicle tracks its precedent
neighbor and the first follower robot tracks the leader [11],
[12]. The work in [1] goes one step further and the adaptive
formation control is addressed for a network of autonomous
mobile robots in which only two leaders know the prescribed
reference velocity while the others play the role of followers.
Notice however that the models for the follower vehicles
are restricted to single integrators, a simplification that is
not warranted in the case of autonomous marine robots that
exhibit complex dynamics.

It is against this background of ideas that in this paper
we extend the methodology exposed in [1] for the ALFC
problem to autonomous underactuated surface robots with
highly nonlinear dynamics. We do this in two steps: we first
derive a leader-follower control law by adopting a unicycle
kinematic model for the follower vehicles based on a virtual
controller and a tracking control design; after, the control
law is modified to take into account the complex dynamics
of a marine robot.

II. PROBLEM FORMULATION

This paper deals with the ALFC problem in which a group
of mobile robots aims to keep a rigid formation and track
two leader vehicles moving with a given reference velocity.
Consider a group of N mobile robots in which the position
vector of vehicle i = 1,..., N is represented by p, € R2.
The vehicles are divided in two classes, two leaders denoted
by p; and p,, and the rest of the vehicles are considered
followers.

A. Model of the follower vehicles

At this stage, we consider that the followers are modeled
with unicycle kinematics subject to a simple non-holonomic
constraint, such that the dynamics of robot ¢ = 3,..., N is

defined by ' T
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rotation matrix defined by R(¢)) = [

[u;, ;] are the control inputs.
Later, in Section IV, we will consider a class of marine
vehicles with more complex dynamics.
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B. Leaders’ motion

Consider a setup in which the two leaders track a given
constant velocity vg € R2, and maintain a constant distance
between them. In [1], a simple gradient-based control for
the leaders, modeled with simple integrator dynamics, is
proposed in order to enforce them to maintain a constant
distance from each other and track the same constant veloc-
ity. However, considering unicycle dynamics for the leaders,
other control strategies could be applied, for instance the
cooperative path following presented in [6].

C. Control Objectives

In this paper we focus on the control of the follower
vehicles. It is assumed that the two leaders keep a constant
distance and tack the reference velocity vy which is unknown
for the followers. The aim for the follower robots is to follow
the two leaders’ motion keeping a particular rigid formation
such that, each vehicle follows its two leading robots and
maintains a triangular formation with them. For instance,
the aim for vehicle 3 is to reach a triangular formation
with the two leaders, i.e., vehicles 1 and 2; the vehicle 4
aims to keep a triangular formation with its leading robots
3 and 2, and so on. The desired formation is achieved
when each follower (z > 3) keeps a triangular formation
with respect to its neighbor robots ¢ — 1 and ¢ — 2. Let’s
d;; define the desired distance between vehicles 7 and j.
The objective is thus to design the control inputs [u;, 7]
such that the distances between each follower and its two
neighbors converge to the desired values d;(;_1) and d;(;_2)
respectively, i.e. [p; = P;_1l| = dii—1) and [|p; — p; || =
d;i(;—2) when t — oo.

III. CONTROL DESIGN

The authors of [1] proposed an adaptive strategy to solve
the leader-follower formation problem for a group of single
integrator robots. Our approach is based on these previous
ideas and on a tracking control design. The first contribution
of the paper is thus, to extend the previous result presented
in [1] considering the nonlinear dynamics (1). In Section IV
the new control strategy is applied to the complex nonlinear
dynamics of an autonomous marine vehicle.

We propose a decoupled control strategy divided in two
steps, as explained in Fig. 1. The main idea is to introduce
a virtual variable p;; with simple integrator dynamics for
each follower (¢ > 3) in order to apply the adaptive leader-
follower control from [1]. The trajectory of the virtual vehicle
becomes a reference for the real robot p, and designing a



tracking controller, the real vehicle will track the trajectory
of the virtual agent, see Fig. 1.

A. Virtual controller

Firstly, we present the control design based on the adaptive
approach from [1] for the virtual agents. The aim for the
virtual follower p; is to keep a fixed distance d;(i—1) and
d;(i—2y with its leading neighbors 7 —1 and i — 2 respectively.
In other words, the aim is to reach a formation satisfying

IPrii—1) = Prii—oy | = di—1)(i-2)
Psi —Pra—n)ll = dii—1) )
IPsi = Pri—oyll = dii—2)
for ¢ = 3,..., N, where ps; and pg, correspond to the
leader vehicles p; and p, respectively. With a view to
design a realisable formation the following conditions must
be satisfied:
dii—2)(i-1) < di—2)i + d(i—1i
dii—2)i < d(i—2y(i—1) T d(i—1)i
dii—1yi < d(i—2)(i-1) + d(i—2)i-
It is assumed that each follower computes the position of
its virtual agent and receives the required information to
compute the relative position with respect to its two leading
neighbors. In the sequel, the following notation is defined
Zi(i-1) = Pg@i-1) ~ Pyi
Li(i—2) = Py(i-2) ~ Pri
MiGi-1) = ||Zi-n1* = dy)
Ni(i—2) = ||Zi(i—2)||2 - d?(i—Q)‘
Using previous notation the following adaptive control law

is proposed for the virtual follower (i > 3):
Pri = 0i + Zii—1)Mi(i—1) t Ziti—2)Ni(i—2) 3)
0; = Zi(i—1)Ni(i—1) + Zi(i—2)Mi(i—2)-

In order to study the stability of the virtual system, firstly
we consider the triangular formation problem of one virtual
follower p ;4 and the two leaders p,, p,. Consider the control
law (3) for ¢« = 3, we obtain:

213 = Py — (03 + 21313 + Z237)23)
223 = Py — (03 + Z13713 + Z237)23) 4)
03 = 213113 + Z23723.

The stability is studied through the Lyapunov function V; =
I35+ 1n2;+1]163]|. Taking the time derivative of V along

the solutions of system (4), one obtains
. 1 1 ;
Vi = 5Msis + 53023 + 60305

= [mszis  n23Z3) [ P1 ] — |Insz13 + naszas|®

P2

< lmszis  n23z3s H gl ‘ — [Imaz1s + 123223 .

2
It can be proven by contradiction that Vi(t,) < 0 for a
large time ?5 and consequently V is bounded (see details
in [1]). Hence, 713,723 and 63 are bounded and 7);3z13 +

N)23Z23 1s uniformly continuous, thanks to Barbalat’s Lemma
we conclude that

N13Z13 + Mosze3 — 0 as t — oo.

The both leaders track a given velocity vg and then, following
trivial computations, it can be proven that 3 — vy and
consequently pf3 — vg. Note that 113213 + 123223 = 0
means that the agents form a triangular formation (133 = 0
and 73 = 0) or a collinear formation (113 or 73 # 0).
The authors of [1] showed that the triangular formation is
asymptotically stable, however the collinear one is unstable.

In conclusion, if both leaders 1 and 2 track the given
velocity vp and the distance between them is constant then,
for the virtual follower 3 with the control law (3), the
triangular formation satisfying (2) is asymptotically stable.
This result can be straightforwardly extended to the case of
multiple virtual followers.

B. Tracking control design

We propose a tracking control design to make each mobile
robot follow the desired time-varying trajectory generated
by its virtual agent. In other words, the aim is to make
p, converge to the desired position p fi(t) which is moving
with velocity py,;. The position error expressed in the body
frame, is defined as ; = R(;)” (p; — p;). Then, the error
dynamics satisfies (i > 3):

& = R(v;)" (p; — Pyi) — R(4:)"S(r:)e;
= [ui, 01" = R(¢)"pg; — R(¥i)"S(ry)e;
0 -r
T 0
[6,0]7, with § being an arbitrarily small negative constant,

to make appear the control input vector [u;, r;]7 in the error
dynamics

& = [u;, 0" — R(¢:) Py — R(v:)"S(r:)(e; — 6 + )
= Afug, ri]" — R(i) by — R(1:)TS(r)(e; — 6),
1 0

0 =4
[13], the following control law is proposed:

[ui,ri]" = AT (R(¢3) Py — K(e; — 8)), (5)

where K is positive definite. To analyze the convergence of
the error system the Lyapunov function Ve, = 1le; — &||? is
proposed. Differenciating along the solutions of (12) yields

"/ei = (ei - 5)Téi = —(ei — 6)TK(CZ' — 6) <0.

where S(r;) = ‘ ] We introduce the vector § =

where A = } . Based on the tracking control from

Therefore e; = § is a globally exponentially stable equilib-
rium point for this system. Assuming that each follower is
able to compute its own position p; in inertial coordinates
then, the trajectory tracking control law (5) can be applied.

C. Stability analysis

The following theorem states the first contribution of the
paper dealing with the control law for a unicycle robot to
achieve a triangular formation with two leader vehicles.



Theorem 1 Consider two leader vehicles 1 and 2 tracking
the given velocity vy and the distance between them is kept
constant. Let K be a definite positive matrix and § a small
negative parameter which satisfies |§| << dy3, |6 << da3.
The follower robot represented by (1) with the control law (5)
and the virtual adaptive controller (3), achieves a triangular
formation with the two leaders, such that

diz = 10 < [lps — p1ll < das + 9]
da3 = 16] < [lp3 — poll < das + 9]

(6)

Proof: The control strategy proposed is composed of
two independent control loops, the virtual single integrator
follower with the adaptive control law (3) and the unicycle
robot with the tracking controller (5). The convergence of
both controllers has been previously studied using Lyapunov
techniques. As it has been proven in [l], the triangular
formation (1713 = 0 and 723 = 0) composed by the virtual
follower ps; and the two leaders is asymptotically stable.
When this formation is achieved the equalities ||p ;3 —p, | =
diz and [[p;3 — P2l = das are satisfied. Thanks to the
tracking control law (5) the error position es converges
to & exponentially and then, vehicle p, tracks the virtual
follower pg3 such that, [[p; — py3l| = [6]. Consequently,
the unicycle robot p; forms a triangular formation with
leaders 1 and 2. We analyze the properties of the resulting
formation in order to find a lower and upper bound for the
final distance between the robot and each leader. Rewriting
the distance between the follower robot and the leader 1 as

[p5 =PIl = [(P3 —Py3) = (P1 —Py3) |l it can be shown that
when the virtual follower reaches its equilibrium state then

[Ps — P1ll < Ips — Pssll + IP1 — Pysll = [0] + das.

The lower bound is a consequence of the reverse triangular
inequality:

s — Pull > [lIps — pysll — Py — pysll] = [16] — das| .

Hence, as condition |0| << d3 is satisfied, we conclude
diz — 0] < |lps — p1ll < diz + 1]

The same inequalities hold for the leader 2 and thus, the final
triangular formation between the unicycle robot 3 and both
leaders satisfies (6). |

Note that this result can be easily generalized for a fleet
of followers defined by (1). Consider that each robot has a
virtual agent associated. Thanks to the adaptive control law
(3) if the precedent two virtual agents are not coincident,
then the virtual follower i converges to form a triangular
formation (stable) or a collinear formation (unstable) with the
precedent two virtual followers. Therefore the virtual agents
form a formation satisfying (2). Due to the tracking controller
(5), each robot ¢ converge to a small neighborhood of its
virtual agent.

IV. EXTENSION TO MARINE VEHICLES

The aim of this section is to implement the previous ALFC
strategy in autonomous marine vehicles. For this purpose,

the MEDUSA! class of autonomous semisubmerged robotic
vehicles is considered.

A. Kinematic and dynamic model of MEDUSA

As the vehicle is bound to the horizontal plane, its kine-
matic equations take the simpler form

T =ucost — vsiny

¥ =usiny + v cosy @)

) =r
where x and y are the Cartesian coordinates of its center of
mass, i.e., p = [x,y]” denotes its position vector, u (surge
speed) and v (sway speed) are the body axis components of
the velocity of the vehicle, 1) defines its orientation (heading
angle), and r its angular velocity. The motions in heave,
roll and pitch can be neglected, as the vehicle has large

enough meta-centric height. The resulting simplified dynamic
equations of motion for surge, sway and yaw are

My — MyUT + dyu =T,
My — myur + dy,v =0 )
MypT — MypUU + dpr =T

where 7, stands for the external force in surge (thruster com-
mon mode), 7, for the external torque (thruster differential
mode), where the terms 1, My, M-, My and dy,, dyy, d,- rep-
resent the vehicle masses and hydrodynamic added masses,
and linear and quadratic hydrodynamic damping effects
respectively. The full set of MEDUSA physical parameters
can be found in [14]. While the vehicle is restricted to surface
operations, the GPS receiver allows the vehicle to compute
its own position p in the inertial frame.

B. Motion control

In order to apply the previous control laws designed for
the unicycle kinematics (1) to the MEDUSA vehicle, a new
control strategy is proposed. The main idea is to decompose
the motion control problem in two tasks: the inner-loop
dynamics task and the outer-loop kinematic task. The inner-
loop controller enforces the vehicle to track a desired speed.
The outer-loop task consists in assigning the reference speed
in order to make the vehicle converge to a desired position.

Based on a full state feedback, a single control law for
the vehicle thrusters could be designed and better results
could be achieved in terms of saturation and smoothness of
the control signal. However, dividing the problem results in
simpler control laws and the previous tracking control design,
presented in Section III-B, can be easily extended to the
complex dynamics of the MEDUSA vehicle.

1) Dynamic control: Consider the MEDUSA dynamics
defined by (8). The equations of the actuated dynamics can
be written in a compact form as follows:

Mu+ C(v)u+ Du =T, 9)
where u = [u, ] is the state vector (velocities) and

'MEDUSA:s are developed at the Laboratory of Robotics and Systems in
Engineering and Science (LARSyS), Instituto Superior Técnico of Lisbon.



The aim is thus to design the control inputs 7 = [r,, 7,7
such that u = [u, 7] converges to the desired speed ug =
[g,74]T. The error between the vehicle velocity and desired
velocity is denoted by u = u — uy. Hence, the dynamics of
the error satisfies

Mi = —C(v)ju — Di — Dug — Mag+7.  (10)
Thanks to the following proposed control law
T =—Kq(u—ugy) + C(v)u+ Dug + Mg, (1)

where K is positive definite, the error dynamics becomes
u=-M"'K;+ D]a

and the origin u = 0 is a globally exponentially stable
equilibrium point for this system. To prove the convergence
of the error system, consider the following Lyapunov func-

tion V; = %|ul|>. Defining the positive definite matrix
A = M~'[Kq + D], the time derivative of the Lyapunov
function satisfies V; = —u’ Aa <0.

2) Kinematic control: Considering the simple unicycle
kinematics (1), the tracking control (5) enforce convergence
of the vehicle p to the desired time-varying position p; with
a small error § expressed in the body frame. Consider now
the kinematic equations of MEDUSA (7). In this situation,
the dynamics of the error e = R(¢))” (p — p;) becomes

é=Au+[0,0]" — R(y))"p; — S(r)(e - 8) (12)

and then, the new tracking control law can be designed as
u=A""(R@)"'p; - [0,0]" — K(e—9)). (13)

Following the same analysis as previously, using the Lya-
punov function V; = |le — &||%, we conclude that the origin
e = ¢ is a globally exponentially equilibrium point for
system (12). This outer-loop controller provides the reference
speed uy for the MEDUSA in terms of [u, 7], with a view to
tack the time-varying trajectory of the virtual follower p;.

C. Closed-loop controllers

In this subsection, we derive the final controllers that will
be implemented in the MEDUSA vehicle and the stability of
the closed-loop dynamics is analyzed.

Previous inner and outer-loop controllers have been de-
signed independently. In addition, to compute the control
laws (11) and (13), full information about the reference
velocity and its derivative is required and the full state is
needed for the feedback control. With a view to implement
both the inner and outer-loop controllers in a more realistic
way, the sway velocity v and the derivative of the reference
velocity u, are removed from the control laws, and they are
viewed as input perturbations that limit the performance of
the system.

Theorem 2 Consider the MEDUSA class vehicle described
by equations (8) and (7). Let K and Ky be two positive
definite matrix and p ¢, p ; and v be bounded inputs. Consider
the control law:

T=— Kd(u - ud) + Duy

ug =A"" (R() p; — K(e - )

If the gains K and K4 are sufficiently large, then the system
is input-state stable (see [15]) with restrictions on the initial
states e(0) and v(0).

(14)

Proof: The stability of the closed-loop system can be
studied by the Lyapunov function V = £ ([|a|? + [le — &[|?).
Substituting the control law (14) in (10) and (12) leads to

=MD+ Kgla— M 'Cv)u—uy
é=—K(e—6)+Aa+[0,0]" —S(r)(e—9)
Differentiating the Lyapunov function V' yields
V=-a"M'D+Ks+C)a—a M~ 'C(v)uy
—alug+ (e— )7 (—K(e—d) +Aa+[0,0]T).
The time derivative of the reference velocity u, is
iy = A7 (=S(r)R() s + R() B, — K¢)
=—-Ku+a
where
a=A"" (=K ([0,0]" — K(e—38) — S(r)(e —9)))
+ AT (=S(R(W) s + R(v) by)
Applying Young’s inequality with p > 0 it holds
1
(e—d&)TAa < ;(e 8T (e—8)+paA%

and thus the time derivative V can be rewritten as
V<" (MY D+ Ky+Cv)] — K +pA?)a
—a" (M~'C(v)ug +a)a

—(e— o) <<K—i) (e—d)—[O,v]T).

Denote A = M~}D+ K+ C(v)] — K + pA? and assume
that v is small enough for A to be positive definite. Then,
Vv < 0 when

&)l > [[ATH[IM T Cv)ug + al

Ie—5>HK”ﬂ<;M—5I+vO

and therefore, the system is input-state stable with respect to
the inputs uy and a. [ ]

V. SIMULATION RESULTS

In this section, several simulation results are presented
to show the performance of the control strategy proposed
in this paper. First, a group of six robots, two leaders and
four followers are considered. The control strategy defined
in Fig. 1 is applied, such that the followers modeled by
(1) are governed by control law (5) and the virtual agents
compute the adaptive controller (3) with the desired distances
d;; = 2, Vi, j. The reference velocity for the leaders is vo =
[1,0]7 and it changes its value at ¢ = 10s to vo = [1,1]T.



Fig. 2. Simulation of six robots achieving a leader-follower formation. The
figure displays three snapshoots. The black dots represent the two leaders
following a straigh line. The four red agents follow the trajectories of the
virtual followers (blue circles) and the formation is manteined during the
motion.

Fig. 2 displays the trajectories (red dashed lines) of the four
followers tracking the virtual agents (blue circles). The initial
positions of robots and virtual agents are arbitrary generated
and the control parameters are 6 = —0.1 and K equal to
the identity matrix. The virtual agents achieve a formation
composed of equilateral triangles and move in the plane
following the leaders motion. The unicycle robots track their
corresponding virtual agents and consequently they keep the
formation. After the abrupt change of the reference velocity
at t = 10s, the robots can be recovered to the formation and
move as a whole again with the new velocity.

Second, a simulation with two leaders tracking the velocity
vo = [0.5,0]7 and a MEDUSA class vehicle which motion
is described by (8) and (7) is shown in Fig. 3. Again, we
apply a decoupled control approach in which a virtual agent
governed by the adaptive control law (3) achieves a triangular
formation with the two leaders. The tracking controller (14)
from Theorem 2 enforces the MEDUSA vehicle to track the
trajectory of the virtual agent. The control parameters are

05 O 20 0
5:—0.1,K:[ 0 0.5]ande:[0 20}

VI. CONCLUSIONS AND FUTURE WORKS

The paper deals with the ALFC problem in which two
robots play the roll of leaders and the followers main-
tain a predetermined rigid formation while moving with
a desired reference velocity that is only known for the
leaders. Based on [1], we propose a new control strategy
composed of two decoupled controllers to solve the ALFC
problem considering unicycle dynamics for the followers.
Each follower robot tracks a virtual agent which is enforced
to keep a triangular formation with its two leading agents.
In the second part of the paper the challenging extension
to marine vehicles is presented. The full dynamics of an
autonomous semisubmerged robotic vehicle of the MEDUSA
class is considered and adding an inner-loop controller to
the previous ALFC strategy the vehicle is able to keep a
triangular formation with its two leaders and adaptively track
the reference leaders’ velocity.

Currently, we are studying the convergence properties of
the proposed control approach using only relative informa-

Fig. 3. Leader-follower formation triangular formation with two leaders
(blak dots) and one the MEDUSA vehicle as follower (red agent). The
figure displays three snapshoots, the initial conditions and two time instants
at ¢ = 15s and ¢ = 30s. The red dashed line represents the trajectory of
the MEDUSA traking the virtual follower (blue circle).

tion between the robots. In future research, we aim to extend
this work with a view to using only range measurements to
compute the multiple vehicle formation control laws. The
application of network localization methods based on Eu-
clidean distances matrices will be exploited for this purpose.
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