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In the last two decades, significant improvements in materials, computing power of

microcontrollers, miniaturization of sensors, versatility of communication, and high-density

energy storage have revolutionized the design and capabilities of Unmanned Aerial Vehicles

(UAVs). These multiple fundamental advances have broadened the range of missions involving

a single UAV, and have truly enabled the execution of cooperative multi-UAV operations.

Besides advancing multiple aerodynamic designs of traditional fixed-wing and helicopter

aircraft, a new class of vehicle appeared — the multirotor UAV. Multirotor UAVs feature multiple

rotating propellers located at the end of fixed arms and are capable of independent control of

speed of each rotor-propeller combination. Simplicity of the mechanical design that avoids the

complexity of swash plates and the associated control challenges, resulted in a vertical take-off
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and landing class UAV. Its capability of hovering still in the air, its small size, low cost, and

high agility, make this aircraft especially interesting asa research and development platform.

Autonomous flight of multirotor vehicles is an extremely challenging topic from a

theoretical and practical standpoint, with far reaching implications in scientific and commercial

mission scenarios. For this reason, in the past years the topic has been the subject of considerable

research and development effort, mainly for what concerns state estimation and sensor fusion

[1]–[3], vehicle’s design [4], [5], and motion planning andcontrol [6]–[12]. The aim of this work

is to present an integrated framework that solves the cooperative mission planning, coordinated

motion control, and collision avoidance problems. In the remainder of this article, it is assumed

that the vehicles are equipped with solutions that provide knowledge of the vehicles’ states, as

well as perception of external objects within a given detection range.

Research on autonomous operation of teams of cooperating multirotors is particularly

extensive [7], [13]–[15]. The literature is mainly dividedinto two categories:centralizedand

decentralizedcooperative strategies. The former refers to the case in which all of the vehicles are

driven by a central computer. The latter, instead, assumes that each UAV runs its own planning

and control algorithms, and is thus able to autonomously react to other vehicles’ behavior and/or

unforeseen events to safely achieve a common goal. For representative work in this area the reader

is referred to [13], [16], [17] and references therein. Whendealing with small multirotor UAVs,

often equipped with CPUs with limited capabilities, ahybrid strategy, that is a combination of

centralized and decentralized solutions, can be applied. This article presents a hybrid setup, where

a central unit is responsible for the mission planning, and communicates with the vehicles before

the beginning of the mission. Then, decentralized controllers embedded onboard the vehicles
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ensure that the mission is accomplished in a safe manner by exchanging information with each

other. In this sense, the hybrid controller described here is more robust than purely decentralized

solutions, as the centralized planning phase is not affected by faults in the communication

network; moreover, the mission execution is safer with respect to purely centralized solutions,

since the decentralized control solution allows each vehicle to directly react in a timely fashion

to other vehicles’ failures and potentially hazardous maneuvers, without having to communicate

with a central station.

When dealing with decentralized and hybrid cooperative controllers, the control designer

needs to keep in mind that the performance of the overall system largely depends on the ability

of the fleet to exchange information in a timely and reliable manner. Therefore, the quality of

service of the supporting communication network plays a crucial role. In many scenarios the

flow of information among vehicles may be severely restricted by the nature of the supporting

communication network. As a consequence, no vehicle may be able to communicate with the

entire fleet, and the amount of information that can be exchanged may be limited.

Another issue that must be taken into consideration in multiple UAVs missions is safety,

which in the context of this article is regarded as the capability of each UAV to be able to

avoid unpredicted static and dynamic obstacles in the airspace, and at the same time guarantee

a minimum separation distance to the other vehicles involved in the cooperative mission. When

a dynamic obstacle, for example an uncooperative UAV, enters the airspace of operation without

its presence having been taken explicitly into account during the the trajectory-generation phase,

sense and avoid technologies are necessary in order to detect and avert potential collisions. The

problem of collision avoidance has been widely explored in the robotics and controls community.
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A significant amount of this research is covered by velocity-obstacle (also known as collision-

cone) [18]–[20] and artificial potential field based approaches [21]–[23]. A key advantage of

these methods is their simplicity. However, they often ignore vehicle dynamics, and are hard

to extend to multi-vehicle coordinated missions, where apart from collision avoidance, time-

coordination between vehicles may be critical. Lately, rapidly exploring random trees [24], [25]

based methods have been used for trajectory planning (or replanning), such that vehicle dynamics

are also satisfied. In multi-vehicle operations, while performing escaping maneuvers to avoid

obstacles, the presence of other vehicles in the fleet must also be taken into account. Namely,

collision avoidance maneuvers must not interfere with the trajectories of the other UAVs in the

team. Motivated by the challenges described above, this work addresses the problem of safely

coordinating a fleet of multirotor UAVs in the presence of communication constraints and static

and dynamic obstacles.

Executing Safe Cooperative Path-Following Maneuvers

The cooperative missions considered in this article require that each vehicle follow a

feasible collision-free path, and that all vehicles arriveat their respective final destinations

at the same time, or at different times so as to meet a desired inter-vehicle schedule, while

avoiding unknown moving (or static) objects. Successful completion of the above mentioned

mission can be achieved by combining strategies fortrajectory generation, cooperative path

following, andcollision avoidance. The general framework presented is depicted in Figure 1. In

the adopted framework, the integration of these three motion-planning and control modules can be

summarized as follows: first, a (real-time) trajectory-generation algorithm produces a set of spatial
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paths and speed profiles that account for initial and final conditions, vehicle dynamics, spatial and

temporal coordination constraints, and inter-vehicle safety requirements; second, a cooperative

path-following algorithm enables the UAVs to follow the desired paths while adjusting the speed

of the vehicles to ensure coordination; and third, a collision-avoidance algorithm modifies —on

the fly— the spatial paths and/or the speed profiles to avert a possible collision when an obstacle

is detected.

The methodology developed is based on three key ideas. First, the trajectory-generation

problem is solved by adopting a geometric approach. In particular, the use of a special class

of curves, namelyPythagorean Hodograph B́ezier curves, allows for the efficient computation

of trajectories that are deconflicted either in space or in time. Moreover, this class of curves

is particularly useful to solve the collision-avoidance problem, as they allow for fast online

reshaping of trajectories. Second, the use of path-following control techniques —in contrast to

trajectory-tracking methodologies— allows the spatial and temporal assignments of the mission

to be solved independently. This flexibility achieved by reparameterizing the trajectories with

a suitably defined variable, referred in this article to asvirtual time. With this formulation,

the rate of progression of virtual time can be used as an extradegree-of-freedom to achieve

vehicle coordination. Third, the control architecture exhibits a multi-loop structure in which the

multirotors are assumed to be equipped with an inner-loop controller autopilot which stabilizes

the vehicle dynamics. Then, guidance outer-loop controllers are designed to control the vehicle

kinematics, providing cooperative path-following and collision-avoidance capabilities.

The article at hand is strongly rooted in past research results [26]–[32]. Three methods

for mission planning, execution, and collision avoidance,already published in conference and
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journal articles, are joined in a single work, and presentedas an integrated solution to the safe

cooperative motion control problem. The purpose of this article is to describe the integration of

these methods, how they intertwine with each other, and the benefits that their combination offers

to a broad family of applications. In what follows, the overall control architecture is discussed

with the help of a specific example, with the understanding that the general framework can be

employed in a wider class of cooperative missions. Additional illustrative examples and case

studies can be found in [27], [29], [30], [33]

A motivational example: coordinated road search

The example at hand is depicted in Figure 2. Three multirotorUAVs, denoted as UAV1,

UAV2, and UAV3, equipped with cameras, are tasked to inspect the road illustrated in Figure

2b from point A to point B. Initially, the UAVs are hovering attheir initial positions. First, the

trajectory-generation algorithm computes threetransition paths, which start at the vehicles’ initial

positions, and end at specific desired locations. Additionally, the algorithm generatesroad search

paths, which follow the road to allow the vehicles to inspect the desired area. The transition

and road search paths need to be deconflicted and have to satisfy the dynamic constraints of the

vehicles. Further, the position and speed of each UAV at the end of the transition paths need

to coincide with the position and speed at the beginning of the road search paths, respectively,

to allow for a continuous progression of the mission. Second, the cooperative path-following

algorithm enables the UAVs to follow the paths, and at the same time enforces the mission’s

temporal constraints. Coordination along the transition paths ensures that the vehicles arrive

at the final destination at the same time with desired speed profiles, and ensures inter-vehicle

collision avoidance. Coordination along the road search paths guarantees overlapping of the
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fields of view of the three cameras, as emphasized by Figure 2a. While the mission unfolds, the

collision-avoidance algorithm allows the vehicles to avert possible collisions with obstacles that

interfere with the trajectories of the UAVs.

Finally, it is possible that new points of interest appear that need to be inspected. This is

the case for UAV3, which is required to deviate and inspect a secondary road. After inspection,

the vehicle re-converges to the original road search path synchronizing with the rest of the

fleet. This last part highlights the importance of the use of multiple cooperative vehicles in

such mission scenarios. Moreover, it brings to the reader’sattention the benefits of employing

cooperative control algorithms that —like the one presented in this article— do not necessarily

lead to swarming behaviors.

Cooperative Trajectory Generation

A key enabling element for the realization of these cooperative missions is the availability

of efficient cooperative planning strategies that can be implemented onboard the vehicles.

A planning algorithm has to work within a complex set of constraints, and (near) real-time

generation of trajectories is desired to allow the vehiclesto replan their trajectories, if necessary.

Typically, multirotor UAVs carry low power-consumption processors with limited memory in

order to save weight for maximum payload and flight endurancecapabilities. Therefore, the

planning algorithm has to be computationally efficient. It is in this spirit that this article presents a

solution that allows for efficiently generating trajectories for multiple cooperating vehicles, based

on the following key ideas:(i) the desired trajectory is generated for the entire mission without

discretizing the trajectory temporally or spatially;(ii) the desired trajectory is decomposed into
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a geometric and a temporal element; and(iii) a specific family of polynomials is used that have

favorable geometric and mathematical properties.

A stringent requirement, especially for multi-vehicle missions, is that the trajectories

are collision-free with each other and, of course, with (static and dynamic) obstacles. With

the adopted approach, inter-vehicle safety distances are guaranteed during the planning phase,

through eithertemporalor spatialseparation. Moreover, the desired trajectories that are generated

within this framework, also allow for an elegant way to avoidpotential collisions with obstacles

during the execution of the mission, as shown in the discussion on collision avoidance.

Before going into details of the adopted framework, a formulation of the three-

dimensional trajectory-generation problem for a general setting is given first. The objective here

is to generateN trajectoriespd,i(td)

pd,i : [0, t
f
d,i] → R

3 i = 1, 2, . . . , N , (1)

where td ∈ [0, Td ], with Td := max{tfd,1, . . . , t
f
d,N}, is the time variable (used during the

trajectory-generation phase and distinct from the actual mission time t that evolves as the

mission unfolds),tfd,i ∈ R
+ are the individual final mission times of the vehicles obtained

during the planning phase, andN is the number of vehicles. Note that the mission for vehiclei

has terminated for alltd > tfd,i. For simplicity, this article only considers missions where

simultaneous time-of-arrival of the vehicles is required,and therefore,tfd,1 = . . . = tfd,N = Td.

Together, the trajectoriespd,i(td) minimize a global cost functionJ(·), are collision-free, and

satisfy boundary conditions, spatial constraints, and temporal constraints. Examples of commonly

used cost functions include total path length, total mission time, and speed deviation from initial

speed, to mention but a few. Spatial and temporal constraints can be mission-specific, such as
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simultaneous arrival of the vehicles or endurance constraints, but can also be related to the

dynamics of the vehicles, for example adhering to the maximum speed and acceleration of the

multirotors.

Instead of generating the trajectories explicitly as a function of time, as given by

Equation (1), each trajectory is decomposed into aspatial path, a geometric element with no

temporal specifications, and atiming law associated with this path, which captures the temporal

assignments of the trajectory. In fact, the timing law allows us to independently adjust the speeds

of the vehicles, without altering the spatial paths along which these vehicles travel. In other

words, different speed profilesvd,i(·) can be assigned to a given spatial pathpd,i(·) by changing

the parameters of the timing law. In terms of the optimization problem presented subsequently,

this feature translates to increasing the number of optimization variables,without increasing

the degree of the polynomials that describe thespatial paths. The concept of decoupling the

geometric curve and the timing law in order to adjust the spatial path and the speed profile

independently was first described in [34], and later appliedin [35].

The first step in decomposing the trajectory is to parameterize the spatial pathspd,i(·)

by a dimensionless variableζi ∈ [0, 1]. In general, these spatial pathspd,i(ζi) are described by

polynomials since evaluating polynomials only requires addition and multiplication, which are

arithmetic operations that can be performed efficiently by digital computers. In the approach

presented, the spatial paths are described byPythagorean Hodograph (PH) Bézier curves. The

main motivation for using PH Bézier curves instead of polynomials expressed in the monomial

(or power) basis is driven by:(i) the existence of many computationally efficient algorithms

designed for Bézier curves, such as algorithms to efficiently compute the minimum distance
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between two Bézier curves [36]; and(ii) the existence of a closed-form solution for the arc

lengths of the paths. The use of Bézier and PH Bézier curvesfor path-planning and trajectory

generation has been reported in several works [37]–[39].

Hence, the spatial paths are described byquintic PH Bézier curves, that is, fori =

1, . . . , N

pd,i(ζi) =
5

∑

k=0

p̄i,k b
5
k(ζi) , (2)

wherep̄i,k ∈ R
3 are the control points of the spatial pathpd,i(ζi), andb5k(·) are the (up to degree 5)

Bernstein basis polynomials. The choice for working with PHBézier curves of degree 5 may

seem restrictive, as it limits the class of trajectories that can be generated. It is, however, justified

based on several considerations. First, increasing the degree of the spatial PH Bézier curves

offers more flexibility in satisfying the constraints, but can potentially result in an increased

computational cost. Second, PH Bézier curves of higher degree may exhibit unknown undesirable

behavior and characteristics, since they have not been extensively explored yet. On the contrary,

the properties and behavior of the quintic PH Bézier curvesare extensively studied in, for

example, [40], [41]. Finally, the quintic PH Bézier curvesare the simplest PH Bézier curves that

allow constructing smooth curves with given endpoints and derivatives [40], where the latter are

boundary conditions on interest common to any general trajectory-generation problem.

Next, in order to reconstruct the spatial trajectorypd,i(td), the dimensionless parameterζi

needs to be related to timetd. This relationship is provided by the timing lawθi(·). The timing

law dictates how the variableζi for the ith vehicle evolves with the time variabletd and, as such,

affects the desired rate at which the vehicle travels along the planned path. Hence, the timing

law offers a means to meet the temporal requirements of the mission. Let the timing lawθi(·)
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be given through a dynamic relation of the form

θi(td) =
dζi
dtd

, (3)

whereθi(td) is a smooth positive polynomial function. In order to preserve the computationally

attractive properties within the trajectory-generation framework, the timing lawsθi(td) are defined

by quadraticBézier curves:

θi(td) =
2

∑

k=0

θ̄i,k b
2
k(td) , (4)

where θ̄i,k ∈ R are the control points of the timing lawθi(td). The parameter for any Bézier

curve is defined on the interval[0, 1] and, therefore, the time variable for the timing law needs to

be properly scaled byTd. This concept is explained in more detail in [32]. However, for the sake

of brevity, the parameter of the timing law is denoted bytd throughout the rest of the article.

Note that it is highly desirable that an analytical expression for the functionζi(td) exists,

as the mapζi(td) permits a one-to-one correspondence between the time variable td and the

parameterζi. As such, the desired positionpd,i(ζi(td)) of the ith vehicle at timetd can be

obtained through Equation (2). With the timing lawθi(td) defined as in Equation (3), the map

ζi(td) is given by the integral

ζi(td) =

∫ td

0

θi(τ)dτ , (5)

which is also a Bézier polynomial and of degree3.

Given the problem formulation above, the trajectory-generation framework can be cast

into a constrained optimization problem where a set of desired trajectories are obtained by
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minimizing the cost functionJ(·). The optimization problem can be formulated as follows:

min
Ξi×...×ΞN

J(·)

subject to boundary conditions,

dynamic constraints of the vehicles,

mission-specific constraints,

minimum separation constraints,

(6)

whereΞi represents the vector of optimization parameters for theith vehicle, andJ(·) is a

given cost function that may include terms related to mission-specific goals. The optimization

parameters are variables that uniquely determine the control points p̄i,k and θ̄i,k, which

characterize the spatial pathspd,i(ζi) and timing lawsθi(td), given in Equations (2) and (4),

respectively. The expressions that are used to compute the control points from a given vector of

optimization variablesΞi are presented in [32]. An example of a cost functionJ(·) could be the

sum of the arc lengths. In this case, it can be verified thatJ(·) is a function of the optimization

variables that determine the control pointsp̄i,k.

Boundary conditions and feasibility constraints

This section presents the set of constraints that a given pair of spatial pathpd,i(ζi) and

timing law θi(td) must satisfy in order to be considered a feasible trajectoryfor vehiclei. First,

in the problem of trajectory generation for autonomous vehicles, typically the initial and final

conditions of the trajectory, here referred to as boundary conditions, are prespecified. Hence, for
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the ith vehicle the following boundary conditions are given:

pd,i(ζi = 0) = pi
i , γi(ζi = 0) = γ i

i , ψi(ζi = 0) = ψi
i , vd,i(td = 0) = vi

i ,

pd,i(ζi = 1) = pf
i , γi(ζi = 1) = γf

i , ψi(ζi = 1) = ψf
i , vd,i(td = Td) = vf

i ,

(7)

wherepi
i, γ

i
i, ψ

i
i, andvi

i are the initial position, flight-path angle, course, and speed, respectively,

while pf
i, γ

f
i, ψ

f
i, andvf

i are the specified quantities at the final endpoint of the trajectory.

Flyable trajectories

Flyable trajectories are trajectories that comply with thedynamic constraints of the

vehicles and, therefore, can be closely followed if the vehicles executing the mission are equipped

with flight control systems that enable accurate tracking ofthe reference commands. Trajectories

that are not flyable inevitably result in path-following errors and may jeopardize the completion

of the mission or, in the worst case, lead to a loss of a vehicle.

It is of common practice to relate dynamic constraints of thevehicles to geometric

properties of the spatial path. However, this approach has several severe drawbacks, of which

the most detrimental one is that straight lines and curves with inflection points, for which the

torsion τ along these curves is unbounded, are ruled out as candidate spatial paths [32]. The

approach that is adopted here is to derive expressions for the kinematics of the vehicles along

a given trajectory, characterized bypd,i(ζi) and θi(td), and subject these expressions to bounds

that can be obtained from the dynamic constraints of the vehicles. It is not surprising, and in

fact desirable, that these equations can be formulated in B´ezier form.

Multirotor UAVs are extremely agile aerial vehicles, and their dynamic constraints are

solely determined by the available thrust provided by the rotors. For example, multirotors are

13



capable of hovering, and can change their attitude practically at any rate by tilting the total

thrust vector. Therefore, the only dynamic constraints of amultirotor are given by the maximum

speedvmax and maximum total accelerationamax, which can be determined from the maximum

available thrust throughout the flight envelope. Hence, thedynamic constraints of multirotors

can be specified as

vd,i(td) ≤ vd,max < vmax , ad,i(td) ≤ ad,max < amax . (8)

Note that during the trajectory-generation phase (in particular, in the optimization problem of

Equation (6)), the more restrictive boundsvd,max and ad,max are used so as to allow the time-

coordination and collision avoidance algorithms to adjustthe speeds of the vehicles, if necessary,

in order to maintain coordination between the multirotors or to avoid potential collisions with

obstacles, respectively. The planning algorithm must ensure that the generated trajectories do not

demand maneuvers that exceed the bounds given in Equation (8) on the speed and acceleration

profiles. Hence, it is necessary to derive the speed and acceleration profiles along a given

trajectory. Given the timing lawθi(td), the desired speed profilevd,i(td) can be found by

differentiating the spatial pathpd,i(ζi) with respect to timetd:

vd,i(td) = ‖p′
d,i(ζi(td))‖θi(td) , (9)

wherep′
d,i(ζi(td)) is the first derivative ofpd,i(ζi(td)) with respect toζi. It can be verified that

vd,i(td) is a Bézier polynomial [32], due to the use of PH Bézier curves.

In general, the equation for the acceleration profilead,i(td) does not permit a Bézier

polynomial form. This fact becomes apparent when taking a closer look at the expression for

the total accelerationad,i(td)

ad,i(td) =

∥

∥

∥

∥

d2pi(ζi(td))

dt2d

∥

∥

∥

∥

=

∥

∥

∥

∥

p′
d,i(ζi(td))

dθi(td)
dtd

+ p′′
d,i(ζi(td))θ

2
i (td)

∥

∥

∥

∥

, (10)
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where p′′
d,i(ζi(td)) is the second derivative ofpd,i(ζi(td)) with respect toζi. It is clear, that

the right-hand side of Equation (10) does not result in a polynomial as it involves a square

root arising from the 2-norm. To preserve the Bézier polynomial structure in the framework,

the expression fora2d,i(td) is derived and evaluated againsta2max. Summarized, in order for the

generated trajectories to meet the dynamic constraints of the vehicles, Equations (9) and (10)

are required to satisfy the following bounds, which are equivalent to the dynamic constraints

given in Equation (8):

vd,i(td) ≤ vd,max < vmax , a2d,i(td) ≤ a2d,max < a2max . (11)

Note that scaling byTd is omitted in Equations (9) and (10). The reader is referred to [32] for

the complete equations.

Feasible trajectories

Feasible trajectories are flyable trajectories that are also spatially deconflicted in order to

avoid inter-vehicle collision and, thus, ensure safe simultaneous operation in a common airspace.

Deconfliction between trajectories can be guaranteed through spatial separation(the spatial

paths are separated in space) ortemporal separation(the vehicles are separated in time). While

temporal separation is more computationally efficient, it relies heavily on the performance of

a time-coordination algorithm, which, in turn, depends on the quality and robustness of the

communication network over which the vehicles exchange information with each other. On the

other hand, spatial separation can be employed in situations where the communication network

is faulty or jammed, and coordination cannot be guaranteed.The approach presented in this

article offers the mission planner the flexibility to generate trajectories that are either spatially
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or temporally deconflicted. A more in-depth discussion on both strategies can be found in [32].

It is here where the presented trajectory-generation framework distinguishes itself from

other novel approaches to path planning that discretize thetrajectories either in space or in

time. When discretizing the trajectories in one way or another, spatial separation between the

trajectories can be ensured at the discretization nodes, but unfortunately, deconfliction is not

guaranteed in between the nodes. To avoid violation of the minimum separation requirement in

between the nodes, the number of nodes can be increased. However, increasing the number of

nodes considerably affects the spatial and temporal scalability of the method. For example, if

the number of nodes increases proportionally, then the number of deconfliction constraints alone

increases quadratically. The authors of [42] and [43] statethis issue as one of the limitations of

their approaches, where the trajectories in both methodologies are discretized in time.

In order to ascertain whether two paths are sufficiently deconflicted, it is essential to

compute the minimum distance between the two curves. As discussed earlier, Bézier curves

are completely determined by a finite number of control points and are contained within the

convex hull of these control points. These properties make Bézier curves extremely suitable to

describe spatial paths, for the minimum distance between two Bézier curves can be computed

efficiently [36], without resorting to any kind of discretization of the curve. Therefore, not

only are the trajectories guaranteed to be collision-free by formulating the trajectory-generation

framework in terms of Bézier polynomials; moreover, trajectory generation is achieved at an

extremely high computational efficiency. In this article, generation of collision-free trajectories

is demonstrated by imposing temporal separation for the example of a cooperative mission,

as described in the previous section. For illustrative examples of deconfliction through spatial
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separation, the reader is referred to [26], [29], [31], [32].

A minimum spatial clearanceE has to be ensured between all pairs of generated

trajectories for the set of trajectories to be collision-free. In the case when temporal separation is

preferred over spatial separation, deconfliction is ensured if, for any time td, the minimum

distance between theith and jth vehicle is greater than or equal to this minimum spatial

clearanceE. Therefore, the pathpd,i(ζi) has to be re-parameterized by the time variabletd. This

task can be performed efficiently since the trajectories arerepresented by Bézier polynomials,

and the composition of functions is a Bézier polynomial on its own. It can be easily verified

thatpd,i(td) is a degree15 spatial PH Bézier curve. Hence, thetrajectory for the ith vehicle is

described by

pd,i(td) =
15
∑

k=0

p̃i,kb
15
k (td) ,

where p̃i,k are the control points, which can be determined using a recursive algorithm for

computing the control points of the composition of two Bernstein polynomials. Then, the

temporal separation between theith andjth vehicle is defined as

min
i,j=1,...,N

i 6=j

∥

∥

∥

∥

∥

15
∑

k=0

(p̃i,k − p̃j,k) b
15
k (td)

∥

∥

∥

∥

∥

2

≥ E2
d , for all td ∈ [0, Td] (12)

whereEd, that is used during the trajectory-generation phase, is larger than the actual required

minimum distanceE, so as to allow for path-following errors or deviations fromthe desired

paths necessary to prevent a potential collision. Notice that the lefthand side of Equation (12) is

equivalent to finding the minimum distance between a Béziercurve and the origin[0, 0, 0]⊤

and, therefore, Equation (12) can be efficiently evaluated by using the minimum distance

algorithm [36]. The importance of the algorithm to efficiently evaluate Equation (12) cannot

be overemphasized here.
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The constrained optimization problem presented in Equation (6) has now been re-

formulated as a framework that specifically uses quintic PH Bézier curves to represent the

spatial paths, and quadratic Bézier polynomials for the timing laws. The constrained optimization

problem belongs to the class of semi-infinite optimization problems [44]. Due to the non-convex

formulation, the solutions are in general suboptimal.

Illustrative example

What follows is a demonstration of the efficacy of the developed trajectory-generation

framework. Desired trajectories are generated for the multirotors executing the transition phase

of the mission, described earlier as an example of a typical multi-vehicle cooperative mission.

During the planning phase, a desired trajectory for each UAVis generated so as to cooperatively

execute the transition from vehicle launch to the start of the road search mission. The numerical

values for the boundary conditions for this part of the mission are given in Table I, along with

the dynamic constraints for each individual multirotor. The cooperative trajectory-generation

framework is implemented in MatlabR© on a desktop computer with IntelR© CoreTM i5-3470 CPU

3.20GHz, 8GB of RAM and running 64-bit Windows 7. The number of optimization variables is

4N +1, while the number of inequality constraints is1
2
N(N − 1) + 2N . The latter includes the

evaluation of the minimum distance between1
2
N(N − 1) pairs of trajectories. The computation

time taken to generate the set of trajectories for this particular example, whereN = 3, is 12.4 s.

Figure 3a shows the flight paths for transition phase. The separation between the vehicles

is presented in Figure 3b and the separations between the paths are given in Figures 3c-3e. Recall,

that deconfliction is enforced in this mission by temporal separation. Therefore, although the
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minimum spatial separations between the paths are less thanthe required minimum distanceEd =

2 m during the planning phase, as shown in Figures 3c-3e, the temporal separation requirement

is not violated, and the algorithm ensures that the vehiclesare sufficiently separated from each

other at any point in timetd (Figure 3b). Lastly, from Figure 4 it is clear that the generated

desired trajectories do not violate the maximum permissible speed and total acceleration.

Cooperative Path Following of Teams of Multirotor UAVs

This section presents the cooperative control framework that allows a fleet of vehicles

to execute coordinated, collision-free maneuvers. In the adopted framework, a path-following

algorithm —implemented onboard the UAVs— is responsible for making each vehicle follow

a virtual target vehicle running along the spatial path, while a distributedcoordination control

law adjusts the rate of progression of this virtual vehicle so as to coordinate the entire fleet. One

of the main benefits of this framework lies in the fact that thespeed of the vehicles is adjusted

online to synchronize the UAVs, as opposed to the coordinated trajectory-tracking approach

where the coordination task is solved offline, and thus the control algorithm cannot adapt to

external disturbances or vehicles’ tracking errors.

The cooperative path-following control problem is solved in three main steps: the first step

consists of implementing a reference vehicle, avirtual target, moving along the path computed

by the trajectory-generation algorithm described earlier. This objective is achieved by introducing

a new parameter,virtual time, denoted here asγi, and letting the desired trajectory to be followed

by the multirotor UAVs bepd,i(γi(t)), where the subscripti refers to theith UAV involved in

the cooperative mission; the second step consists of makingeach UAV follow thevirtual target.
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This step, referred to as path following, reduces to drivinga suitably defined error vector to zero

by using the vehicle’s control inputs, for example, angularrates and total thrust [28], or angles

and vertical speed [27]; finally, to enforce the temporal constraints of the mission, a consensus

problem is formulated, in which the objective of the fleet of vehicles is to reach agreement on

some distributed variables of interest that capture the objective of the time-coordination control

problem.

In the remainder of this section, the three steps mentioned above are described in detail,

and a solution to the cooperative control problem is given. An overview of different approaches

used for the derivation of cooperative path-following algorithms can be found in “Cooperative

Path Following”.

Following a virtual target

Given the trajectorypd,i(td) produced by the trajectory-generation algorithm described

in the previous section, and letting thevirtual time γi(t) be a function (yet to be defined) that

relates actual (clock) timet to mission planning timetd:

γi : R
+ → [0, Td] , for all i = 1 , ... , N , (13)

then thevirtual target’s position, velocity, and acceleration, which are thecommandsto be

followed by theith UAV at time t, are defined as

pc,i(t) = pd,i(γi(t)) , vc,i(t) = ṗd,i(γi(t), γ̇i(t)) , ac,i(t) = p̈d,i(γi(t), γ̇i(t), γ̈i(t)) . (14)

With the above formulation, iḟγi(t) ≡ 1, then the speed profile of the virtual target is equal to

the desiredspeed profile chosen at the trajectory-generation level. More precisely, assume that
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γ̇i(t) = 1 , for all t ∈ [0, Td], with γi(0) = 0. This assumption implies thatγi(t) = td for all

t. In turn, the following equalities hold

pc,i(t) = pd,i(γi(t)) = pd,i(t) = pd,i(td) ,

which, in other words, means that the desired and commanded trajectories coincide for all time,

and the speed profile of the virtual target coincides with thedesired speed profile chosen at

trajectory-generation level. On the other hand,γ̇i > 1 (γ̇i < 1) implies a faster (slower) execution

of the mission. This statement becomes evident when expressing the speed of the virtual target

in terms of the derivative of the desired trajectorypd,i(td) as follows:

∥

∥ṗc,i(t)
∥

∥ = ‖ṗd,i(γi(t), γ̇i(t))‖ =

∥

∥

∥

∥

dpd,i(γi(t))

dγi(t)

dγi(t)

dt

∥

∥

∥

∥

=

∥

∥

∥

∥

dpd,i(γi(t))

dγi(t)
γ̇i(t)

∥

∥

∥

∥

. (15)

As discussed later in this article, the dynamics ofγi(t) (actually its second derivativëγi(t)) can

be explicitly controlled and used as an extra degree-of-freedom to achieve time coordination.

Therefore, sincëγi(t) is governed by some control law, yet to be defined, the dynamicconstraints

on the speed and acceleration of the vehicle, as well as the bounds given in (8) must be considered

in order to derive feasibility limits oṅγi(t) and γ̈i(t). These limits can be determined using

Equation (15), wherėpd,i(γi(t), γ̇i(t)) = d(pd,i(γi(t)))/dt denotes the velocity of the virtual

target, corresponding to the commanded velocity vector to be tracked by the UAV at timet.

Hence,‖ṗc,i(t)‖ is limited to the physical speed constraints of the vehicle,that is,

‖ṗc,i(t)‖ ≤ vmax . (16)

Using (15), these speed constraints result in the followinginequalities:

γ̇maxvd,max ≤ vmax . (17)

Equations (16) and (17) relate the limits of the commanded speed profile‖ṗc,i(t)‖ to the limits

of γ̇i(t). Similar limits can be derived for the commanded acceleration profile‖p̈c,i(t)‖. In fact,
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by differentiating Equation (15), and imposing the following upper bound on the commanded

acceleration

‖p̈c,i(t)‖ ≤ amax , (18)

similar inequalities as (17) can be found for the acceleration andγ̈i(t):

γ̈maxvd,max+ γ̇2maxad,max ≤ amax . (19)

Equations (18) and (19) relate the limits of the commanded acceleration profiles‖p̈c,i(t)‖ to the

limits of γ̇i(t) and γ̈i(t). In other words, Equations (17) and (19) give an explicit relationship

between the dynamic constraints imposed at the trajectory-generation level, namelyvd,max and

ad,max in Equation (8) (which, in turn, determine the geometric path and timing law given in

Equations (2) and (4), respectively), to the saturation limits of the dynamics of virtual time,

namelyγ̇max and γ̈max.

With this setup, the objective is to derive a path-followingcontroller to ensure that the

vehicles converge to their respective virtual targets.

To formally state the path-following problem, letpi(t) ∈ R
3 be the position of the center

of mass of theith multirotor. Sincepc,i(t) describes the commanded position to be followed by

the ith vehicle at timet, the position and velocity error vectors are defined as

ep,i(t) = pc,i(t)− pi(t) ∈ R
3 , ev,i(t) = vc,i(t)− ṗi(t) ∈ R

3 . (20)

Then, the path-following control objective reduces to thatof regulating the path-following errors

defined in Equation (20) to a neighborhood of zero. Notice that this approach leaves the yaw

angle of the vehicles as an extra-degree of freedom, which can be adjusted without affecting the

control framework.
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In [27] and [28] the authors present two solutions to the path-following problem. In

particular, in [28] it is assumed that the vehicle is equipped with an autopilot capable of tracking

angular rates and total thrust commands. Then, it is shown that the path-following controller

drives the path-following error to a neighborhood of zero even in the case of non-ideal tracking

performance of the autopilot. A similar result is obtained in [27], where the authors present a

path-following control law for AR.Drone UAVs, equipped with control systems for Euler-angle

and vertical-speed command tracking.

Coordination among multiple vehicles

This section addresses the time-coordination problem of a fleet ofN multirotor UAVs.

In what follows, first, the objective of time coordination isdefined; second, a set of assumptions

for the supporting communication network is formulated that ensures coordination; finally, the

time-coordination error vector is presented, and a formal statement of the problem at hand is

given.

Definition of the coordination objective

Recall that the position of the virtual target assigned to the ith vehicle at timet is given by

pc,i(t) = pd,i(γi(t)), wherepd,i(·) is the geometric path obtained from the trajectory-generation

algorithm, and the path parameterγi(t) is the virtual time defined in (13). The virtual time and

its first time derivative play a crucial role in the time-coordination problem. In fact, because the

commanded path assigned to each vehicle is parameterized byγi(t), then if

γi(t)− γj(t) = 0 , for all i, j ∈ {1, . . . , N} , i 6= j , (21)
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at time t, all the virtual targets are coordinated. In addition, if

γ̇i(t)− γ̇d(t) = 0 , for all i ∈ {1, . . . , N} , (22)

then the virtual targets run along the paths at the desired rate of progressioṅγd ∈ R. The variable

γ̇d(t), shared among the vehicles, can be used to adjust the rate of progression of the mission.

For example, ifγ̇d(t) ≡ 1, and Equations (21) and (22) are satisfied for all the vehicles, then

the mission is executed at the pace originally planned in thetrajectory-generation phase. On the

other hand,γ̇d(t) > 1 (or γ̇d(t) < 1), results in a faster (or slower) execution of the mission.

As discussed in the next section, the use of the termγ̇d(t) becomes important when external

unforeseen events demand adjustments to the nominal execution of the mission, such as moving

objects obstructing the flying zone for a limited time frame,requiring the vehicles to modify their

speed profiles to avoid collision. However, in this section only the time-coordination problem is

discussed, anḋγd(t) is regarded as a reference command, rather than a control input. Finally,

Equations (21) and (22) capture the objective of time-coordination, and a control law for̈γi(t)

must be formulated to ensure convergence to this equilibrium.

Communication losses, dropouts, and switching topologies

To achieve the time-coordination objective, information must be exchanged among

the vehicles over a supporting communication network. The information flow as well as the

constraints imposed by the communication topology can be modeled using tools from algebraic

graph theory. The reader is referred to [45] for key conceptsand details on this topic. To account

for the communication constraints imposed by the communication network, it is assumed that

the individual vehiclei exchanges information with only a subset of all vehicles, denoted as
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Ni(t). It is also assumed that the information between vehicles istransmitted bidirectionally,

continuously, and without time delays. Moreover, to minimize the amount of information that

must be interchanged between the vehicles, the UAVs are allowed to exchange only its own

virtual time variable,γi(t), with each other. Finally, it is assumed that the connectivity of the

communication graphΓ(t) that captures the communication network topology of the UAVs

satisfies the following condition [46]

1

NT

∫ t+T

t

QL(τ)Q⊤dτ ≥ µIN−1 , for all t ≥ 0 , (23)

whereL(t) ∈ R
N×N is the Laplacian of the graphΓ(t), andQ ∈ R

(N−1)×N is a matrix such that

Q1N = 0 and Q(Q)⊤ = IN−1, with 1N being a vector inRN whose components are all1.

In Equation (23), the parametersT > 0 and µ ∈ (0, 1] represent a measure of the level

of connectivity of the communication graph. Note that condition (23), hereinafter referred to

as persistency of excitation(PE)-like condition, requires the communication graphΓ(t) to be

connected only in an integral sense, not pointwise in time. As a matter of fact, the graph may be

disconnected during some interval of time or may even fail tobe connected at all times. In this

sense, it is general enough to capture packet dropouts, lossof communication, and switching

topologies.

Time-coordination control

With the above notation, the coordination control problem can be summarized as follows:

consider a set ofN multirotor UAVs equipped with autopilots and path-following algorithms

that enable the vehicles to follow a set ofN commanded trajectoriespc,i(t). Let the vehicles

communicate with each other over a network satisfying the PE-like assumption given in Equation
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(23). Then, the objective of the cooperative control problem is to design feedback control laws

for γ̈i(t) for all the vehicles such that the states defined in Equations(21) and (22) converge to

(a neighborhood of) zero, and such that inequalities (17) and (19) are not violated.

Coordination control law

To solve this problem, let the evolution ofγi(t) be given by

γ̈i = γ̈d − b(γ̇i − γ̇d)− a
∑

j∈Ni

(γi − γj)− ᾱi(ep,i) , (24)

γi(0) = γd(0) = 0 , γ̇i(0) = γ̇d(0) = 1 , (25)

wherea and b are positive coordination control gains, whilēαi(ep,i) is defined as

ᾱi(ep,i) =
v⊤
c,iep,i

‖vc,i‖+ ǫ
,

with ǫ being a positive design parameter, andep,i the position error vector defined in

Equation (20). The coordination control law given in Equation (24) comprises four terms. The

feed-forward term,̈γd, allows the virtual target to follow the acceleration profile of γd (which,

as discussed later, is adjusted by the collision-avoidancemodule). The second term,−b(γ̇i− γ̇d),

forces the virtual target to track the speed profile imposed by γ̇d, which corresponds to the

control objective given in Equation (22). Iḟγd is set to1, then the virtual target converges

to the desired speed profile determined by the trajectory-generation algorithm. The third term,

−a
∑

j∈Ni
(γi − γj), ensures that the virtual target associated with a given UAVcoordinates

its position along the path with its neighbors, as specified by the coordination requirement in

Equation (21). Finally, the fourth term,−ᾱi(ep,i), is a correction term that accounts for along-

track path-following errors. By virtue of this path-following dependent term if, for example, one
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vehicle is far behind the desired position,||ep,i|| 6= 0, then its own virtual target modifies its

speed and waits for it, thus making all the other vehicles involved in the cooperative mission

slow down to maintain coordination. The contribution of thevarious terms of the coordination

control law is illustrated in Figure 5, which shows UAV1, UAV2, and UAV3 coordinating along

the transition paths of the coordinated road search mission. For details on the path-following

controller implemented to perform this simulation, the reader is referred to [28]. At timet = 0,

UAV1 and UAV2 overlap with their respective virtual targets, while UAV3 is positioned far away

from the desired trajectory. When the mission starts, the virtual target associated with UAV3

slows down (̇γ3 < 1) and waits for UAV3 to catch up. Thanks to the coordination algorithm, the

other two virtual targets also slow down, followed by their respective UAVs. Figure 5c shows the

desired speed profiles, the speed profiles of the virtual targets, and the speed profiles of the actual

vehicles. It is important to notice that, once the UAVs reachcoordination, and UAV3 converges

to its virtual target, then the speed profiles of the UAVs converge to the desired speed profiles,

and approach the final positions of the transition paths withspeed equal to4 m/s, as imposed by

the trajectory-generation algorithm. Figure 5 also shows that the initial deceleration due to the

path-following error of UAV3 causes a delay in the mission, which terminates approximately 0.4

seconds after the mission time computed at the trajectory-generation level. Figures 5a and 5b

depict the positions of the UAVs at timest = 13 s andt = 18.3 s, showing that the vehicles arrive

at their final destination at the same time. The UAVs can then proceed along the road search

paths and keep coordinating along them to ensure safety and success of the overall cooperative

road search mission.
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Convergence properties and results

The control law given by Equation (24) ensures that the time-coordination errors

characterized by Equations (21) and (22) converge exponentially to zero in the presence of

an autopilot which exhibits ideal performance [27], [29], [30]. Moreover, it is demonstrated that

the maximum guaranteed exponential convergence rate is given by the sum of the converge rate

of the path-following error and the following term

a

b

Nµ

T (1 + a
b
NT )2

,

which depends on the control gainsa andb, the number of vehiclesN , and the quality of service

of the communication network, characterized by the parametersT andµ. In other words, given

N vehicles and fixed control gains, the performance of the time-coordination algorithm depends

on the amount of information that the UAVs exchange with eachother over time. This result is

supported by Figure 5d, which shows the time history of the coordination error, computed as

√

(γ1 − γ2)2 + (γ1 − γ3)2 + (γ2 − γ3)2 , (26)

when UAV1, UAV2, and UAV3 coordinate along the transition paths. Notice that, for illustration

purposes, the previous equation does not include the errorsγ̇i− γ̇d. However, it has been argued

previously that the speed profiles of the virtual targets converge to the desired speed profiles

(which is, γ̇1, γ̇2, γ̇3 converge toγ̇d = 1), which in turn implies that the speed profiles of the

vehicles converge to the desired speed profiles. In Figure 5dthe error given by Equation (26)

is plotted in two different cases: first, in the case of all-to-all communication between the

three vehicles, and second, in the case where UAV1 communicates with only UAV2, UAV2

communicates with both vehicles, and UAV3 communicates with UAV2 only. As expected, the
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algorithm exhibits better performance in the first case. Additionally, by properly scaling the

control gainsa andb with the number of vehiclesN , the guaranteed rate of convergence reduces

to µ/(4T 2), which indeed implies that the guaranteed performance of the algorithm does not

depend on the number of vehicles involved in the cooperativemission [30]. Finally, it can be

shown that the presented solution ensures stability of the multi-vehicle system in the case of

non-ideal tracking performance of the autopilot [27], [30]. Also in this case it is shown that the

guaranteed performance of the overall control architecture depends on the quality of service of

the communication network and the performance of the autopilot.

In light of these results, it is important to notice that if the desired trajectoriespd,i(td)

satisfy the temporal separation requirement given by Equation (12), then the solution to the

cooperative path-following control problem ensures inter-vehicle safety (which is, the cooperative

vehicles maintain a minimum separation even without knowing each others’ positions). Figure 5b

gives a convenient perspective of the mission at hand, and supports this statement. As highlighted

in the figure, the paths of UAV1 and UAV2 intersect with each other. However, the minimum

spatial clearance at the intersection is maintained in the presence of disturbances, by the

coordination algorithm. As a last comment on this argument,the relationship between autopilot

performance, quality of the service of the communication network, and performance of the

cooperative path-following algorithm, can be judiciouslyused by the control designer to

guarantee inter-vehicle safety throughout the mission. Infact, based on the knowledge of(i)

the quality of service of the communication network, and(ii) the performance of the onboard

autopilot,Ed in Equation (12) can be chosen large enough to guarantee thatthe vehicles never

collide throughout the mission. The efficacy of the described cooperative control framework has

been demonstrated in real flight test indoor scenarios. In particular, the coordinated path-following
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algorithm is implemented, and two AR.Drones are programmedto autonomously perform various

cooperative tasks (for example, synchronized exchange of position, phase-to-phase coordination

on a circular trajectory, dance tango). Videos of the flight tests and simulations can be found in

[47], where the reader can find further details on the experiments.

Collision Avoidance Strategies for Safe Operations

In a real mission scenario, unexpected obstacles could interfere with the UAVs and

obstruct the airspace during a certain time interval. In this case, the vehicles are required

to execute a collision avoidance maneuver to ensure safe operation in the airspace. To be

effective and reliable, a collision avoidance algorithm must take into consideration many

constraints: first, the algorithm must be fast to react to sudden unpredicted hazards; second,

collision avoidance must be guaranteed with minimum exchange of information; third, a collision

avoidance maneuver must not prevent the UAVs from satisfying other mission requirements such

as time-coordination and final position and course; finally,when one vehicle is avoiding an

external obstacle, it must do it in such a way as to also ensureinter-vehicle safety. The collision

avoidance algorithm is based on three key steps, namelydetection, analysis, andavoidance. Here,

the detection algorithm continuously determines whether there is a possible collision based on

information about the obstacle. In case a possible collision is predicted, the analysis step decides

whether it must be avoided through speed adjustment or trajectory replanning. Lastly, depending

on this analysis, either the speed adjustment block modifiesthe progression of the mission, or

the trajectory replanning block redesigns the trajectory to avoid the obstacle. In what follows,

these steps are described in detail.
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Detection

Upon detection of an obstacle, it is assumed that a prediction of its trajectory is available.

The obstacle’s trajectory can be predicted using measurements of current position and velocity of

the object, which can be obtained from onboard sensors (see,for example, [48]). This predicted

trajectory can be updated at any time according to newly available information about the obstacle.

Since this detection algorithm is run repeatedly during themission, it automatically re-adjusts

based on the updated predicted trajectory.

At any time during the mission, for a given predicted trajectory of the obstacle, the

objective of the detection algorithm is to verify whether the obstacle’s trajectory interferes with

the assigned trajectories causing a potential collision. To this end, assume that within a detection

rangeds, that is for

||pc(t)− po(t)|| = ||pd(γ(t))− po(t)|| ≤ ds , (27)

the UAV is able to detect the presence of an obstacle positioned atpo(t). Notice that, for the

sake of simplicity, the indexi has been dropped from the position vector of theith UAV. In

fact, for detection and analysis parts of collision avoidance, only one UAV is considered, with

the understanding that the solution is intended to be adopted for all vehicles (independently) in

multi-vehicle missions.

The vehicle is considered to be in collision with the obstacle if there existtcol andγcol

such that

||pd(γcol)− po(tcol)|| = min
t,γ≥0

||pd(γ)− po(t)|| ≤ dsafe,

wheredsafe is the minimum safety distance required between the vehicleand the obstacle, andγcol
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andtcol denote the parameters of the UAV and obstacle trajectories,respectively. For simplicity,

assume that the obstacle always intersects the desired trajectory of the UAV. Therefore, there

existspcol such thatpcol = pd(γcol) = po(tcol) . Finally, define

∆tv = |(γcol − γ(t))− (tcol − t)|

as thevirtual time separationbetween the vehicle and the obstacle with respect topcol. To better

understand the meaning of thisvirtual time separation, notice that(tcol − t) is the mission-time

needed for the obstacle to arrive atpcol, while (γcol − γ(t)) is the time needed for the UAV to

arrive at this same location, if the rate of progression along the path is given bẏγ(t) = 1 (recall

thatγ(t) was defined asvirtual time, andγ̇(t) = 1 implies thatγ(t) evolves like time). Consider

the following inequality:

∆tv < tsep, (28)

wheretsep is a constant design parameter defined asdesired minimum temporal separation, and

which is discussed in more detail later. If condition (28) isnot satisfied, the vehicle and the

obstacle atpcol have avirtual time separationof at leasttsep seconds. Therefore, if the vehicle

progresses along its trajectory with rate of progressionγ̇ = 1, for an appropriately chosentsep,

it is guaranteed that the UAV and the obstacle are sufficiently separated in space atpcol, and

hence the UAV does not need to take any action. On the other hand, if (28) is satisfied at time

t, then requiringγ̇ = 1 possibly causes a collision, since both the vehicle and the obstacle

reachpcol with an insufficient time separation. Obviously, the parameter tsep must be chosen

with particular attention, while taking into consideration the dynamics of the vehicle and the

obstacle, as well as their dimensions. With this observations in mind, it can certainly be stated

that if at time t conditions(27) and (28) are satisfied, then the UAV must execute a collision

avoidance maneuver.
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Analysis

Once a collision is predicted, there are many possible ways aUAV can avoid collision,

such as through speed adjustment, change of course, or trajectory replanning. In multi-vehicle

missions, it is usually preferred to only adjust the speed ofthe mission so that the UAV remains

on the desired path for all times. However, depending on the speed and direction of the obstacle,

adjusting the mission’s speed is not alwayspreferable. Moreover, dynamic speed and acceleration

limits must be taken into consideration, to verify if such a maneuver isfeasible. In the overall

collision-avoidance framework, feasibility and preferability of the speed-adjustment methodology

are first determined. The speed adjustment method is employed if it is found to be both feasible

and preferable. Otherwise, the trajectory replanning is employed in order to avoid collisions.

Here, the speed-adjustment method is deemed preferable if

tsep≥ ∆tvpref , (29)

where∆tvpref represents the time change in mission time required to avoidthe collision. On the

other hand, the speed-adjustment method is considered to befeasible only if the dynamics of

the vehicles involved in the mission allow for such a maneuver. The reader is referred to [29]

for the exact formulation of these criteria.

Avoidance

Depending on the type of collision that the vehicle must avoid, and according to the

analysis described before, the UAV can start an avoidance maneuver either by adjusting its

speed without leaving the desired path, or by deviating fromit. In what follows, both solutions
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are described in detail.

Collision avoidance through speed adjustment: this method for collision avoidance relies on

the fact that the speed of the mission can be easily adjusted using the parameteṙγd(t) given in

the description of the time-coordination problem in Equation (22). For this reason, the collision

avoidance algorithm presented in this section fits in well with the cooperative path-following

algorithm described previously. By slowing down or speeding up the overall mission, not only

collision avoidance with external objects is achieved, butalso inter-vehicle safety is automatically

guaranteed. Moreover, as long as only relative temporal constraints are enforced, the vehicles can

safely proceed along their paths without violating the mission requirements. On the other hand,

note that in the case where more than one collision avoidancemaneuver is required at the same

time, the UAVs must agree and adopt the same solution. This extension can be implemented by

combining the collision avoidance algorithm with some simple logic. Moreover, in the case where

two or more UAVs have conflicting constraints (for example, one UAV can only accelerate while

another can only decelerate), then collision avoidance through speed adjustment is not possible,

and the vehicles must adopt an alternative solution (such astrajectory replanning).

Then, the control law for̈γd(t), used in Equation (24), is given as follows:

γ̈d(t) = k1(1− s̄)(1− γ̇d(t))− γ̈maxs̄ sign((γcol − γ(t))− (tcol − t)) , (30)

wherek1 is a positive control gain,̄s = 1 whenever speed-adjustment method is found to be

feasible and preferable and spatial collision conditions given in Equations (27), (28) and (29)

are satisfied. Otherwise,̄s = 0.

Then, as shown in [29], the UAV avoids collision with the obstacle, thus ensuring that

the temporal separation between the UAV and the obstacle at the collision point is always
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greater than the desired minimum time separationtsep. Moreover, in [29] the authors also

show that the collision avoidance solution accounts for thepresence of time-coordination errors

which arise from the use of autopilots with non-ideal tracking performance. Notice that, if

(γcol − γ(t)) > (tcol − t), then the obstacle is expected to arrive at the collision point before

the vehicle does. Accordingly,̈γd(t) = −γ̈max; therefore, the UAV slows down rather than

speeding up. Analogous arguments can be made for the case where (γcol − γ(t)) < (tcol − t),

and γ̈d(t) = γ̈max.

It is important to observe that while conditions such as (27)and (29) are only useful to

decide if the vehicle must start a collision avoidance maneuver, condition (28) determines how

long this maneuver lasts. In fact, when|(γcol − γ(t))− (tcol − t)| > tsep, which implies (28) is

not satisfied anymore, then according to (30) the vehicle canproceed with rate of progression

γ̇ = 1, while satisfying the time-separation requirement.

Collision avoidance through trajectory replanning: if the vehicle under consideration predicts

a collision by verifying that conditions (27) and (28) are met, but collision through speed-

adjustment is not feasible or preferable, then the UAV is required to replan its trajectory. Unlike

collision avoidance through speed adjustment, this methodof avoidance only affects the mission

for the UAV at a collision course; the rest of the UAVs continue their mission without any change.

This feature ensures that extra communication costs required for the exchange of trajectory

information is not incurred. Despite this lack of information exchange, however, it is ensured

that the trajectories are still deconflicted.

The procedure for replanning is outlined in the following. The key idea behind the

algorithm is to exploit the geometric properties of the Bézier curves to add a detour to the
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original trajectory thereby obtaining a new trajectory which (i) avoids the obstacle,(ii) does not

violate the dynamic constraints of the vehicle, mission requirements, and minimum inter-vehicle

separation, and(iii) ensures continuity of the trajectory and its derivatives. The detailed step-

by-step procedure for collision avoidance algorithm through trajectory replanning can be found

in [49]. Here, these steps are listed as follows:

First, the trajectory replanning control block approximates the obstacle’s predicted trajectory

with Bézier curves. Second, assuming that the mission progression rate has converged toγ̇ = 1,

the algorithm then finds the Bézier curves that describe theseparation vector between the vehicle

and the obstacle as a function of time,

d(td) = pd(td)− po(td). (31)

For illustrative purposes, a two-dimensional example of separation curve is given in Fig-

ure 6, where the red circle represents the collision area, the radius of which is the min-

imum safety distance,dsafe. Third, the collision avoidance algorithm finds a new trajec-

tory pd,new(td) by adding a detour topd(td) such that the separation curve moves out of

the collision area. For illustration purposes, the reader is referred to the following video

www.youtube.com/watch?v=ALZQcEK8f_Q.

The detour is found in such a way that the new trajectorypd,new, with velocity vectorvd,new

and acceleration vectorad,new, avoids the collision while keeping the current position, velocity,

and acceleration unchanged, satisfies the boundary conditions while meeting the following

requirements

||pd,new(td)− pd(td)|| < ∆p, ||vd,new(td)− vd(td)|| < ∆v, ||ad,new(td)− ad(td)|| < ∆a,

where∆p, ∆v and∆a can be computed apriori given some assumptions on the obstacle size
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and speed.

Notice that the bounds∆p, ∆v and∆a characterize the deviation in position, velocity,

and acceleration of the new trajectory from the original one. Through a priori computation of

these bounds, inter-vehicle safety can be guaranteed. For example, if the vehicles are required

to maintain a safety distance ofE from each other, then the inter-vehicle distance can be set

to beEd ≥ E + ∆p during the initial trajectory generation. The vehicles arethen guaranteed

to maintain a distance of at leastE from each other even during collision avoidance. A similar

argument applies for satisfaction of vehicle dynamic constraints. The reader is referred to [31],

[49] for detailed analysis and proofs.

Simulation Results

In this section, the multi-vehicle road search motivational example is implemented to

illustrate the performance of the cooperative framework presented in this article. The example

is used to demonstrate that with each of the components described previously, the general

framework allows for the execution of the cooperative mission. To briefly summarize, the

objective is to inspect an area by three cooperating multirotors. The multirotors have to transit

from their holding area to the area of interest, which is thetransition phaseand, subsequently,

commence the inspection of a designated road. It is important that the multirotors simultaneously

arrive at their destinations during the transition phase, as the search is executed in aparallel

sweep search patternalong the road. Needless to say, that the roach search has to be executed in

a coordinated way in order to maintain the overlap of fields ofview of their onboard cameras.

Therefore, coordination between the vehicles is not only critical from a safety point of view, it
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is also essential to accomplish the mission at hand. During the road search phase, the vehicles

encounter obstacles. However, it is shown that the mission objectives are not compromised due

to the online collision avoidance algorithm.

The mission scenario is implemented in Matlab/SimulinkR©. As mentioned earlier, the

emphasis of this article is not on the performance of an inner-loop controller, but rather it is

considered as given with certain performance specifications. However, for the sake of providing

a realistic simulation scenario, 6DOF models representingthe dynamics of the multirotors have

been implemented; each of the multirotor is equipped with a simple inner-loop autopilot for

angular rate command tracking; additionally, measurementnoise and transmission delays have

been added.

Figure 7 shows the complete execution of the mission, from transition phase to the

completion of the actual road search. The three-dimensional flight paths are presented in

Figure 7a, while the separations between each pair of vehicles are shown in Figure 7b. It can be

seen that the vehicles maintain a minimum distance ofE = 1 m at all times. The errors between

the commanded path and the actual flight path of the multirotors are given in Figure 7c. The

implemented path-following algorithm allows close tracking of the commanded paths, while the

dynamic constraints of the vehicles (see Figures 7d and 7e) are not exceeded throughout the

entire mission. The values forvi,max andai,max are given in Table I.

As explained previously, coordination between the vehicles is achieved if the errors

between the coordination variablesγi(t) are zero. This coordination error is plotted in Figure 8a

and it can be concluded that the vehicles are coordinated throughout the entire mission. Lastly,

Figure 8b presents the time histories of the rates of progression γ̇i(t) and the commanded rate of
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progressioṅγd(t). It can be seen that thėγi(t) track the command closely. Note that the desired

rate of progression is equal to1 throughout the mission, except in one occasion where speed

adjustment of the vehicles is required to avoid a moving obstacle. This case is discussed in more

detail below. Three distinct events during the mission occur that require a separate presentation

of the results: thetransition phase, avoidance of a moving obstacle, andavoidance of a static

obstacle.

Transition phase: the results regarding the transition phase have already been discussed in the

section on time-coordination and, hence, they are not repeated here. However, note that in the

simulation shown in this section, the initial errors between the commanded path and the actual

position of the vehicles are of smaller value. Therefore, the path-following and time-coordination

errors are less pronounced but more realistic.

Moving obstacle: as discussed earlier, for coordinated missions it is preferable to avoid a

collision by changing the mission progression rate. To demonstrate this capability, a moving

obstacle in a collision course with UAV2 in introduced. To avoid this obstacle, the mission

progression rate is increased by the collision avoidance algorithm. This avoidance maneuver is

illustrated in Figure 9. Figure 9a shows the distance of the obstacle from all three UAVs with

respect to time. It can be seen that the vehicles maintain a distance of more than1 m from the

obstacle. In the same figure, the distance of UAV2 from obstacle is plotted in the case where the

collision avoidance maneuver is not executed, thus illustrating where the collision would happen.

To demonstrate regular time coordination between vehiclesduring the avoidance maneuver, the

time-coordination error is presented in Figure 9b. Finally, the increase in the mission progression

rate for the avoidance maneuver is shown in Figure 9c, whereγ̇i(t) for all vehicles along with

γ̇d(t) take values greater than1.

39



Static obstacle: Next, consider a static obstacle in the path of UAV3. Since the obstacle is static,

collision avoidance through speed adjustment is infeasible and, therefore, collision avoidance

through trajectory replanning is used. Figure 10a shows thedistance of the vehicle from the

obstacle with and without collision avoidance. Note that the obstacle is not detected by UAV1

and UAV2. It can be seen that the vehicle avoids the collision by maintaining a distance of

more than1 m. The replanned trajectory can be seen against the originalone in Figure 10b

where the small detour added to the trajectory is visible. Lastly, the coordination error and the

mission progression ratėγi(t) for the UAVs are plotted in Figures 10c and 10d, respectively,

thus demonstrating that the time-coordination between thevehicles remains unaffected.

Conclusion

In this article a safe multi-vehicle control framework has been presented, which allows a

fleet of multirotor UAVs to follow deconflicted desired trajectories, coordinate along them in order

to satisfy relative temporal constraints, while avoiding collision with moving and static obstacles.

The described methodology is based on three key results. First, a centralized cooperative

trajectory-generation algorithm produces a set of spatially deconflicted paths together with a

set of desired speed profiles. These trajectories guaranteeinter-vehicle safety, while satisfying

specific temporal mission requirements, as well as dynamic constraints of the vehicles. Then, a

distributed cooperative path-following controller ensures that the vehicles follow the trajectories

while coordinating along them in order to arrive at the final destination at the same time, or with

a predefined temporal separation, according to the mission requirements. The cooperative control

architecture relies on the presence of an inner-loop autopilot and an outer-loop path-following
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controller which guarantee that the distance between the vehicle and its desired position along

the path remains bounded throughout the mission. Then, the speed of each vehicle is indirectly

adjusted in order to satisfy the temporal constraints and achieve coordination. Finally, collision

avoidance control laws are formulated to guarantee safety of the overall fleet of vehicles even

in the presence of unpredicted obstacles. The described solution uses the speed of the vehicles

to control the progression along the path in order to avert a possible collision with a moving

obstacle. Moreover, a fast onboard trajectory replanning solution is presented to allow the vehicles

to deviate from the original trajectory whenever collisionavoidance through speed adjustment

is not possible. The described approach borrows concepts and tools from a broad spectrum

of disciplines, leading to a simple design procedure based on self-contained control blocks. A

specific example, consisting of a cooperative road search mission, was discussed throughout

the article to describe the developed framework. The benefits of this approach can be extended

to cooperative control of multiple heterogeneous robots, such as autonomous marine vehicles

and fixed-wing UAVs, or ground robots and multirotor UAVs, which is the subject of ongoing

research.
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Figure 1: General framework: the trajectory-generation, cooperative path-following, and collision

avoidance blocks interact to ensure safe execution of cooperative missions. The trajectory-

generation algorithm computes a geometric path and a speed profile which are sent to the

collision avoidance module. The collision avoidance blockchecks if an imminent collision with

a detected obstacle is going to take place. In this case, it modifies the path or the speed profile,

and sends them to the cooperative path-following algorithm. Otherwise, the desired trajectory

is left unchanged and sent to the cooperative control module. The cooperative path-following

control block, comprised of path-following and time-coordination algorithms, allows the UAV

to execute the cooperative mission.
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(a) Google Maps. 3D view of the mission scenario.
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Figure 2: Cooperative road search. The figures illustrate a scenario in which cooperation among

the multirotors is required to accomplish the task at hand. The UAVs, starting from random

initial positions, follow the transition paths, depicted as solid lines, and arrive at point A. Then,

they proceed along the road search paths, represented by solid lines, while coordinating with

each other to accompish the cooperative road search mission. Cooperation along the road search

paths guarantees non-zero intersection between the fields of view of the cameras.
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Figure 3: Three-dimensional trajectories for a team of three cooperating UAVs. Spatial decon-

fliction is ensured through temporal separation. The computation time is12.4 s.
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deconfliction is ensured through temporal separation.
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Figure 5: Time coordination: simulation results. UAV1, UAV2 and UAV3 coordinate along the

transition paths, and arrive at the final destination at the same time with desired speed profiles.
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Figure 6: Demonstration of the separation curve: The top figure shows the trajectory of the

vehicle and the quadrotor in blue and red, respectively. It is clear that their trajectories overlap,

however, it is hard to tell if a collision occurs. In the bottom figure, the separation curve is

shown which enters the circle with radiusdsafe, thus it is clear that a collision does occur.
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Figure 7: Road search mission execution by team of three cooperating UAVs, including the

transition phase from holding area to area of interest.
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Figure 8: Time-coordination errors and rate of progressionof the vehicles during the mission.
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Figure 9: Demonstration of collision avoidance using speedadjustment method.
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Figure 10: Demonstration of collision avoidance through trajectory replanning.
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TABLE I: Flight conditions and dynamic constraints of the UAVs.

UAV 1 UAV 2 UAV 3

p
i
d [m] (0, 2.50, 1.00) (5.00, 5.00, 1.00) (3.00, 1.00, 1.00)

v
i
d [m/s] 0 0 0

p
f
d [m] (45.00, 60.00, 10.00) (45.00, 63.00, 10.00) (45.00, 66.00, 10.00)

v
f
d [m/s] 4.00 4.00 4.00

vd,max [m/s] 6.76 6.76 6.76

ad,max [m/s2] 4.28 4.28 4.28

vmax [m/s] 10.00 10.00 10.00

amax [m/s2] 12.00 12.00 12.00
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Sidebar 1: Cooperative Path Following

The problem of cooperative path following amounts to makinga fleet of vehicles converge

to and follow a set of desired spatial paths, while meeting pre-specified spatial and temporal

constraints. Over the last decade, there has been growing interest in the problem of coordinated

path-following control of fleets of autonomous vehicles, mainly for the execution of cooperative

marine missions involving multiple autonomous surface andunderwater vehicles. Initial work in

this topic can be found in [50]–[53]. The coordinated path-following control problem was implicit

in the early work in [50], where the authors built on and extended the single-vehicle “manoeuvre

regulation approach in [54], and presented a solution to theproblem of coordinated operation

of an autonomous surface vehicle and an autonomous underwater vehicle. The strategy adopted,

however, requires the vehicles to exchange a large amount ofinformation, and cannot be easily

generalized to larger teams of vehicles. These drawbacks were later overcome in [51], which

presented a leader-follower cooperative approach that (almost) decouples the temporal and spatial

assignments of the mission. The solution adopted is rooted in the results on path-following control

of a single vehicle presented in [55], and takes advantage ofthe fact that, with this path-following

algorithm, the speed profile of each vehicle becomes an additional degree-of-freedom that can

be exploited for vehicle coordination. Moreover, in this setup, the two vehicles only need to

exchange the (scalar) “along-path positions of their virtual targets, which reduces drastically the

amount of information to be exchanged among vehicles when compared to the solution developed

in [50]. Interestingly, an approach similar to the one in [51] was presented at approximately

the same time in the work in [52] and [53], where a nonlinear control design method was

presented for formation control of a fleet of ships. The approach relies on the maneuvering
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methodology developed in [56], which is then combined with acentralized guidance system that

adjusts the speed profile of each vehicle so as to achieve and maintain the desired formation

configuration. The maneuvering strategy in [56] was also exploited in [57], where a passivity

framework is used to solve the problem of vehicle coordination and formation maneuvering.

In [58], the authors extended the approach in [51] and addressed the problem of steering a

group of vehicles along predefined spatial paths while holding a desired (possibly time-varying)

formation pattern. Using results from nonlinear systems and algebraic graph theory, conditions

were derived under which the control algorithm solves the coordinated path-following control

problem in the presence of switching communication topologies and network link latencies. In

particular, stability of the closed-loop system was analyzed under two scenarios: first, networks

with brief connectivity losses; and second, uniformly jointly connected communication graphs.

Stability of coordinated path-following strategies undercommunication limitations was also

investigated in [59]. The approach in [51] was also extendedin [60], where the authors addressed

the problem of coordinated control of multiple UAVs. To enforce the temporal constraints of the

mission, the coordination algorithm relies on a distributed control law with a proportional-integral

structure, which ensures that each vehicle travels along its path at the desired constant speed,

and also provides disturbance rejection capabilities against steady winds. The work in [60] was

later extended in [61] to the case of arbitrary (feasible) desired speed profiles, multiple leaders,

and low-connectivity scenarios. Related work can also be found in [62], which presents a multi-

vehicle control architecture aimed at reducing the frequency at which information is exchanged

among vehicles by incorporating logic-based communications. To this effect, the authors borrow

from and expand some of the key ideas exposed in [63] and [64],where decentralized controllers

for distributed systems are derived by using, for each system, its local state information together
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with estimates of the states of the systems that it communicates with. Other relevant cooperative

motion-control algorithms have been presented in the literature that address problems akin to

that of coordinated path following. In [65] and [66], for example, synchronization techniques

are used to develop control laws for ship rendezvous maneuvers. Also, the work in [67] presents

a solution to the problem of coordinated path following for multi-agent formation control. In

the setup adopted, a reference path is specified for a nonphysical point of the formation, which

plays the role of a virtual leader, while a desired formationpattern is defined with respect to

this nonphysical point. Control laws are then derived that ensure that the real vehicles converge

to the desired reference points of the formation, while the virtual leader follows the reference

path.
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