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In the last two decades, significant improvements in mdsgriecomputing power of
microcontrollers, miniaturization of sensors, verstilof communication, and high-density
energy storage have revolutionized the design and capabilbf Unmanned Aerial Vehicles
(UAVS). These multiple fundamental advances have broatiéime range of missions involving

a single UAV, and have truly enabled the execution of codperanulti-UAV operations.

Besides advancing multiple aerodynamic designs of tiawhdi fixed-wing and helicopter
aircraft, a new class of vehicle appeared — the multiroto¥\Multirotor UAVs feature multiple
rotating propellers located at the end of fixed arms and gpahlta of independent control of
speed of each rotor-propeller combination. Simplicity loé imechanical design that avoids the
complexity of swash plates and the associated control exingdis, resulted in a vertical take-off
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and landing class UAV. Its capability of hovering still inethair, its small size, low cost, and

high agility, make this aircraft especially interestingaasesearch and development platform.

Autonomous flight of multirotor vehicles is an extremely kdaging topic from a
theoretical and practical standpoint, with far reachinglioations in scientific and commercial
mission scenarios. For this reason, in the past years thehap been the subject of considerable
research and development effort, mainly for what concetate ®stimation and sensor fusion
[1]-[3], vehicle’s design [4], [5], and motion planning andntrol [6]-[12]. The aim of this work
is to present an integrated framework that solves the catipermission planning, coordinated
motion control, and collision avoidance problems. In themaeder of this article, it is assumed
that the vehicles are equipped with solutions that providewkedge of the vehicles’ states, as

well as perception of external objects within a given detectange.

Research on autonomous operation of teams of cooperatityotars is particularly
extensive [7], [13]-[15]. The literature is mainly dividexto two categoriescentralizedand
decentralizecdtooperative strategies. The former refers to the case inhndil of the vehicles are
driven by a central computer. The latter, instead, assuhrseach UAV runs its own planning
and control algorithms, and is thus able to autonomouslgt ieeother vehicles’ behavior and/or
unforeseen events to safely achieve a common goal. Forseegive work in this area the reader
is referred to [13], [16], [17] and references therein. Widealing with small multirotor UAVS,
often equipped with CPUs with limited capabilitieshgbrid strategy, that is a combination of
centralized and decentralized solutions, can be applieid.article presents a hybrid setup, where
a central unit is responsible for the mission planning, amdmunicates with the vehicles before

the beginning of the mission. Then, decentralized comrslembedded onboard the vehicles



ensure that the mission is accomplished in a safe mannerdhaeging information with each
other. In this sense, the hybrid controller described heraare robust than purely decentralized
solutions, as the centralized planning phase is not affebie faults in the communication
network; moreover, the mission execution is safer with eespo purely centralized solutions,
since the decentralized control solution allows each Vet directly react in a timely fashion
to other vehicles’ failures and potentially hazardous niaees, without having to communicate

with a central station.

When dealing with decentralized and hybrid cooperativdarodiers, the control designer
needs to keep in mind that the performance of the overalesysargely depends on the ability
of the fleet to exchange information in a timely and reliablenmer. Therefore, the quality of
service of the supporting communication network plays aietuole. In many scenarios the
flow of information among vehicles may be severely restdddg the nature of the supporting
communication network. As a consequence, no vehicle maybleta communicate with the

entire fleet, and the amount of information that can be exgbdmmay be limited.

Another issue that must be taken into consideration in pleltUAVs missions is safety,
which in the context of this article is regarded as the cdpalmf each UAV to be able to
avoid unpredicted static and dynamic obstacles in the adespand at the same time guarantee
a minimum separation distance to the other vehicles ineblmehe cooperative mission. When
a dynamic obstacle, for example an uncooperative UAV, sritex airspace of operation without
its presence having been taken explicitly into accountrautihe the trajectory-generation phase,
sense and avoid technologies are necessary in order ta dett@vert potential collisions. The

problem of collision avoidance has been widely exploredharbbotics and controls community.



A significant amount of this research is covered by velooitgtacle (also known as collision-
cone) [18]-[20] and artificial potential field based apploexc [21]-[23]. A key advantage of
these methods is their simplicity. However, they often igneehicle dynamics, and are hard
to extend to multi-vehicle coordinated missions, wherertafram collision avoidance, time-
coordination between vehicles may be critical. LatelyjdBpexploring random trees [24], [25]
based methods have been used for trajectory planning (@nmpg), such that vehicle dynamics
are also satisfied. In multi-vehicle operations, while perfing escaping maneuvers to avoid
obstacles, the presence of other vehicles in the fleet msstka taken into account. Namely,
collision avoidance maneuvers must not interfere with thgttories of the other UAVs in the
team. Motivated by the challenges described above, thi& wddresses the problem of safely
coordinating a fleet of multirotor UAVs in the presence of coumication constraints and static

and dynamic obstacles.

Executing Safe Cooper ative Path-Following Maneuvers

The cooperative missions considered in this article reqthiat each vehicle follow a
feasible collision-free path, and that all vehicles arratetheir respective final destinations
at the same time, or at different times so as to meet a degitedvehicle schedule, while
avoiding unknown moving (or static) objects. Successfuhpletion of the above mentioned
mission can be achieved by combining strategiestfajectory generation cooperative path
following, andcollision avoidanceThe general framework presented is depicted in Figure 1. In
the adopted framework, the integration of these three mgilanning and control modules can be

summarized as follows: first, a (real-time) trajectory-g@tion algorithm produces a set of spatial



paths and speed profiles that account for initial and finatitmms, vehicle dynamics, spatial and
temporal coordination constraints, and inter-vehicleetsafequirements; second, a cooperative
path-following algorithm enables the UAVs to follow the @ed paths while adjusting the speed
of the vehicles to ensure coordination; and third, a callisavoidance algorithm modifies —on
the fly— the spatial paths and/or the speed profiles to aveosailple collision when an obstacle

is detected.

The methodology developed is based on three key ideas, fiestrajectory-generation
problem is solved by adopting a geometric approach. In qdeti, the use of a special class
of curves, namelyPythagorean Hodograph &ier curvesallows for the efficient computation
of trajectories that are deconflicted either in space ornmetiMoreover, this class of curves
is particularly useful to solve the collision-avoidanceolpem, as they allow for fast online
reshaping of trajectories. Second, the use of path-foligwdontrol techniques —in contrast to
trajectory-tracking methodologies— allows the spatial &mporal assignments of the mission
to be solved independently. This flexibility achieved byaepmeterizing the trajectories with
a suitably defined variable, referred in this article tovagual time With this formulation,
the rate of progression of virtual time can be used as an edgaee-of-freedom to achieve
vehicle coordination. Third, the control architecture ibiis a multi-loop structure in which the
multirotors are assumed to be equipped with an inner-loayrabber autopilot which stabilizes
the vehicle dynamics. Then, guidance outer-loop conttoldee designed to control the vehicle

kinematics, providing cooperative path-following andlistbn-avoidance capabilities.

The article at hand is strongly rooted in past research tef2b]-[32]. Three methods

for mission planning, execution, and collision avoidanglegady published in conference and



journal articles, are joined in a single work, and presemted@n integrated solution to the safe
cooperative motion control problem. The purpose of thiglkeris to describe the integration of
these methods, how they intertwine with each other, and ¢hefiis that their combination offers
to a broad family of applications. In what follows, the oderntrol architecture is discussed
with the help of a specific example, with the understandirsg the general framework can be
employed in a wider class of cooperative missions. AddéidHustrative examples and case

studies can be found in [27], [29], [30], [33]

A motivational example: coordinated road search

The example at hand is depicted in Figlie 2. Three multiro®s, denoted as UAY,

UAV,, and UAV;, equipped with cameras, are tasked to inspect the roadrdted in Figure
from point A to point B. Initially, the UAVs are hovering #teir initial positions. First, the
trajectory-generation algorithm computes thitr@msition pathswhich start at the vehicles’ initial
positions, and end at specific desired locations. Additlgrthe algorithm generate®ad search
paths which follow the road to allow the vehicles to inspect thesiced area. The transition
and road search paths need to be deconflicted and have ty sa¢islynamic constraints of the
vehicles. Further, the position and speed of each UAV at tite ad the transition paths need
to coincide with the position and speed at the beginning efrdad search paths, respectively,
to allow for a continuous progression of the mission. Secdhd cooperative path-following
algorithm enables the UAVs to follow the paths, and at theeséime enforces the mission’s
temporal constraints. Coordination along the transitiathp ensures that the vehicles arrive
at the final destination at the same time with desired speefilgw, and ensures inter-vehicle
collision avoidance. Coordination along the road seardigguarantees overlapping of the
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fields of view of the three cameras, as emphasized by Figuré/Bde the mission unfolds, the
collision-avoidance algorithm allows the vehicles to ayssible collisions with obstacles that

interfere with the trajectories of the UAVS.

Finally, it is possible that new points of interest appeat theed to be inspected. This is
the case for UAY, which is required to deviate and inspect a secondary roétdr Aspection,
the vehicle re-converges to the original road search patithspnizing with the rest of the
fleet. This last part highlights the importance of the use aifitiple cooperative vehicles in
such mission scenarios. Moreover, it brings to the readst&ntion the benefits of employing
cooperative control algorithms that —like the one presgmbethis article— do not necessarily

lead to swarming behaviors.

Cooperative Trajectory Generation

A key enabling element for the realization of these cooperaissions is the availability
of efficient cooperative planning strategies that can belempnted onboard the vehicles.
A planning algorithm has to work within a complex set of coastts, and (near) real-time
generation of trajectories is desired to allow the vehitbeeplan their trajectories, if necessary.
Typically, multirotor UAVs carry low power-consumption goessors with limited memory in
order to save weight for maximum payload and flight enduracegeabilities. Therefore, the
planning algorithm has to be computationally efficientslin this spirit that this article presents a
solution that allows for efficiently generating trajectsifor multiple cooperating vehicles, based
on the following key ideas(i) the desired trajectory is generated for the entire missithowt

discretizing the trajectory temporally or spatiallyi) the desired trajectory is decomposed into



a geometric and a temporal element; aid) a specific family of polynomials is used that have

favorable geometric and mathematical properties.

A stringent requirement, especially for multi-vehicle signs, is that the trajectories
are collision-free with each other and, of course, withti{stand dynamic) obstacles. With
the adopted approach, inter-vehicle safety distances @waeagteed during the planning phase,
through eithetemporalor spatialseparation. Moreover, the desired trajectories that anergéed
within this framework, also allow for an elegant way to avpiotential collisions with obstacles

during the execution of the mission, as shown in the disoassn collision avoidance.

Before going into details of the adopted framework, a fomtioh of the three-
dimensional trajectory-generation problem for a genegttirgy is given first. The objective here

is to generateV trajectoriesp,;(t,)
pai : [0t = R® i=1,2,....N, (1)

wheret, € [0,7;], with T, := max{t',,,...,# v}, is the time variable (used during the
trajectory-generation phase and distinct from the actuession timet¢ that evolves as the
mission unfolds),t’,; € R* are the individual final mission times of the vehicles obesin
during the planning phase, and is the number of vehicles. Note that the mission for vehicle
has terminated for alt; > ¢! ,. For simplicity, this article only considers missions wer
simultaneous time-of-arrival of the vehicles is requiradd thereforef, | = ... = \ = T,.
Together, the trajectories,;(t;) minimize a global cost functioy/(-), are collision-free, and
satisfy boundary conditions, spatial constraints, ancptaal constraints. Examples of commonly
used cost functions include total path length, total missime, and speed deviation from initial
speed, to mention but a few. Spatial and temporal conssraigm be mission-specific, such as
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simultaneous arrival of the vehicles or endurance comggabut can also be related to the
dynamics of the vehicles, for example adhering to the mawrinspeed and acceleration of the

multirotors.

Instead of generating the trajectories explicitly as a fiamc of time, as given by
Equation [(1), each trajectory is decomposed intgpatial path a geometric element with no
temporal specifications, andtianing law associated with this path, which captures the temporal
assignments of the trajectory. In fact, the timing law abave to independently adjust the speeds
of the vehicles, without altering the spatial paths alongcWithese vehicles travel. In other
words, different speed profileg ;(-) can be assigned to a given spatial ppgh(-) by changing
the parameters of the timing law. In terms of the optimizagwoblem presented subsequently,
this feature translates to increasing the number of op#itidm variableswithout increasing
the degree of the polynomials that describe $ipatial paths The concept of decoupling the
geometric curve and the timing law in order to adjust the iapgiath and the speed profile

independently was first described in [34], and later appief85].

The first step in decomposing the trajectory is to paramegetie spatial pathp,;(-)
by a dimensionless variablg € [0, 1]. In general, these spatial pathg;(¢;) are described by
polynomials since evaluating polynomials only requireditan and multiplication, which are
arithmetic operations that can be performed efficiently myital computers. In the approach
presented, the spatial paths are describedPythagorean Hodograph (PH)&ier curvesThe
main motivation for using PH Bézier curves instead of polyials expressed in the monomial
(or power) basis is driven by(i) the existence of many computationally efficient algorithms

designed for Bézier curves, such as algorithms to effigiectmpute the minimum distance



between two Bézier curves [36]; arldi) the existence of a closed-form solution for the arc
lengths of the paths. The use of Bézier and PH Bézier cuirepath-planning and trajectory

generation has been reported in several works [37]-[39].

Hence, the spatial paths are describeddoyntic PH Bézier curves, that is, for =

1,....N

5
Pa,i Cz Z k’b5 CZ 5 (2)

k=0

wherep; ; € R? are the control points of the spatial path;(¢;), andd () are the (up to degree 5)
Bernstein basis polynomials. The choice for working with Bekzier curves of degree 5 may
seem restrictive, as it limits the class of trajectories taa be generated. It is, however, justified
based on several considerations. First, increasing theeeegf the spatial PH Bézier curves
offers more flexibility in satisfying the constraints, buarc potentially result in an increased
computational cost. Second, PH Bézier curves of higheregegnay exhibit unknown undesirable
behavior and characteristics, since they have not beensxéty explored yet. On the contrary,
the properties and behavior of the quintic PH Bézier curaes extensively studied in, for
example, [40], [41]. Finally, the quintic PH Bézier curnva® the simplest PH Bézier curves that
allow constructing smooth curves with given endpoints aadvdtives [40], where the latter are

boundary conditions on interest common to any generaldi@jg-generation problem.

Next, in order to reconstruct the spatial trajectpgy (¢,), the dimensionless parametgr
needs to be related to tintg. This relationship is provided by the timing laf(-). The timing
law dictates how the variablg for theith vehicle evolves with the time variablg and, as such,
affects the desired rate at which the vehicle travels altvegplanned path. Hence, the timing
law offers a means to meet the temporal requirements of tissiom. Let the timing law,(-)
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be given through a dynamic relation of the form

oita) = 3)

whered;(t,) is a smooth positive polynomial function. In order to presethe computationally
attractive properties within the trajectory-generatimmniework, the timing law8;(¢,) are defined
by quadraticBézier curves:

2
0;(ta) = Z 0: 1 b7 (ta) , (4)

k=0

whered,;, € R are the control points of the timing la#(¢;). The parameter for any Bézier
curve is defined on the intervdl, 1] and, therefore, the time variable for the timing law needs to
be properly scaled b¥,. This concept is explained in more detail in [32]. However,the sake

of brevity, the parameter of the timing law is denotedtpythroughout the rest of the article.

Note that it is highly desirable that an analytical expresdor the functiong;(¢,) exists,
as the map(;(t;) permits a one-to-one correspondence between the timeblariaand the
parameter¢;. As such, the desired positiop,;(¢;(t;)) of the ith vehicle at timet, can be
obtained through Equatiof](2). With the timing l&(t,) defined as in Equatioh](3), the map

which is also a Bézier polynomial and of degize

Given the problem formulation above, the trajectory-gatien framework can be cast
into a constrained optimization problem where a set of ddsirajectories are obtained by
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minimizing the cost function/(-). The optimization problem can be formulated as follows:

min_ J(+)

E;X...XBEN

subject to boundary conditions,

(6)

dynamic constraints of the vehicles,
mission-specific constraints,

minimum separation constraints,

where E; represents the vector of optimization parameters forithevehicle, andJ(-) is a
given cost function that may include terms related to missipecific goals. The optimization
parameters are variables that uniquely determine the aompwints p;;, and 6;;, which
characterize the spatial patips;(¢;) and timing lawsé;(¢;), given in Equations[(2) andl(4),
respectively. The expressions that are used to computeotiiteot points from a given vector of
optimization variable&E; are presented in [32]. An example of a cost functitin) could be the
sum of the arc lengths. In this case, it can be verified #{atis a function of the optimization

variables that determine the control poimis,.

Boundary conditions and feasibility constraints

This section presents the set of constraints that a givanopaipatial pathp,;(¢;) and
timing law 6;(t;) must satisfy in order to be considered a feasible trajedimryehicle:. First,
in the problem of trajectory generation for autonomous elelsj typically the initial and final
conditions of the trajectory, here referred to as boundandtions, are prespecified. Hence, for
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the ith vehicle the following boundary conditions are given:

Pei(G=0)=p, %(G=0) =, ¥(G=0)=v, vgta=0)=1], -

Pai(G=1)=p}, %uG=1)=9, ¥(G=1) =1, vgilta="Ts) =01},
wherep!, 1}, ¢!, andv! are the initial position, flight-path angle, course, andesheespectively,

while pf, ~f, ¢!, andv! are the specified quantities at the final endpoint of the dtaig.

Flyable trajectories

Flyable trajectories are trajectories that comply with thgmamic constraints of the
vehicles and, therefore, can be closely followed if the #lelsi executing the mission are equipped
with flight control systems that enable accurate trackinthefreference commands. Trajectories
that are not flyable inevitably result in path-following@s and may jeopardize the completion

of the mission or, in the worst case, lead to a loss of a vehicle

It is of common practice to relate dynamic constraints of tehicles to geometric
properties of the spatial path. However, this approach basral severe drawbacks, of which
the most detrimental one is that straight lines and curvel mflection points, for which the
torsion 7 along these curves is unbounded, are ruled out as candigatielspaths [32]. The
approach that is adopted here is to derive expressions éokittematics of the vehicles along
a given trajectory, characterized Ipy;(¢;) and;(t;), and subject these expressions to bounds
that can be obtained from the dynamic constraints of theclehi It is not surprising, and in

fact desirable, that these equations can be formulateceirieB form.

Multirotor UAVs are extremely agile aerial vehicles, aneithdynamic constraints are
solely determined by the available thrust provided by therso For example, multirotors are
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capable of hovering, and can change their attitude prdigtied any rate by tilting the total
thrust vector. Therefore, the only dynamic constraints ofutirotor are given by the maximum
speedvnax and maximum total acceleratian,ay, Which can be determined from the maximum
available thrust throughout the flight envelope. Hence, dileamic constraints of multirotors

can be specified as

'Ud,i(td) < Vg, max < Umax s ad,i(td) < ad,max < Omax- (8)

Note that during the trajectory-generation phase (in paldr, in the optimization problem of
Equation [(6)), the more restrictive boundsmax and a,max are used so as to allow the time-
coordination and collision avoidance algorithms to adibstspeeds of the vehicles, if necessary,
in order to maintain coordination between the multirotorsmavoid potential collisions with
obstacles, respectively. The planning algorithm must enghat the generated trajectories do not
demand maneuvers that exceed the bounds given in Equi)iam @e speed and acceleration
profiles. Hence, it is necessary to derive the speed andematieh profiles along a given
trajectory. Given the timing law);(t,), the desired speed profile;;(t;) can be found by

differentiating the spatial path,;(¢;) with respect to time,:

vai(ta) = Pai(Cita))[16i(ta) , (9)
wherep);;(Gi(ta)) is the first derivative ob,;((;(ts)) with respect tog;. It can be verified that

va,i(tq) is a Bézier polynomial [32], due to the use of PH Bézier estv

In general, the equation for the acceleration prodilg(t;) does not permit a Bézier
polynomial form. This fact becomes apparent when takingosesl look at the expression for

the total acceleration,;(t4)

(G (1)) H _ '
a2

dd;(ta)
dty

ad,z-@d):H oG L ez, o)
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where p;(Ci(ta)) is the second derivative gb,;((i(t4)) with respect tog;. It is clear, that

the right-hand side of Equatiof (10) does not result in a patyial as it involves a square
root arising from the 2-norm. To preserve the Bézier poigiad structure in the framework,
the expression fonj;(t4) is derived and evaluated againsg,, Summarized, in order for the
generated trajectories to meet the dynamic constraintbefvehicles, Equation§](9) anld [10)
are required to satisfy the following bounds, which are egjent to the dynamic constraints

given in Equation[(8):
'Ud,i(td) < Vg, max < Umax s aii(td) < az,max < ar2naX' (11)

Note that scaling byi; is omitted in Equationd {9) and_(10). The reader is referoefB2] for

the complete equations.

Feasible trajectories

Feasible trajectories are flyable trajectories that are gppatially deconflicted in order to
avoid inter-vehicle collision and, thus, ensure safe siamg@ous operation in a common airspace.
Deconfliction between trajectories can be guaranteed girapatial separation(the spatial
paths are separated in space}emporal separatiorfthe vehicles are separated in time). While
temporal separation is more computationally efficientelteis heavily on the performance of
a time-coordination algorithm, which, in turn, depends be fuality and robustness of the
communication network over which the vehicles exchangermétion with each other. On the
other hand, spatial separation can be employed in sitisatidrere the communication network
is faulty or jammed, and coordination cannot be guarant@ée. approach presented in this
article offers the mission planner the flexibility to gerter&rajectories that are either spatially
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or temporally deconflicted. A more in-depth discussion othistrategies can be found in [32].

It is here where the presented trajectory-generation fwaorie distinguishes itself from
other novel approaches to path planning that discretizetrdjectories either in space or in
time. When discretizing the trajectories in one way or aantpatial separation between the
trajectories can be ensured at the discretization nodesurifortunately, deconfliction is not
guaranteed in between the nodes. To avoid violation of the@mmim separation requirement in
between the nodes, the number of nodes can be increasedvétpwereasing the number of
nodes considerably affects the spatial and temporal stgladif the method. For example, if
the number of nodes increases proportionally, then the suwibdeconfliction constraints alone
increases quadratically. The authors of [42] and [43] dfaiteissue as one of the limitations of

their approaches, where the trajectories in both methgikdoare discretized in time.

In order to ascertain whether two paths are sufficiently diicbed, it is essential to
compute the minimum distance between the two curves. Asusistl earlier, Bézier curves
are completely determined by a finite number of control goemd are contained within the
convex hull of these control points. These properties mageidd curves extremely suitable to
describe spatial paths, for the minimum distance betweenB@zier curves can be computed
efficiently [36], without resorting to any kind of discregiton of the curve. Therefore, not
only are the trajectories guaranteed to be collision-frgéobmulating the trajectory-generation
framework in terms of Bézier polynomials; moreover, tcajgy generation is achieved at an
extremely high computational efficiency. In this articlengration of collision-free trajectories
is demonstrated by imposing temporal separation for thenpi@ of a cooperative mission,

as described in the previous section. For illustrative edamof deconfliction through spatial
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separation, the reader is referred to [26], [29], [31], [32]

A minimum spatial clearanceZ has to be ensured between all pairs of generated
trajectories for the set of trajectories to be collisioeelrIn the case when temporal separation is
preferred over spatial separation, deconfliction is emsufefor any time t;, the minimum
distance between th&h and jth vehicle is greater than or equal to this minimum spatial
clearanceZ. Therefore, the patb,;((;) has to be re-parameterized by the time variaplé his
task can be performed efficiently since the trajectoriesrapeesented by Bézier polynomials,
and the composition of functions is a Bézier polynomial tmawn. It can be easily verified
thatp,;(t4) is a degreel5 spatial PH Bézier curve. Hence, th@jectory for the ith vehicle is

described by
15
Pai(ta) = > Piabi’(ta)
k=0

where p; ;, are the control points, which can be determined using a se@uralgorithm for
computing the control points of the composition of two Beens polynomials. Then, the

temporal separation between tith andjth vehicle is defined as

2
> B2, for all t; € [0,T}] (12)

15

N > (Bik — Pi) by (ta)

k=0

where E,4, that is used during the trajectory-generation phase rggefahan the actual required
minimum distanceF, so as to allow for path-following errors or deviations frahe desired
paths necessary to prevent a potential collision. Notie¢ e lefthand side of Equation (12) is
equivalent to finding the minimum distance between a Bézigve and the origin0,0,0]"
and, therefore, Equatiori_(12) can be efficiently evaluatgdubing the minimum distance
algorithm [36]. The importance of the algorithm to efficignevaluate Equation[(12) cannot
be overemphasized here.
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The constrained optimization problem presented in Eqoa{@@ has now been re-
formulated as a framework that specifically uses quintic Péki®& curves to represent the
spatial paths, and quadratic Bézier polynomials for thmértg laws. The constrained optimization
problem belongs to the class of semi-infinite optimizatioolgfems [44]. Due to the non-convex

formulation, the solutions are in general suboptimal.

[llustrative example

What follows is a demonstration of the efficacy of the devebbprajectory-generation
framework. Desired trajectories are generated for theimtdrs executing the transition phase
of the mission, described earlier as an example of a typiadti+wehicle cooperative mission.
During the planning phase, a desired trajectory for each i$Ayenerated so as to cooperatively
execute the transition from vehicle launch to the start efritad search mission. The numerical
values for the boundary conditions for this part of the nussare given in Tablé I, along with
the dynamic constraints for each individual multirotor.eThooperative trajectory-generation
framework is implemented in Matl&on a desktop computer with Inf@lCore" i5-3470 CPU
3.20GHz, 8GB of RAM and running 64-bit Windows 7. The numbkotimization variables is
4N + 1, while the number of inequality constraintsj&(N — 1) + 2N. The latter includes the
evaluation of the minimum distance betwe?N(N — 1) pairs of trajectories. The computation

time taken to generate the set of trajectories for this paler example, wherd/ = 3, is 12.4 s.

Figure[3a shows the flight paths for transition phase. Thars¢éipn between the vehicles
is presented in Figufe Bb and the separations between the gt given in Figurdés Bci3e. Recall,

that deconfliction is enforced in this mission by temporgtasation. Therefore, although the
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minimum spatial separations between the paths are lesshteaaquired minimum distande; =

2 m during the planning phase, as shown in Figlres 3c-3e, thpdeal separation requirement
is not violated, and the algorithm ensures that the veh@itessufficiently separated from each
other at any point in time,; (Figure[3b). Lastly, from Figurgl4 it is clear that the geneda

desired trajectories do not violate the maximum permisssipleed and total acceleration.

Cooper ative Path Following of Teams of Multirotor UAVs

This section presents the cooperative control framewoak #tiows a fleet of vehicles
to execute coordinated, collision-free maneuvers. In thepted framework, a path-following
algorithm —implemented onboard the UAVs— is responsiblerf@king each vehicle follow
a virtual target vehicle running along the spatial path, while a distributedrdination control
law adjusts the rate of progression of this virtual vehideas to coordinate the entire fleet. One
of the main benefits of this framework lies in the fact that $ppeed of the vehicles is adjusted
online to synchronize the UAVs, as opposed to the coordih&t@jectory-tracking approach
where the coordination task is solved offline, and thus thatrob algorithm cannot adapt to

external disturbances or vehicles’ tracking errors.

The cooperative path-following control problem is solvedhree main steps: the first step
consists of implementing a reference vehiclejirdual target moving along the path computed
by the trajectory-generation algorithm described earlibrs objective is achieved by introducing
a new parametevjrtual time, denoted here ag, and letting the desired trajectory to be followed
by the multirotor UAVS bep,;(v:(t)), where the subscript refers to theith UAV involved in

the cooperative mission; the second step consists of madoly UAV follow thevirtual target
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This step, referred to as path following, reduces to driargpitably defined error vector to zero
by using the vehicle’s control inputs, for example, anguédes and total thrust [28], or angles
and vertical speed [27]; finally, to enforce the temporalstaaints of the mission, a consensus
problem is formulated, in which the objective of the fleet ehicles is to reach agreement on
some distributed variables of interest that capture theadive of the time-coordination control

problem.

In the remainder of this section, the three steps mentiobedeaare described in detalil,
and a solution to the cooperative control problem is givem.o&erview of different approaches
used for the derivation of cooperative path-following altfons can be found in “Cooperative

Path Following”.

Following a virtual target

Given the trajectoryp,;(t,) produced by the trajectory-generation algorithm desdribe
in the previous section, and letting thétual time ~;(¢) be a function (yet to be defined) that

relates actual (clock) timeto mission planning time,:

vi: Rt = [0,7y, foral i=1,.., N, (13)

then thevirtual targets position, velocity, and acceleration, which are tt@mmandsto be

followed by theith UAV at timet, are defined as

Pei(t) = Pai(i(t)),  Veilt) = Pai(0(t), (1), aci(t) = Pai(ri(t), %:(1), %:(1) . (14)

With the above formulation, if;(¢) = 1, then the speed profile of the virtual target is equal to
the desiredspeed profile chosen at the trajectory-generation leveteMwecisely, assume that
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Fi(t) =1, forall te 0,7y, with +;(0) = 0. This assumption implies that(¢) = ¢, for all

t. In turn, the following equalities hold

Pe.i(t) = Pai(7i(t) = Pai(t) = Pa;i(ta) ,
which, in other words, means that the desired and commamdgdtories coincide for all time,
and the speed profile of the virtual target coincides with dlesired speed profile chosen at
trajectory-generation level. On the other hafid> 1 (7; < 1) implies a faster (slower) execution
of the mission. This statement becomes evident when expgetiswe speed of the virtual target

in terms of the derivative of the desired trajectery;(¢;) as follows:

dpa,i(7i(t)) dvi(t) H _ H dpq,i(7i(t))
bt dt ()

As discussed later in this article, the dynamicsygf) (actually its second derivativg(¢)) can

o8] = s 3o = | ) e
be explicitly controlled and used as an extra degree-@&eioen to achieve time coordination.
Therefore, sincé;(t¢) is governed by some control law, yet to be defined, the dynaonistraints
on the speed and acceleration of the vehicle, as well as thedsaiven in[(B) must be considered
in order to derive feasibility limits ony;(t) and 4;(¢). These limits can be determined using
Equation [(I5), where,;(v:(t),vi(t)) = d(pai(vi(t)))/dt denotes the velocity of the virtual
target, corresponding to the commanded velocity vectoredracked by the UAV at time.

Hence,||p.;(t)|| is limited to the physical speed constraints of the vehitiet is,

[Pei(8)]] < Umax- (16)

Using (15), these speed constraints result in the follovimagjualities:

'.Vmaxvdmax < Umax- (17)
Equations[(16) and_(17) relate the limits of the commandedprofile||p.;(t)| to the limits
of 4;(¢). Similar limits can be derived for the commanded accelenagirofile | p.;(¢)||. In fact,
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by differentiating Equation(15), and imposing the follogiupper bound on the commanded

acceleration

||I“)c7i(t) || < Gmax, (18)

similar inequalities ad (17) can be found for the accelenatind?;(¢):

. .2
Ymax Vd,max T Ymax @d,max < Umax - (19)

Equations[(18) and (19) relate the limits of the commandeelacation profileg|p.;(¢)|| to the
limits of 4;(¢t) and#;(¢). In other words, Equation$ (IL7) and [19) give an expliciatiehship
between the dynamic constraints imposed at the trajegjengration level, namely, max and
aamax iN Equation [(8) (which, in turn, determine the geometrichpand timing law given in
Equations [(R) and[{4), respectively), to the saturationitéinof the dynamics of virtual time,

name'Y"Vmax and Ymax:

With this setup, the objective is to derive a path-followicantroller to ensure that the

vehicles converge to their respective virtual targets.

To formally state the path-following problem, Ipt(¢) € R?® be the position of the center
of mass of theth multirotor. Sincep.;(¢) describes the commanded position to be followed by

the ith vehicle at timef, the position and velocity error vectors are defined as
epi(t) = Pei(t) — Pi(t) €R®,  eyi(t) = vei(t) — pi(t) € R®. (20)

Then, the path-following control objective reduces to thiategulating the path-following errors
defined in Equation(20) to a neighborhood of zero. Notice th&s approach leaves the yaw
angle of the vehicles as an extra-degree of freedom, whictbeaadjusted without affecting the

control framework.
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In [27] and [28] the authors present two solutions to the {fallowing problem. In
particular, in [28] it is assumed that the vehicle is equgppath an autopilot capable of tracking
angular rates and total thrust commands. Then, it is shoantkie path-following controller
drives the path-following error to a neighborhood of zererein the case of non-ideal tracking
performance of the autopilot. A similar result is obtained27], where the authors present a
path-following control law for AR.Drone UAVS, equipped Wwitontrol systems for Euler-angle

and vertical-speed command tracking.

Coordination among multiple vehicles

This section addresses the time-coordination problem oéet f NV multirotor UAVS.
In what follows, first, the objective of time coordinationdsfined; second, a set of assumptions
for the supporting communication network is formulatedt tbasures coordination; finally, the
time-coordination error vector is presented, and a fornetement of the problem at hand is

given.

Definition of the coordination objective

Recall that the position of the virtual target assigned &ith vehicle at timée is given by
Pci(t) = pai(7i(t)), wherepg,(-) is the geometric path obtained from the trajectory-germrat
algorithm, and the path parametg(t) is the virtual time defined if_(13). The virtual time and
its first time derivative play a crucial role in the time-cdovation problem. In fact, because the

commanded path assigned to each vehicle is parameterizegdhythen if

vi(t) —v;(t) =0, forall i,je{l,....N}, i#j, (22)
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at timet, all the virtual targets are coordinated. In addition, if

Fi(t) —4q(t) =0, forall ie{l,... N}, (22)

then the virtual targets run along the paths at the desitedofgprogressiory, € R. The variable
Y4(t), shared among the vehicles, can be used to adjust the rategrepsion of the mission.
For example, ify,4(¢t) = 1, and Equations_ (21) and _(22) are satisfied for all the vehidleen
the mission is executed at the pace originally planned intrdgectory-generation phase. On the
other hand;j,(t) > 1 (or 44(t) < 1), results in a faster (or slower) execution of the mission.
As discussed in the next section, the use of the téstm) becomes important when external
unforeseen events demand adjustments to the nominal e®aiitthe mission, such as moving
objects obstructing the flying zone for a limited time framegjuiring the vehicles to modify their
speed profiles to avoid collision. However, in this sectimydhe time-coordination problem is
discussed, and,(t) is regarded as a reference command, rather than a contual iRimally,
Equations[(21) and (22) capture the objective of time-cioatibn, and a control law fofj;(t)

must be formulated to ensure convergence to this equitiriu

Communication losses, dropouts, and switching topologies

To achieve the time-coordination objective, informatiorusih be exchanged among
the vehicles over a supporting communication network. Tifermation flow as well as the
constraints imposed by the communication topology can bdefed using tools from algebraic
graph theory. The reader is referred to [45] for key concaptsdetails on this topic. To account
for the communication constraints imposed by the commutioicanetwork, it is assumed that
the individual vehiclei exchanges information with only a subset of all vehicles)aded as
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N;(t). It is also assumed that the information between vehiclesaizssmitted bidirectionally,
continuously, and without time delays. Moreover, to miraenthe amount of information that
must be interchanged between the vehicles, the UAVs argv@dldo exchange only its own
virtual time variable,y;(¢), with each other. Finally, it is assumed that the connegtiof the
communication grapH'(¢) that captures the communication network topology of the BAV

satisfies the following condition [46]

1 t+T
T / QL(1)Q"dr > ply_,, forallt>0, (23)
t

whereL(t) € RV*N s the Laplacian of the graph(t), andQ € RW-Y*N s a matrix such that
Qly =0 and Q(Q)" =1Iy_;, with 15 being a vector inRY whose components are all

In Equation [(2B), the paramete® > 0 and p € (0, 1] represent a measure of the level
of connectivity of the communication graph. Note that cdiodi (23), hereinafter referred to
as persistency of excitatio(PE)-like condition, requires the communication grap(t) to be
connected only in an integral sense, not pointwise in timeaAnatter of fact, the graph may be
disconnected during some interval of time or may even falbdcconnected at all times. In this
sense, it is general enough to capture packet dropoutsofossmmunication, and switching

topologies.

Time-coordination control

With the above notation, the coordination control problean be summarized as follows:
consider a set ofV multirotor UAVs equipped with autopilots and path-followsi algorithms
that enable the vehicles to follow a set &f commanded trajectories. ;(t). Let the vehicles
communicate with each other over a network satisfying thdilRkEassumption given in Equation
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(23). Then, the objective of the cooperative control probie to design feedback control laws
for 4;(¢) for all the vehicles such that the states defined in Equai@fisand [[ZR) converge to

(a neighborhood of) zero, and such that inequalifie$ (1d)(@8) are not violated.

Coordination control law

To solve this problem, let the evolution of(¢) be given by

5o == b —Fa) —a Y (v — ) — @lep) (24)
JEN;
72'(0) = 'Vd(o) =0, %(0) = 'Vd(o) =1, (25)

wherea andb are positive coordination control gains, whiie(e, ;) is defined as

ai(ep,i) = Yeini
S veall €

with ¢ being a positive design parameter, amgl, the position error vector defined in
Equation [[20). The coordination control law given in Eqaat{24) comprises four terms. The
feed-forward termjy,, allows the virtual target to follow the acceleration pmfdf v, (which,
as discussed later, is adjusted by the collision-avoidamzgule). The second term.b(¥; —5a),
forces the virtual target to track the speed profile imposgdyh which corresponds to the
control objective given in Equation (22). K, is set to1, then the virtual target converges
to the desired speed profile determined by the trajectongigion algorithm. The third term,
—a icn. (Vi —7;), ensures that the virtual target associated with a given Wd&drdinates
its position along the path with its neighbors, as specifigdh® coordination requirement in
Equation [(2IL). Finally, the fourth term;a;(e,;), is a correction term that accounts for along-
track path-following errors. By virtue of this path-follawg dependent term if, for example, one
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vehicle is far behind the desired positidfe, ;|| # 0, then its own virtual target modifies its
speed and waits for it, thus making all the other vehicleslired in the cooperative mission
slow down to maintain coordination. The contribution of treious terms of the coordination
control law is illustrated in Figure] 5, which shows UAVUAV,, and UAV; coordinating along
the transition paths of the coordinated road search mission details on the path-following
controller implemented to perform this simulation, thedesais referred to [28]. At time = 0,
UAV; and UAV, overlap with their respective virtual targets, while UAM positioned far away
from the desired trajectory. When the mission starts, thmauai target associated with UAV
slows down f3 < 1) and waits for UAV to catch up. Thanks to the coordination algorithm, the
other two virtual targets also slow down, followed by thespective UAVs. Figure bc shows the
desired speed profiles, the speed profiles of the virtua¢taygnd the speed profiles of the actual
vehicles. It is important to notice that, once the UAVs reaobrdination, and UAY converges
to its virtual target, then the speed profiles of the UAVs @rge to the desired speed profiles,
and approach the final positions of the transition paths spied equal td m/s, as imposed by
the trajectory-generation algorithm. Figure 5 also shdveg the initial deceleration due to the
path-following error of UA causes a delay in the mission, which terminates approxiynét¢
seconds after the mission time computed at the trajectengition level. Figurds ba ahd] 5b
depict the positions of the UAVs at timeés-= 13 s andt = 18.3 s, showing that the vehicles arrive
at their final destination at the same time. The UAVs can thercged along the road search
paths and keep coordinating along them to ensure safetyuess of the overall cooperative

road search mission.
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Convergence properties and results

The control law given by Equationl (P4) ensures that the thwerdination errors
characterized by Equations (21) andl(22) converge expiatignto zero in the presence of
an autopilot which exhibits ideal performance [27], [290]. Moreover, it is demonstrated that
the maximum guaranteed exponential convergence rate és @iy the sum of the converge rate

of the path-following error and the following term

which depends on the control gaimsndb, the number of vehicled/, and the quality of service
of the communication network, characterized by the parare&t and .. In other words, given

N vehicles and fixed control gains, the performance of the-to@dination algorithm depends
on the amount of information that the UAVs exchange with eaitter over time. This result is

supported by Figure 5d, which shows the time history of therdimation error, computed as

V=722 + (11— 73)2 + (12 — 73)?%, (26)

when UAV;, UAV,, and UAV; coordinate along the transition paths. Notice that, farsitation
purposes, the previous equation does not include the eyrers,. However, it has been argued
previously that the speed profiles of the virtual targetsveage to the desired speed profiles
(which is, 41,42, 43 converge toy; = 1), which in turn implies that the speed profiles of the
vehicles converge to the desired speed profiles. In Figurth&derror given by Equatiorn_(26)
is plotted in two different cases: first, in the case of albhtbcommunication between the
three vehicles, and second, in the case where Ugdmmunicates with only UAY, UAV,
communicates with both vehicles, and UAZommunicates with UAY only. As expected, the
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algorithm exhibits better performance in the first case. ialdally, by properly scaling the
control gainsz andb with the number of vehicled/, the guaranteed rate of convergence reduces
to 11/(47%), which indeed implies that the guaranteed performance efalgorithm does not
depend on the number of vehicles involved in the cooperatiigsion [30]. Finally, it can be
shown that the presented solution ensures stability of thii-wehicle system in the case of
non-ideal tracking performance of the autopilot [27], [38]so in this case it is shown that the
guaranteed performance of the overall control architecti@pends on the quality of service of

the communication network and the performance of the alatiopi

In light of these results, it is important to notice that ibtdesired trajectoriep,;(t,)
satisfy the temporal separation requirement given by Eounigfl2), then the solution to the
cooperative path-following control problem ensures wvighicle safety (which is, the cooperative
vehicles maintain a minimum separation even without kngvéach others’ positions). Figurel5b
gives a convenient perspective of the mission at hand, gmobsts this statement. As highlighted
in the figure, the paths of UAVand UAV; intersect with each other. However, the minimum
spatial clearance at the intersection is maintained in tltesgmce of disturbances, by the
coordination algorithm. As a last comment on this argumtd,relationship between autopilot
performance, quality of the service of the communicatiobwonek, and performance of the
cooperative path-following algorithm, can be judicioushged by the control designer to
guarantee inter-vehicle safety throughout the missiorfatt, based on the knowledge &f)
the quality of service of the communication network, gad the performance of the onboard
autopilot, £, in Equation [(IR2) can be chosen large enough to guarante¢hihatehicles never
collide throughout the mission. The efficacy of the desctibeoperative control framework has

been demonstrated in real flight test indoor scenarios.icpéar, the coordinated path-following
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algorithm is implemented, and two AR.Drones are programtoeditonomously perform various
cooperative tasks (for example, synchronized exchangesifipn, phase-to-phase coordination
on a circular trajectory, dance tango). Videos of the fligist$ and simulations can be found in

[47], where the reader can find further details on the expamis

Collision Avoidance Strategies for Safe Operations

In a real mission scenario, unexpected obstacles couldfentewith the UAVs and
obstruct the airspace during a certain time interval. Irs tbase, the vehicles are required
to execute a collision avoidance maneuver to ensure safeatope in the airspace. To be
effective and reliable, a collision avoidance algorithm stntiake into consideration many
constraints: first, the algorithm must be fast to react todsandunpredicted hazards; second,
collision avoidance must be guaranteed with minimum exghaof information; third, a collision
avoidance maneuver must not prevent the UAVs from satigfgiher mission requirements such
as time-coordination and final position and course; finalliaen one vehicle is avoiding an
external obstacle, it must do it in such a way as to also ensteevehicle safety. The collision
avoidance algorithm is based on three key steps, nadetgction analysis andavoidance Here,
the detection algorithm continuously determines whethere is a possible collision based on
information about the obstacle. In case a possible coflisgredicted, the analysis step decides
whether it must be avoided through speed adjustment octaajereplanning. Lastly, depending
on this analysis, either the speed adjustment block modifiegprogression of the mission, or
the trajectory replanning block redesigns the trajectonavoid the obstacle. In what follows,

these steps are described in detalil.
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Detection

Upon detection of an obstacle, it is assumed that a predicfidts trajectory is available.
The obstacle’s trajectory can be predicted using measursnoé current position and velocity of
the object, which can be obtained from onboard sensors f@eexample, [48]). This predicted
trajectory can be updated at any time according to newlyawai information about the obstacle.
Since this detection algorithm is run repeatedly duringrtission, it automatically re-adjusts

based on the updated predicted trajectory.

At any time during the mission, for a given predicted trapegtof the obstacle, the
objective of the detection algorithm is to verify whethee thbstacle’s trajectory interferes with
the assigned trajectories causing a potential collisionthis end, assume that within a detection

rangeds, that is for

[1Pe(t) = Po(®)]| = |[Pa(7(t)) — Po(t)]] < ds, (27)

the UAV is able to detect the presence of an obstacle postii@ip,(¢). Notice that, for the
sake of simplicity, the index has been dropped from the position vector of itie UAV. In

fact, for detection and analysis parts of collision avomgnonly one UAV is considered, with
the understanding that the solution is intended to be addpteall vehicles (independently) in

multi-vehicle missions.

The vehicle is considered to be in collision with the obstatlthere existt., and ¢

such that

||pd(’YcoI) - po(tcoI)H = tn}/g(l) deh/) - po(t>|| < dsafe,

wheredsase IS the minimum safety distance required between the vehiutethe obstacle, and,
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andt., denote the parameters of the UAV and obstacle trajectaespgectively. For simplicity,
assume that the obstacle always intersects the desiredttaj of the UAV. Therefore, there

existsSpeol such thatpeo = pa(veol) = Polteol) - Finally, define

At = |(Yeol = (1)) — (teol — 1)
as thevirtual time separatiorbetween the vehicle and the obstacle with respegt.4o To better
understand the meaning of thigtual time separationnotice that(t., — t) is the mission-time
needed for the obstacle to arrive a,, while (yco — 7(t)) is the time needed for the UAV to
arrive at this same location, if the rate of progression @lthre path is given byj(¢) = 1 (recall
that~(¢) was defined asirtual time, and+(¢) = 1 implies thaty(¢) evolves like time). Consider
the following inequality:

AtV < tsep, (28)

wheretse is a constant design parameter definedlesired minimum temporal separaticemd
which is discussed in more detail later. If condition](28)nist satisfied, the vehicle and the
obstacle ap., have avirtual time separatiorof at leasttse, seconds. Therefore, if the vehicle
progresses along its trajectory with rate of progressicea 1, for an appropriately chosef3e,

it is guaranteed that the UAV and the obstacle are suffigiesgparated in space gto, and
hence the UAV does not need to take any action. On the othet, ilaf28) is satisfied at time
t, then requiringy = 1 possibly causes a collision, since both the vehicle and tistacle
reachpc, with an insufficient time separation. Obviously, the partenese, must be chosen
with particular attention, while taking into consideratithe dynamics of the vehicle and the
obstacle, as well as their dimensions. With this obseraatio mind, it can certainly be stated
that if at time ¢ conditions(Z27) and (28) are satisfied, then the UAV must execute a collision
avoidance maneuver
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Analysis

Once a collision is predicted, there are many possible walys\a can avoid collision,
such as through speed adjustment, change of course, atorgjeeplanning. In multi-vehicle
missions, it is usually preferred to only adjust the speethefmission so that the UAV remains
on the desired path for all times. However, depending on peed and direction of the obstacle,
adjusting the mission’s speed is not alwaysferable Moreover, dynamic speed and acceleration
limits must be taken into consideration, to verify if such amauver isfeasible In the overall
collision-avoidance framework, feasibility and prefatiépof the speed-adjustment methodology
are first determined. The speed adjustment method is engplbjtas found to be both feasible

and preferable. Otherwise, the trajectory replanning ipleyed in order to avoid collisions.
Here, the speed-adjustment method is deemed preferable if
tsep Z At\érefu (29)

where At represents the time change in mission time required to aweicollision. On the
other hand, the speed-adjustment method is considered teaile only if the dynamics of
the vehicles involved in the mission allow for such a maneuVke reader is referred to [29]

for the exact formulation of these criteria.

Avoidance

Depending on the type of collision that the vehicle must @vaind according to the
analysis described before, the UAV can start an avoidanceemer either by adjusting its
speed without leaving the desired path, or by deviating frorim what follows, both solutions
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are described in detail.

Collision avoidance through speed adjustment: this method for collision avoidance relies on
the fact that the speed of the mission can be easily adjusied the parametey,(t) given in
the description of the time-coordination problem in Eqoiat{22). For this reason, the collision
avoidance algorithm presented in this section fits in wethvthe cooperative path-following
algorithm described previously. By slowing down or spegdiip the overall mission, not only
collision avoidance with external objects is achieved,aisib inter-vehicle safety is automatically
guaranteed. Moreover, as long as only relative temporadtcaints are enforced, the vehicles can
safely proceed along their paths without violating the missequirements. On the other hand,
note that in the case where more than one collision avoidara®uver is required at the same
time, the UAVs must agree and adopt the same solution. Thension can be implemented by
combining the collision avoidance algorithm with some dexipgic. Moreover, in the case where
two or more UAVs have conflicting constraints (for examplee &JAV can only accelerate while
another can only decelerate), then collision avoidanceutiin speed adjustment is not possible,

and the vehicles must adopt an alternative solution (sudmagesctory replanning).

Then, the control law fof,(t), used in Equationi(24), is given as follows:

Fa(t) = k1 (1 = 5)(1 = 4a(t)) — Fmaxs SIGN((Yeol — V(1)) — (teol — 1)), (30)

wherek; is a positive control gaing = 1 whenever speed-adjustment method is found to be
feasible and preferable and spatial collision conditioiveryin Equations[(27)[(28) and (29)

are satisfied. Otherwisg,= 0.

Then, as shown in [29], the UAV avoids collision with the adé, thus ensuring that
the temporal separation between the UAV and the obstacléeatcollision point is always
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greater than the desired minimum time separatigy Moreover, in [29] the authors also
show that the collision avoidance solution accounts forgresence of time-coordination errors
which arise from the use of autopilots with non-ideal tragkiperformance. Notice that, if
(veot — (t)) > (tcol — t), then the obstacle is expected to arrive at the collisiomtpbefore

the vehicle does. Accordinglyy,;(t) = —9max therefore, the UAV slows down rather than

speeding up. Analogous arguments can be made for the case whe — v(t)) < (tca — t),

and ;yd(t) — ;i/max.

It is important to observe that while conditions such[as @1 [29) are only useful to
decide if the vehicle must start a collision avoidance maaewcondition [(2B) determines how
long this maneuver lasts. In fact, Whéyco — 7(t)) — (tcol — t)| > tsep, Which implies [28) is
not satisfied anymore, then according [to] (30) the vehiclepraneed with rate of progression
4 =1, while satisfying the time-separation requirement.

Collision avoidance through trajectory replanning: if the vehicle under consideration predicts
a collision by verifying that conditiond (27) and _{28) are tmieut collision through speed-

adjustment is not feasible or preferable, then the UAV isinegl to replan its trajectory. Unlike

collision avoidance through speed adjustment, this metli@yoidance only affects the mission
for the UAV at a collision course; the rest of the UAVs congrtheir mission without any change.
This feature ensures that extra communication costs redjdor the exchange of trajectory
information is not incurred. Despite this lack of infornati exchange, however, it is ensured

that the trajectories are still deconflicted.

The procedure for replanning is outlined in the followingheTkey idea behind the

algorithm is to exploit the geometric properties of the Bézurves to add a detour to the
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original trajectory thereby obtaining a new trajectory @th{i) avoids the obstacléji) does not
violate the dynamic constraints of the vehicle, missiorunegnents, and minimum inter-vehicle
separation, andiii) ensures continuity of the trajectory and its derivativelse Tetailed step-
by-step procedure for collision avoidance algorithm tiylodrajectory replanning can be found
in [49]. Here, these steps are listed as follows:

First, the trajectory replanning control block approxigsthe obstacle’s predicted trajectory
with Bézier curves. Second, assuming that the missionrpssipn rate has convergedc= 1,
the algorithm then finds the Bézier curves that describeséparation vector between the vehicle

and the obstacle as a function of time,

d(ts) = pa(ta) — Polta)- (31)

For illustrative purposes, a two-dimensional example gasation curve is given in Fig-
ure [6, where the red circle represents the collision area, rétdius of which is the min-
imum safety distanceds,e Third, the collision avoidance algorithm finds a new trajec
tory panew(ts) Dy adding a detour tgg(t;) such that the separation curve moves out of
the collision area. For illustration purposes, the readereferred to the following video

www. yout ube. coni wat ch?v=ALZ(CEK8f Q

The detour is found in such a way that the new trajectofye, With velocity vectorn ; new
and acceleration vectet, new, avoids the collision while keeping the current positioaloeity,
and acceleration unchanged, satisfies the boundary comslitivhile meeting the following

requirements

[[Panen(ta) — Palta)|| < Ap,  ||[Vanew(ta) — va(ta)l] < Av,  ||agnew(ts) — aa(ta)l] < Aq,

whereA,, A, and A, can be computed priori given some assumptions on the obstacle size
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and speed.

Notice that the boundgd,, A, and A, characterize the deviation in position, velocity,
and acceleration of the new trajectory from the original.ohlerough a priori computation of
these bounds, inter-vehicle safety can be guaranteed.xaongde, if the vehicles are required
to maintain a safety distance @f from each other, then the inter-vehicle distance can be set
to be £; > E + A, during the initial trajectory generation. The vehicles #ren guaranteed
to maintain a distance of at leaBtfrom each other even during collision avoidance. A similar
argument applies for satisfaction of vehicle dynamic casts. The reader is referred to [31],

[49] for detailed analysis and proofs.

Simulation Results

In this section, the multi-vehicle road search motivatiogeample is implemented to
illustrate the performance of the cooperative frameworspnted in this article. The example
is used to demonstrate that with each of the components idedcpreviously, the general
framework allows for the execution of the cooperative nassiTo briefly summarize, the
objective is to inspect an area by three cooperating mtdtiso The multirotors have to transit
from their holding area to the area of interest, which is tfa@sition phaseand, subsequently,
commence the inspection of a designated road. It is impbitttah the multirotors simultaneously
arrive at their destinations during the transition phaseth& search is executed inparallel
sweep search patterong the road. Needless to say, that the roach search hasetaebuted in
a coordinated way in order to maintain the overlap of fieldsiefv of their onboard cameras.

Therefore, coordination between the vehicles is not onlycat from a safety point of view, it
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is also essential to accomplish the mission at hand. Duhiegdad search phase, the vehicles
encounter obstacles. However, it is shown that the misspectives are not compromised due

to the online collision avoidance algorithm.

The mission scenario is implemented in Matlab/SimutinkAs mentioned earlier, the
emphasis of this article is not on the performance of an oy controller, but rather it is
considered as given with certain performance specificatiblowever, for the sake of providing
a realistic simulation scenario, 6DOF models represertiiegdynamics of the multirotors have
been implemented; each of the multirotor is equipped withingoke inner-loop autopilot for
angular rate command tracking; additionally, measuremerge and transmission delays have

been added.

Figure[T shows the complete execution of the mission, fraansition phase to the
completion of the actual road search. The three-dimenkitight paths are presented in
Figure[7&a, while the separations between each pair of \veshaile shown in Figufe I7b. It can be
seen that the vehicles maintain a minimum distanc& ef 1 m at all times. The errors between
the commanded path and the actual flight path of the multisodoe given in Figuré Tc. The
implemented path-following algorithm allows close tragkiof the commanded paths, while the
dynamic constraints of the vehicles (see Figurels 7d[aind réephat exceeded throughout the

entire mission. The values faf, nax and a; max are given in Tablél I.

As explained previously, coordination between the vebidke achieved if the errors
between the coordination variablegt) are zero. This coordination error is plotted in Figuré 8a
and it can be concluded that the vehicles are coordinatedighiout the entire mission. Lastly,

Figure[8b presents the time histories of the rates of pre@m®es;(¢) and the commanded rate of
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progressiony,(t). It can be seen that thig(¢) track the command closely. Note that the desired
rate of progression is equal tothroughout the mission, except in one occasion where speed
adjustment of the vehicles is required to avoid a movingautdst This case is discussed in more
detail below. Three distinct events during the mission oc¢bat require a separate presentation
of the results: thdransition phaseavoidance of a moving obstacland avoidance of a static
obstacle

Transition phase: the results regarding the transition phase have already thseussed in the
section on time-coordination and, hence, they are not tegdaere. However, note that in the
simulation shown in this section, the initial errors betweéke commanded path and the actual
position of the vehicles are of smaller value. Therefore,ghth-following and time-coordination
errors are less pronounced but more realistic.

Moving obstacle: as discussed earlier, for coordinated missions it is pabferto avoid a
collision by changing the mission progression rate. To destrate this capability, a moving
obstacle in a collision course with UAVin introduced. To avoid this obstacle, the mission
progression rate is increased by the collision avoidangeri@hm. This avoidance maneuver is
illustrated in Figurd 9. Figure_9a shows the distance of thetacle from all three UAVs with
respect to time. It can be seen that the vehicles maintaistargdie of more thah m from the
obstacle. In the same figure, the distance of YA¥m obstacle is plotted in the case where the
collision avoidance maneuver is not executed, thus iitistg where the collision would happen.
To demonstrate regular time coordination between vehidlggg the avoidance maneuver, the
time-coordination error is presented in Fighré 9b. Findhg increase in the mission progression
rate for the avoidance maneuver is shown in Figuie 9c, wkgre for all vehicles along with

Y4(t) take values greater than
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Static obstacle: Next, consider a static obstacle in the path of YASince the obstacle is static,
collision avoidance through speed adjustment is infeasanid, therefore, collision avoidance
through trajectory replanning is used. Figlire |10a showsdtk&ance of the vehicle from the
obstacle with and without collision avoidance. Note that tibstacle is not detected by UAV
and UAV,. It can be seen that the vehicle avoids the collision by mamimg a distance of
more thanl m. The replanned trajectory can be seen against the origimalin Figure[_ 10b
where the small detour added to the trajectory is visiblestlyathe coordination error and the
mission progression rat&;(¢) for the UAVs are plotted in Figurgs 10c ahd 10d, respectjvely

thus demonstrating that the time-coordination betweervéiecles remains unaffected.

Conclusion

In this article a safe multi-vehicle control framework haseh presented, which allows a
fleet of multirotor UAVs to follow deconflicted desired trajeries, coordinate along them in order
to satisfy relative temporal constraints, while avoidimdjision with moving and static obstacles.
The described methodology is based on three key resultst, Fr centralized cooperative
trajectory-generation algorithm produces a set of spptdéconflicted paths together with a
set of desired speed profiles. These trajectories guaramtsevehicle safety, while satisfying
specific temporal mission requirements, as well as dynawmmstcaints of the vehicles. Then, a
distributed cooperative path-following controller eresuthat the vehicles follow the trajectories
while coordinating along them in order to arrive at the finesthation at the same time, or with
a predefined temporal separation, according to the missiguinements. The cooperative control

architecture relies on the presence of an inner-loop aetopnd an outer-loop path-following
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controller which guarantee that the distance between the&hleeand its desired position along
the path remains bounded throughout the mission. Then,pibedsof each vehicle is indirectly
adjusted in order to satisfy the temporal constraints arniese coordination. Finally, collision
avoidance control laws are formulated to guarantee safetiieooverall fleet of vehicles even
in the presence of unpredicted obstacles. The describetisoluses the speed of the vehicles
to control the progression along the path in order to averbssiple collision with a moving
obstacle. Moreover, a fast onboard trajectory replannahgti®n is presented to allow the vehicles
to deviate from the original trajectory whenever collisiawoidance through speed adjustment
is not possible. The described approach borrows conceptstaois from a broad spectrum
of disciplines, leading to a simple design procedure basedeaif-contained control blocks. A
specific example, consisting of a cooperative road seardsiom, was discussed throughout
the article to describe the developed framework. The beanefithis approach can be extended
to cooperative control of multiple heterogeneous robaishsas autonomous marine vehicles
and fixed-wing UAVs, or ground robots and multirotor UAVS, ialn is the subject of ongoing

research.
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Figure 1: General framework: the trajectory-generati@operative path-following, and collision
avoidance blocks interact to ensure safe execution of catipe missions. The trajectory-
generation algorithm computes a geometric path and a spesilepwhich are sent to the
collision avoidance module. The collision avoidance blobkcks if an imminent collision with
a detected obstacle is going to take place. In this case, diffes the path or the speed profile,
and sends them to the cooperative path-following algorit@therwise, the desired trajectory
is left unchanged and sent to the cooperative control modilie cooperative path-following
control block, comprised of path-following and time-comkation algorithms, allows the UAV

to execute the cooperative mission.
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Figure 2: Cooperative road search. The figures illustrateeaayio in which cooperation among
the multirotors is required to accomplish the task at hartie TAVS, starting from random
initial positions, follow the transition paths, depictesl solid lines, and arrive at point A. Then,
they proceed along the road search paths, represented ibylinek, while coordinating with
each other to accompish the cooperative road search misstmperation along the road search

paths guarantees non-zero intersection between the fiedsw of the cameras.
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(a) Obstacle’s trajectorp,(t,) (shown in red) and

vehicle’s trajectoryp(t4) (shown in blue).
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Figure 6: Demonstration of the separation curve: The topréigghows the trajectory of the
vehicle and the quadrotor in blue and red, respectivelys tléar that their trajectories overlap,
however, it is hard to tell if a collision occurs. In the bettdigure, the separation curve is

shown which enters the circle with radids,e thus it is clear that a collision does occur.
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Figure 7: Road search mission execution by team of threeeratipg UAVS, including the

transition phase from holding area to area of interest.
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TABLE [: Flight conditions and dynamic constraints of the \UA

UAV 1 UAV 2 UAV 3
p, [m] (0,2.50, 1.00) (5.00,5.00,1.00) (3.00,1.00,1.00)
o, [m/s] 0 0 0
p’, [m] | (45.00,60.00,10.00) (45.00,63.00,10.00) (45.00,66.00,10.00)
of, [mis] 4.00 4.00 4.00
Vamax [M/s] 6.76 6.76 6.76
ag.max [M/s?] 4.28 4.28 4.28
Umax  [M/S] 10.00 10.00 10.00
amax  [M/s?] 12.00 12.00 12.00
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Sidebar 1: Cooperative Path Following

The problem of cooperative path following amounts to maldriiget of vehicles converge
to and follow a set of desired spatial paths, while meetingrqmecified spatial and temporal
constraints. Over the last decade, there has been growieigst in the problem of coordinated
path-following control of fleets of autonomous vehicles,mhafor the execution of cooperative
marine missions involving multiple autonomous surface anderwater vehicles. Initial work in
this topic can be found in [50]-[53]. The coordinated paihefnving control problem was implicit
in the early work in [50], where the authors built on and egththe single-vehicle “manoeuvre
regulation approach in [54], and presented a solution toptioeblem of coordinated operation
of an autonomous surface vehicle and an autonomous undgrvedticle. The strategy adopted,
however, requires the vehicles to exchange a large amounfarfation, and cannot be easily
generalized to larger teams of vehicles. These drawbacks lager overcome in [51], which
presented a leader-follower cooperative approach thaio&t) decouples the temporal and spatial
assignments of the mission. The solution adopted is root#tki results on path-following control
of a single vehicle presented in [55], and takes advantagigedfct that, with this path-following
algorithm, the speed profile of each vehicle becomes aniadditdegree-of-freedom that can
be exploited for vehicle coordination. Moreover, in thiguge the two vehicles only need to
exchange the (scalar) “along-path positions of their irtargets, which reduces drastically the
amount of information to be exchanged among vehicles wherpeaoed to the solution developed
in [50]. Interestingly, an approach similar to the one in][5das presented at approximately
the same time in the work in [52] and [53], where a nonlineanticd design method was

presented for formation control of a fleet of ships. The apphorelies on the maneuvering
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methodology developed in [56], which is then combined witteatralized guidance system that
adjusts the speed profile of each vehicle so as to achieve anttaim the desired formation
configuration. The maneuvering strategy in [56] was alsdagqnl in [57], where a passivity
framework is used to solve the problem of vehicle coordoratind formation maneuvering.
In [58], the authors extended the approach in [51] and adddeshe problem of steering a
group of vehicles along predefined spatial paths while Ingl@ desired (possibly time-varying)
formation pattern. Using results from nonlinear systent aligebraic graph theory, conditions
were derived under which the control algorithm solves therdmated path-following control
problem in the presence of switching communication tope®@nd network link latencies. In
particular, stability of the closed-loop system was anatiymnder two scenarios: first, networks
with brief connectivity losses; and second, uniformly jyinconnected communication graphs.
Stability of coordinated path-following strategies undgmmunication limitations was also
investigated in [59]. The approach in [51] was also exteridg@0], where the authors addressed
the problem of coordinated control of multiple UAVs. To erde the temporal constraints of the
mission, the coordination algorithm relies on a distrildutentrol law with a proportional-integral
structure, which ensures that each vehicle travels alangadth at the desired constant speed,
and also provides disturbance rejection capabilitiesreateady winds. The work in [60] was
later extended in [61] to the case of arbitrary (feasiblegirdel speed profiles, multiple leaders,
and low-connectivity scenarios. Related work can also b@dan [62], which presents a multi-
vehicle control architecture aimed at reducing the fregyeat which information is exchanged
among vehicles by incorporating logic-based communiaatido this effect, the authors borrow
from and expand some of the key ideas exposed in [63] and\@¥dre decentralized controllers

for distributed systems are derived by using, for each aysiis local state information together
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with estimates of the states of the systems that it commtesaaith. Other relevant cooperative
motion-control algorithms have been presented in thedlitee that address problems akin to
that of coordinated path following. In [65] and [66], for emple, synchronization techniques
are used to develop control laws for ship rendezvous mamnguiéso, the work in [67] presents
a solution to the problem of coordinated path following foulthragent formation control. In
the setup adopted, a reference path is specified for a noicphp®int of the formation, which
plays the role of a virtual leader, while a desired formatpattern is defined with respect to
this nonphysical point. Control laws are then derived threstuee that the real vehicles converge
to the desired reference points of the formation, while thieual leader follows the reference

path.
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