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Abstract— Given a class of nonlinear systems with implicitly
defined outputs, we provide a new algorithm to find appropriate
local coordinates, in which the resulting system takes a desired
target form that is state-affine, up to output and input injection.
Once in the target form, it is possible to construct a state-space
observer with linear, possibly time-varying, error dynamics.

I. INTRODUCTION

Over the last few decades, a number of research work has
addressed the problem of obtaining sub-classes in the general
class of continuous-time nonlinear systems

ẋ = fu(x) := f(u, x)
y = hu(x) := h(u, x) (1)

for which there exists, at least locally, an observer with linear
error dynamics [9], [11], [12], [14], [16]–[18]. The problem
can be formulated as follows: given system (1) where f and
h are sufficiently smooth functions, x ∈ Rn is the state,
u ∈ Rm is an input signal and y ∈ Rq is the measured
output, find (if it exists) a smooth change of coordinates
z = Θ(x) such that in the new coordinates it is possible
to construct a state observer ẑ so that the estimation error
z̃ = ẑ − z is governed by an asymptotically stable linear
(possibly time varying) dynamical system.

The first results in this area includes the work by
Krener [16], where the linearization of a nonlinear system is
addressed with no reference to any output; and Krener and
Isidori [17], where the linearization is studied up to output
injection, that is, the aim is to find z = Θ(x) for a nonlinear
system ẋ = f(x), y = h(x) that leads into a linear system,
up to an output injection,

ż = Az + Φ(y), y = Cz

where A and C are linear maps and the vector field Φ(y)
only depends on the known output signal y. Note that a
Luenberger type observer ˙̂z = Aẑ + Φ(y) + L(y − Cx̂)
reaches the linear error dynamics ˙̃z = (A − LC)z̃, where
z̃(t) → 0 as t → +∞ provided that L is selected so that
A− LC is Hurwitz .

Using tools from Differential Geometry, Hammouri and
Gauthier in [11], [12], Hammouri and Kinnaert in [14], and
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Xia and Gao in [21] extended the linearization problem to
systems in form (1) to obtain the following target system,

ż = Auz + Φu(y), y = P qz (2)

which is a time-varying linear system up to output and input
injection and where P qz = [z1 z2 . . . zq]> ∈ Rq collects the
first q coordinates1 of z = [z1 z2 . . . zn]> ∈ Rn, q ≤ n.

More recently, in [20] we have considered target systems
in the more general form

ż = Auz + Φu(y) (3a)

0 = CuP
sz + (P sz)>Duy + Euy + Fu (3b)

where s ≤ n, Au ∈ Mn×n(R), Cu ∈ Mp×s(R),
Eu ∈ Mp×q(R), and Fu ∈ M1×p(R) are matrices with
real entries, and Du = colM(D1

u, D
2
u, . . . , D

p
u) ∈

M1×p(Ms×q(R)) is a column matrix whose
entries are the matrices Di

u ∈ Ms×q(R); i =
1, . . . , p. In this case, we define (P sz)>Duy :=
[(P sz)>D1

uy (P sz)>D2
uy . . . (P sz)>Dp

uy]> ∈ Rp.
As a simple illustration of the notation, colR(D1

u, D
2
u) and

colM(D1
u, D

2
u) stand, respectively, for

[
a11 a12

b11 b12

]
and[ [

a11 a12

][
b11 b12

] ], for given matrices D1
u =

[
a11 a12

]
and

D2
u =

[
b11 b12

]
. The main motivation for considering

target systems in the form of (3) is that there exists an
observer with linear error dynamics for this class of systems
(under some suitable observability conditions, involving the
matrices appearing in (3), see details in [2]). For example,
for the following perspective output system

ẋ = fu(x) =
[

0 1
−1 0

]
x+

[
0

y + u

]
, x1y = x2 (4)

the output equation can be rewritten in the form of equa-

tion (3b):
[
0 −1

]
x + x>

[[
1
0

]]
y = 0, because x = P 2x.

Thus, system (4) can be rewritten in the form of system (3)
but not in the form of (2). Resorting to the results in [2,
section 3], we can derive the following robust H∞ type

optimal observer with dynamics ˙̂x =

[
0 1
−1 0

]
x̂+

[
0

y + u

]
−

γ2Q

[
y2 −y
−y 1

]
x̂, where γ > 0 is a given gain level. The

1For a given matrix M , M> denotes its transpose. Notice that we use
superscripts to denote the coordinates of a vector v = [v1 v2 . . . vk]> ∈
Rk . The reason of this is because we will use some tools from Differential
Geometry where often that notation is convenient. Further, collecting either
the first or the last q coordinates lead to completely equivalent problems.



matrix Q is the solution of Q̇ =

[
λ 1
−1 λ

]
Q+Q

[
λ −1
1 λ

]
−

γ2Q

[
y2 − γ−2 −y
−y 1− γ−2

]
Q, Q(0) = Q0, with Q−1

0 > 0,

where λ ≥ 0 denotes a forgetting factor. It follows that the
estimation error x̃ = x̂−x satisfies the (time-dependent) lin-

ear dynamics ˙̃x =

([
0 1
−1 0

]
− γ2Q

[
y2 −y
−y 1

])
x̃. See [2]

for details. On the other hand, as shown in [20], there is
no change of coordinates transforming system (4) into the
form (2), in a neighborhood of the point x0 = [1 0]>. The
example shows the importance of taking into consideration
also the implicit output notation, that is not covered by the
explicit framework proposed previously in [11], [12], [14].
Notice that we can also show that our framework is not
covered by the ones proposed more recently in [4], [5], [7],
[8], [10]; see [20].

In [20], we have also provided an algorithm to obtain the
desired coordinate transformation z = Θ(x) that transforms
the given nonlinear system

ẋ = fu(x) (5a)

0 = Cug(x) + g(x)>Duy + Euy + Fu (5b)

into the target form (3), with P sz = g(x) = g(Θ−1(z)).
Comparing the algorithms in [11] and in [14], for the explicit
single-output case, the one in [14] looks more elegant. On the
other hand the algorithm presented in [20], for the implicit
multi-output case, is closer to a generalization of the one
in [11] than to the one in [14]. A natural question is whether
is it possible to generalize the results in [14] to the multi-
output case. In this paper, we give a positive answer by
restricting appropriately the sub-class of nonlinear systems.
Both the algorithm in [20] and the one we present here,
aim to find a suitable s-tuple of vector fields from which
we can obtain the desired change of coordinates (if such
a change of coordinates does exist). While the algorithm
in [20] provides a set of equations that certain suitable s-
tuples must do satisfy, the one we present here gives us
directly those s-tuples.

The rest of the paper is organized as follows: in Section II
we recall the necessary and sufficient conditions to be able to
rewrite the original system (5) in the desired target form (3).
In Section III we recall the algorithm in [20], and present
the new one, for the restricted sub-class of systems. Section
IV illustrates the contribution of the paper. Brief conclusions
are discussed in Section V.

II. LINEARIZATION UP TO OUTPUT AND INPUT INJECTION

A. Notation and definitions

We assume that the reader has some familiarity with
basic concepts of Differential Geometry and Control Theory.
We briefly recall some terminology. For a more complete
discussion on what follows we suggest the works [1], [6],
[15], see also [19].

Given a system of coordinates (x1, x2, . . . , xn), we con-
sider the vector fields in Rn, ∂/∂xk defined by ∂/∂xk(x) =
[δ1k δ

2
k . . . δn

k ]> ∈ TxRn ∼ Rn, where δj
i is the Kronecker

delta function, for i, j ∈ N nonnegative integers. We denote
by V(Ω) the C∞(Ω)-module of smooth vector fields in
Ω and, for k ∈ N, by Λk(Ω) the C∞(Ω)-module of
(differential) k-forms defined in the Cartesian product V(Ω)k

for k > 0, and Λ0(Ω) := C∞(Ω). Further, we denote
by α ∧ β the wedge product between the forms α and β,
and by ιXw the interior product ιXw(V1, V2, . . . , Vk−1) :=
w(X, V1, V2, . . . , Vk−1) between a vector field X and a k-
form w; for a r-tuple of vector fields, with r ≤ k, we define
recursively ι(X1, X2, ..., Xr)w := ιXr

ι(X1, X2, ..., Xr−1)w. The
exterior derivative of a k-form w will be denoted by dw. The
n-tuple (h1, h2, . . . , hn) of smooth functions is a system of
coordinates in Ω ⊆ Rn if dh1 ∧ dh2 ∧ · · · ∧ dhn |x 6= 0, for
all the points x ∈ Ω. Given two systems of local coordinates
(x1, x2, . . . , xn) and (h1, h2, . . . , hn), we have

∂/∂xk =
n∑

j=1

∂hj
/∂xk∂/∂hj. (6)

We denote by L the Lie derivative operator. For a vector field
X , and a k-form w we have: LXw := ιXdw = dw(X) for
a function w, i.e., if k = 0, and LXw := (ιXd + dιX)w if
k ≥ 1. In particular, given a vector field V =

∑n
j=1 V

j∂/∂xj

we have that V j = dxj(V ) = LV x
j .

Writing X =
∑n

i=1X
i∂/∂xi, we may also define the Lie

derivative of a vector field Y =
∑n

i=1 Y
i∂/∂xi by setting, in

coordinates,

LXY = [X, Y ] :=
n∑

i=1

n∑
j=1

(
Xj ∂Y

i

∂xj
− Y j ∂X

i

∂xj

)
∂/∂xi; (7)

the vector field [X, Y ] is called the Lie bracket between the
vector fields X and Y . The identity

L[X, Y ]f = LXLY f − LY LXf (8)

holds for every function f ∈ Λ0(Ω).

B. Necessary and sufficient conditions

We now recall the conditions to the existence of a change
of coordinates that carries (5) into the target form (3),
with P sz = g(x). To this end, consider first the following
auxiliary system

ẋ = fu(x), ȳ = g(x) (9)

where fu and g are obtained from (5) and it is assumed that
(9) is observable in the rank sense (see definition, e.g., [3]) in
a neighborhood of a given point x0. This means that {dw|x0 |
w ∈ O} is n-dimensional, where O stands for the smallest
set containing {g1, g2, . . . , gs}, and closed under all the Lie
derivatives {Lfu | u is a constant in Rm}, and dw|x0 stands
for the evaluation of dw at x0.

Let X = (X1, X2, . . . , Xs) be a s-tuple of vector fields,
and define a sequence of vector spaces as follows: set dΓ :=
dg1∧dg2∧· · ·∧dgs and denote by ΩX

1 the real vector space
generated by the set of (1 + s)-forms {dLfu

gj ∧ dΓ | 1 ≤
j ≤ s and u ∈ Rm}, that is

ΩX
1 := spanR{dLfug

j ∧dΓ|1 ≤ j ≤ s and u ∈ Rm}. (10)



Recursively, for k ≥ 2, define the real vector space

ΩX
k := spanR{Lfu

(ιXw) ∧ dΓ | w ∈ ΩX
k−1 and u ∈ Rm}.

Define also the smallest real vector space ΩX containing all
these previous ones by

ΩX := spanR{w | w ∈ ΩX
k and k ∈ N0}

and consider the vector space

Ω[X, g] := spanR( ιXΩX ∪ {dg} )

with {dg} := {dgj | j = 1, 2, . . . , s}. Finally, denote
dΥ := dy1∧dy2∧· · ·∧dyq , where [y1 y2 . . . yq]> := y are
the coordinate functions of the output y ∈ Rq in system (5).

We are now ready to present the necessary and sufficient
conditions to be able to transform the system (5) into the
target form (3), see [20].

Theorem 2.1 ( [20]): Consider a given point x0 and sup-
pose that in a neighborhood U of x0, system (9) is observable
in the rank sense, dΥ 6= 0, and dyj ∧ dΓ = 0 for every
j = 1, 2, . . . , q. Then up to a change of coordinates, system
(5) can be written in the form of (3) in a sub-neighborhood
N ⊆ U of x0 if, and only if,

a. dΓ|x0 6= 0;
b. there exists a s-tuple of vector fields X =

(X1, X2, . . . , Xs) such that:
i. LXig

j = δj
i in U ;

ii. the real dimension of ΩX is equal to n− s in N ;
iii. dιXΩX = {0} in N ;
iv.
∧n−s

ιXΩX ∧ dΓ|x0 6= {0}, and
v. dιfuΩ[X, g] ∧ dΥ ⊆ Ω[X, g] ∧ dΥ in N .

Remark 2.1: To have the desired output equation (3b)
we select zi = gi for i ∈ {1, 2, . . . , s}. For the rest
of the coordinate functions we may choose them from a
basis {dzj | j = s + 1, s + 2, . . . , n} for ιXΩX . Notice,
however that these last coordinates can be replaced by a
family {z̃j | j = s+1, s+2, . . . , n}, where z̃j ∈ spanR{zi |
i = 1, 2, . . . , n} and dΓ ∧ dz̃s+1 ∧ dz̃s+2 ∧ · · · ∧ dz̃n 6=
0. Applying this linear change preserves the form of the
target system, which means that both (z1, z2, . . . , zn) and
(z1, z2, . . . , zs, z̃s+1, z̃s+2, . . . , z̃n) lead to the desired
target system form. In comparison to the explicit output
case addressed in [11], [12], [14] we have mainly two new
conditions: dΥ 6= 0 and b.v. Further, notice that in the
explicit output case we have dΥ = dΓ, and b.v will follows
from the preceding conditions and from the definitions.

III. THE ALGORITHMS

From Theorem 2.1 we could conclude that the conditions
to cast the original system (5) into the desired target form (3)
resumes to find a suitable s-tuple of vector fields. Once we
obtain this s-tuple we can find an appropriate local change
of coordinates as indicated in Remark 2.1. This section
addresses the problem of finding that s-tuple of vector fields.
We start by recalling the general algorithm presented in [20],
then we present a more elegant one for a particular sub-class

of systems. To this end, we first generalize for the multi-
output case the results in [14], and which proof can be done
analogously as in [14], see [19, Lemma 4.1].

Lemma 3.1: Let system (9) be observable in the rank
sense at x0 with s < n. Denote {dg} := {dgj | j =
1, 2, . . . , s}. Then, it is possible to construct a length-k0

sequence of subsets S1, S2, . . . , Sk0 such that
• S1 ⊂ {1, 2, . . . , s} × Rm and Sk ⊂ Sk−1 × Rm, for
k = 2, 3, . . . , k0;

• for 1 ≤ k1 ≤ k0 the family

Bk1 := {dg} ∪ {dLfuk
Lfuk−1

. . .Lfu1
gi |

k = 1, 2, . . . , k1 and (i, u1, u2, . . . , uk) ∈ Sk}

is a basis for the module spanC∞(U)({dg} ∪ Ak1)
spanned by the set {dg} ∪ Ak1 , with Ak1 given bydLfuk

Lfuk−1
. . .Lfu1

gi

∣∣∣∣∣ k = 1, 2, . . . , k1

i = 1, 2, . . . , s
u1, u2, . . . , uk ∈ Rm


in a suitable neighborhood U of x0;

• Bk0 is a basis for dO, where O is the observable space.

A. The general algorithm

1) The case s < n: We start by noticing that, for the
target form (3), we have that for each k ∈ N0

ΩX̃
k = spanR{πjMu1u2...uk

dz ∧ dΓ | j = 1, 2, . . . , s
and u1, u2, . . . , uk ∈ Rm}

= spanR{(dLful
. . .Lfu2

Lfu1
zj ∧ dΓ)|z0

| 1 ≤ l ≤ k
j = 1, 2, . . . , s and u1, u2, . . . , ul ∈ Rm}

where, rewritting the matrix Au as a block matrix
[Âu Āu] := Au with Âu ∈ Mn×s(R) and Āu ∈
Mn×(n−s)(R), we define Qsz := [zs+1 zs+2 . . . zn]>,
and Mu1u2...uk

:= Āu1Q
sĀu2Q

s . . . Āuk
Qs. Further X̃ :=

(∂/∂z1, ∂/∂z2, . . . , ∂/∂zs), dz := [dz1 dz2 . . . dzn]>, and
πj is the row matrix (projection onto the j-th coordi-
nate)

[
δ1j δ2j . . . δn

j

]
. Then given a sequence S as in

Lemma 3.1 we find, for each k ∈ {1, 2, . . . , k0}:

spanR{πjMu1u2...uk
dz ∧ dΓ | j = 1, 2, . . . , s

and u1, u2, . . . , uk ∈ Rm}
= spanR{(dLful

. . .Lfu2
Lfu1

zj ∧ dΓ)|z0
| 1 ≤ l ≤ k,

j = 1, 2, . . . , s, and (j, u1, u2, . . . , ul) ∈ Sl}
= spanR{πjMu1u2...ul

dz ∧ dΓ | 1 ≤ l ≤ k,
j = 1, 2, . . . , s, and (j, u1, u2, . . . , ul) ∈ Sl}. (11)

To find a s-tuple of vector fields satisfying the conditions
of Theorem 2.1 for system (5), and supposing that such s-
tuple exists, we may proceed as follows: first of all, for
a s-tuple of vector fields X = (X1, X2, . . . , Xs), define
recursively the following (s+ 1)-forms

IX
(r, u1)

= dLfu1
gr ∧ dΓ

for all r ∈ {1, 2, . . . , s} and u1 ∈ Rm; and

IX
(r, u1, u2, ..., uk−1, uk) = (Lfuk

ιXIX
(r, u1, u2, ..., uk−1)

) ∧ dΓ



for all r ∈ {1, 2, . . . , s}, k ≥ 2 and u1, u2, . . . , uk ∈ Rm.
Suppose that the system (9), auxiliary to system (5), is

observable in the rank sense at x0, and fix a sequence S as in
Lemma 3.1. We look for a s-tuple X = (X1, X2, . . . , Xs)
of vector fields, with Xi =

∑n
j=1X

j
i

∂/∂xj solving, step by
step, the following conditions

1. dgj(Xi) = δj
i for all i, j ∈ {1, 2, . . . , s};

2. successively for 1 ≤ k ≤ k0:
a. for all j ∈ {1, 2, . . . , s} and v1, v2, . . . , vk ∈ Rm,
IX

(j, v1, v2, ..., vk) ∈ spanR{IX
(r, u1, u2, ..., ul)

| l ∈
{1, 2, . . . , k} and (r, u1, u2, . . . , ul) ∈ Sl};

b. for all (r, u1, u2, . . . , uk) ∈ Sk,
dιXIX

(r, u1, u2, ..., uk) = 0;
3. for all (j, u1, u2, . . . , uk0) ∈ Sk0 and v ∈ Rm,
IX

(j, u1, u2, ..., uk0 , v) ∈ spanR{IX
(r, u1, u2, ..., ul)

| l ∈
{1, 2, . . . , k0} and (r, u1, u2, . . . , ul) ∈ Sl};

4. for all j ∈ {1, 2, . . . , s}, k ∈ {1, 2, . . . , k0} and
(r, u1, u2, . . . , uk) ∈ Sk, both (dιfudgj) ∧ dΥ and
(dιfu

ιXIX
(r, u1, u2, ..., uk)) ∧ dΥ are elements of the real

vector space spanned by

{dgi ∧ dΥ | i = 1, 2, . . . , s}

∪
{

(ιXIX
(r, u1, u2, ..., uk)) ∧ dΥ | k ∈ {1, 2, . . . , k0}

and (r, u1, u2, . . . , uk) ∈ Sk

}
.

It now follows from the way the s-tuple X is computed
that it will satisfy the conditions of Theorem 2.1 if, and only
if, it results from the algorithm. The solution for X is not
necessarily unique but we only have to select one. Note that
by (11), the intrinsic condition in step 2.a of the algorithm
holds for a system in target form.

2) The case s = n: Let system (9) be observable in
the rank sense. From Theorem 2.1, the system (5) can be
rewritten in target form if, and only if, a holds together with
dLfudgi ∧ dΥ ∈ spanR{dg} ∧ dΥ, for all i = 1, 2, . . . , n.

B. A particular algorithm

Resorting to the ideas presented in [14] that only considers
the explicit single-output case, we now present for the
implicit multi-output case a more elegant algorithm to find
the s-tuple of vector fields for a class of systems for which
there exists a special sequence among those described in
Lemma 3.1.

Proposition 3.2: Let system (9) be observable in the
rank sense at x0 with s < n. Denote {dg} := {dgj |
j = 1, 2, . . . , s}. Suppose that we can construct a length-
k0 sequence S1, S2, . . . , Sk0 satisfying the properties in
Lemma 3.1 and such that

there exist v1, v2, . . . , vk0 ∈ Rm with
(i, v1, v2, . . . , vk0) ∈ Sk0 for all i ∈ {1, 2, . . . , s}. (12)

Then, for each i ∈ {1, 2, . . . , s}, define the vector field Yi

by the equations
• LYi

gj = 0 for all j ∈ {1, 2, . . . , s},

• LYiLfuk
Lfuk−1

. . .Lfu1
gj = 0

for all
{
k = 1, 2, . . . , k0 − 1
(j, u1, . . . , uk−1, uk) ∈ Sk

,

• LYi
Lfuk0

Lfuk0−1
. . .Lfu1

gj = 0

for all
{
τj, 1, k0 := (j, u1, . . . , uk0−1, uk0) ∈ Sk0

τj, 1, k0 6= (i, v1, v2, . . . , vk0) ,

• LYi
Lfvk0

Lfvk0−1
. . .Lfv1

gi = 1.
Finally, for Xi set the iterated Lie bracket

Xi := (−1)k0 [fv1 , [fv2 , [. . . [fvk0−1 , [fvk0
, Yi]] . . . ]]].

Then, system (5) can be rewritten in the target form (3)
if, and only if, the s-tuple of vector fields X =
(X1, X2, . . . , Xs) satisfy the conditions in Theorem 2.1.

Proof: [Outline] Following a similar reasoning
as in [14] we can prove that for a system in target
form in coordinates z, the proposed algorithm yields
constant vector fields Xi = ∂/∂zi +

∑n
j=s+1 C

j
i

∂/∂zj

for each i = 1, 2, . . . , s. Then, we can easily find the
change of coordinates zi = wi for i = 1, 2, . . . , s and
zj = wj +

∑s
i=1 C

j
iw

i for j = s + 1, s + 2, . . . , n.
Note that, by (6), we find ∂/∂zj = ∂/∂wj for
j = s+1, s+2, . . . , n and ∂/∂zi = ∂/∂wi+

∑n
j=s+1 C

j
i

∂/∂wj

for i = 1, 2, . . . , s. Thus, we can conclude
that (3a), Fu(z) =

∑n
j=1

(∑n
i=1A

ji
u z

i + Φj
u(y)

)
∂/∂zj ,

in the new coordinates reads Fu(w) =∑n
j=1

(∑n
i=1A

ji
u Mw + Φj

u(y)
)
N [∂/∂w1 ∂/∂w2 . . . ∂/∂wn]>

for suitable matrices M and N , i.e., Fu(w) = Ãuw + Φ̃(y)
for a suitable matrix Ãu and a suitable function Φ̃. In
other words, the system is still in target form when
re-written in the new coordinates (w1, w2, . . . , wn).
Moreover, we have the identity Xi = ∂/∂wi and, from
the proof of necessity in Theorem 2.1, we have that the
s-tuple X satisfies the conditions of Theorem 2.1 in the
coordinates (w1, w2, . . . , wn). Since the conditions are
intrinsic, they are also satisfied by the same s-tuple in
the coordinates (z1, z2, . . . , zn). This means that for a
system in target form, the s-tuple defined in the Proposition
satisfies the conditions in Theorem 2.1. Since the s-tuple is
defined intrinsically, it will satisfy those conditions in any
coordinates.

Remark 3.1: This idea to construct the sequence (Sk), in
Lemma 3.1, and the vector fields Yi; i = 1, . . . , s is bor-
rowed from [14]. We only have to perform some adjustments
to the multi-output case. In fact those adjustments imply
that for a system in target form we have L(−1)k0Xi

gj =
(−1)k0LYi

Lfvk0
Lfvk0−1

. . .Lfv2
Lfv1

gj , from which we can

conclude that LXi
gj = (−1)2k0δj

i = δj
i . To check this we

may use the identity (8) and the definitions of Yi and (Sk).
Remark 3.2: Comparing the single-output case with the

multi-output one we have the new condition (12), that is
always satisfied in the single-output case. We do not know
whether the condition (12) can be weakened or not. The
difficulty, or perhaps impossibility, to construct an analogous
algorithm to the one in [14], without a restriction like (12),
for the multi-output case may be related to some important



differences between this case and the single-output case
referred in [12], [13]; namely, the fact that in the multi-output
case there are, in general, nonlinear changes of coordinates
that preserve the target form.

Remark 3.3: The way to write the output equations in
form (5b) is not unique. For example, x1y = x2 in (4), may
be rewritten as y = x2

/x1 or x1x1y = x1x2. This leads to
different choices of candidates g to the first s coordinate
functions P sz = g(x): respectively, g = [g1 g2]> =
x = [x1 x2]>, g = g1 = x2

/x1, and g = [g1 g2]> =
[x1x1 x1x2]>. Not all choices are appropriate: the latter
two will “destroy” the target form of (4), in a neighborhood
of x0 = [1 0]> (cf. [20]). The algorithms will tell us if a
given choice is appropriate or not.

IV. ILLUSTRATIVE EXAMPLES

This section illustrates the (new) particular algorithm,
proposed in Section III-B. We discuss also the differences
from the general one, proposed in Section III-A.

A. Illustration of the particular algorithm
Consider the system

ẋ = fu(x) =


x1(u+ x3)
−x1(u+ x3) + x1x4 + 1 + x2

/x1

−x3(u+ x3) + 1 + (x2+u)/x1

−x4(u+ x3) + x3

 (13a)

x1y = x1 + x2 (13b)

where x = [x1 x2 x3 x4]> is the state space, u ∈ R is
the input and y = y1 is the output. Our aim is to write
this system in the form (3) in a neighborhood of the point
x0 = [1 0 0 0]>. The output equation can be written as[
0 −1

]
g(x) + g(x)>

[[
1
0

]]
y = 0, with g = [g1 g2]> :=

[x1 x1+x2]>, which is in the form of equation (5b). In
this way we obtain the candidates (g1, g2) for the first
two new coordinates. In this case, dΓ := dg1 ∧ dg2 =
dx1 ∧ dx2 6= 0 and dΥ = dy = 1

x1 (dx2 + (1 − y)dx1).
We also have dy ∧ dΓ = 0. Next, we must check if the

auxiliary system ẋ = fu(x), ȳ = g =
[
x1

x1 + x2

]
,

is observable in the rank sense. For that we notice that
S := {g1, g2, Lf0g

1, Lf0g
2} = {x1, x1+x2, x1x3, x1x4+

1 + x2
/x1} is a subset of the observable space O and after

some straightforward computations we find that dLf0g
1 =

x3dx1 + x1dx3, dLf0g
2 = (x4 − x2

/(x1)2)dx1 + 1/x1dx2 +
x1dx4 and dS|x0 := {dx1, dx1 + dx2, dx3, dx2 + dx4},
which has rank 4. Therefore, the system is observable
in the rank sense. Notice also that the length-1 sequence
S1 = {(1, 0), (2, 0)} ⊂ {1, 2} × R satisfies the condition
in Proposition 3.2. Thus, we are now ready to follow the
algorithm described in that proposition: firstly, we must
compute the pair of vector fields Y = (Y1, Y2); writing Y1 =∑4

j=1 Y
j
1

∂/∂xj and Y2 =
∑4

j=1 Y
j
2

∂/∂xj , and following the
algorithm, for the vector field Y1 we find the equations

Y 1
1 = 0, x3Y 1

1 + x1Y 3
1 = 1,

Y 1
1 + Y 2

1 = 0, (x4 − x2
/(x1)2)Y 1

1 + 1/x1Y 2
1 + x1Y 4

1 = 0,

from which we derive Y1 = 1/x1
∂/∂x3. For Y2 we obtain

Y 1
2 = 0, x3Y 1

2 + x1Y 3
2 = 0,

Y 1
2 + Y 2

2 = 0, (x4 − x2
/(x1)2)Y 1

2 + 1/x1Y 2
2 + x1Y 4

2 = 1,

that is, Y2 = 1/x1
∂/∂x4. Next, we compute the pair X =

(X1, X2) with Xi = −[f0, Yi] = [Yi, f0]. In coordinates
this may be computed by the formula (7): from f0(x) =
x1x3∂/∂x1 + (x1x4− x1x3 + 1 + x2

/x1)∂/∂x2 + (1− (x3)2 +
x2
/x1)∂/∂x3 + (x3 − x3x4)∂/∂x4 we obtain

X1
1 = 1/x1(x1) = 1, X3

1 = −2x3
/x1 + x1x3

/(x1)2),
X2

1 = 1/x1(−x1) = −1, X4
1 = 1/x1(1− x4)= (1−x4)/x1,

and
X1

2 = 0, X2
2 = 1/x1(x1) = 1,

X3
2 = 0, X4

1 = 1/x1(−x3)− [x1x3(−1/(x1)2)] = 0.

Thus, X1 = ∂/∂x1 − ∂/∂x2 − x3

x1
∂/∂x3 + 1−x4

x1
∂/∂x4 and

X2 = ∂/∂x2. Now, to obtain the change of coordinates,
we compute ιXdLf0g

1 ∧ dΓ and ιXdLf0g
2 ∧ dΓ; from

dLf0g
1 ∧ dΓ = x1dx1 ∧ dx2 ∧ dx3, dLf0g

2 ∧ dΓ =

x1dx1 ∧ dx2 ∧ dx4, det

[
1 0 V 1

−1 1 V 2

−x3
/x1 0 V 3

]
= x3

/x1V 1 + V 3,

and det

[
1 0 V 1

−1 1 V 2

(1−x4)/x1 0 V 4

]
= (x4−1)/x1V 1 + V 4 we obtain

ιX(dx1 ∧ dx2 ∧ dx3) = x3
/x1dx1 + dx3 and ιX(dx1 ∧

dx2 ∧ dx4) = (x4−1)/x1dx1 + dx4. Therefore we ob-
tain, ιXdLf0g

1 ∧ dΓ = x3dx1 + x1dx3 = d(x1x3) and
ιXdLf0g

2 ∧ dΓ = (x4 − 1)dx1 + x1dx4 = d(x1x4)− dx1.
We can now construct a coordinate transformation

(z1, z2, z3, z4) with z1 = g1 = x1, z2 = g2 = x1 + x2

and z3 and z4 such that dz3 and dz4 are in the real vector
space spanned by the 1-forms in {dz1, dz2, ιXdLf0g

1 ∧
dΓ, ιXdLf0g

2 ∧ dΓ} and dz1 ∧ dz2 ∧ dz3 ∧ dz4 6= 0
(cf. Remark 2.1). We may set for example z3 = x1x3 and
z4 = x1x4. We can now confirm that applying this coor-
dinate transformation, the original system can be rewritten
in the target form. A quick check of this fact can be done,
using (6), by noticing that

∂/∂x1 = ∂/∂z1 + ∂/∂z2 +
z3

z1
∂/∂z3 +

z4

z1
∂/∂z4,

∂/∂x2 = ∂/∂z2, ∂/∂x3 = z1∂/∂z3, and ∂/∂x4 = z1∂/∂z4;

the vector field

fu = x1
(
u+ x3

)
∂/∂x1 +

(
−x4(u+ x3) + x3

)
∂/∂x4

+
(
−x1(u+ x3) + x1x4 + 1 + x2

/x1
)

∂/∂x2

+
(
−x3(u+ x3) + 1 + (x2+u)/x1

)
∂/∂x3

can be rewritten as

fu = x1
(
u+ x3

)
∂/∂z1

+
(
x1(u+ x3)z4

/z1 + (−x4(u+ x3) + x3)z1
)
∂/∂z4

+
(
x1(u+ x3)− x1(u+ x3) + x1x4 + 1 + x2

/x1
)
∂/∂z2

+
(
x1(u+ x3)z3

/z1 + (−x3(u+ x3)

+ 1 + (x2+u)/x1)z1
)

∂/∂z3



that is,

fu =
(
z3 + uz1

)
∂/∂z1 +

(
z4 + (x2+x1)/x1

)
∂/∂z2

+
(
(u+ x3)z4 − x4(u+ x3)z1 + x3z1

)
∂/∂z4

+
(

(u+ x3)(z3 − x3z1) + z1(1 + (x2+u)/x1)
)

∂/∂z3

= (z3 + uz1)∂/∂z1 + (z4 + y)∂/∂z2

+ (z2 + u)∂/∂z3 + z3∂/∂z4.

Therefore, we obtain the following system, in target form:

ż =

u 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0

z+
0
y
u
0

 , 0 =
[
0 −1

]
P 2z+(P 2z)>

[[
1
0

]]
y.

B. A system that is not suitable for the particular algorithm

Consider the following system with state x = [x1 x2 x3]>,
output y = [y1 y2]> and input u ∈ R,

ẋ = fu(x) =

 e−x1
(x3 + u)

x3 + (x1 + x2 − ex1
)2 − e−x1

(x3 + u)
x3 + sin(x1 + x2 − ex1

)


y1 = x1 + x2 − ex1

, y2 = e−x1
(x1 + x2).

Our aim is to write this system in the form (3) in a neigh-
borhood N of the point x0 = [0 0 0]>. Rewriting the output

equations as
[
1 −1
0 −1

]
g+ g>colM

([
0 0
0 0

]
,

[
0 1
0 0

])
y+

[
1 0
0 0

]
y =

0, with g =
[
g1 g2

]>
=
[
ex1

x1 + x2
]>

, we cannot apply the
particular algorithm described in Section 3.2 because, as we
can see, there is no sequence satisfying both the conditions in
Lemma 3.1 and (12). We must apply the general algorithm:
following its steps, as in [20], we will end up with a set of
equations that characterize the pairs X = (X1, X2) that lead
to a desired change of coordinates, namely

X1 = e−x1
∂/∂x1 − e−x1

∂/∂x2 +X3
1

∂/∂x3,
X2 = ∂/∂x2 +X3

2
∂/∂x3,

(14a)

∂X3
2/∂x1 + (1− ex1

)∂X3
1/∂x2 = 0, (14b)

d(X3
1 +X3

2 ) = 0, and ∂X3
1/∂x3 = ∂X3

2/∂x3 = 0. (14c)

We can see that, in this case, the solution exists and is not
unique. Now we can set one of the solutions and built up
the desired new coordinates. Following [20], if we choose
the solution X1 = e−x1

∂/∂x1 − e−x1
∂/∂x2, X2 = ∂/∂x2, we

can find the coordinates (z1, z2, z3) := (ex1
, x1 + x2, x3),

in which the system takes the target form.
Remark 4.1: The equations in (14c) imply that X3

2 =
φ(x1, x2) = −X3

1 + c, with c ∈ R; then (14b) just means
that dφ ∧ dy1 = 0, which implies that φ = φ(y1) in a
neighborhood of x0. Thus, the solutions X are defined by
the conditions: (14a), X3

2 = φ(y1) = −X3
1 + c, c ∈ R and

φ ∈ C∞(I), for some neighborhood I ⊆ R of −1 = y1|x0 .

V. CONCLUDING REMARKS

We have proposed an algorithm to find a local change of
coordinates that transforms a suitable nonlinear system into
a time-varying linear system up to output and input injection.

The procedure is illustrated with an example. It is important
to underline that for any system written in the target form
(3), there exists an observer (Kalman-like) that exhibits in
the new coordinate system linear error dynamics.

Like the general algorithm proposed in [20], the new
one propose here also aims to find a suitable s-tuple of
vector fields from which we can obtain the desired change of
coordinates. The major difference is that while the algorithm
in [20] leads to a set of equations that the suitable s-tuples
must satisfy, the new one gives us one of those s-tuples
directly.
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