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Abstract— This paper introduces the moving path following
(MPF) problem for autonomous robotic vehicles, in which the
vehicle is required to converge to and follow a desired geometric
moving path, without a specific temporal specification. This case
generalizes the classical path following problem, where the given
path is stationary. Possible tasks that can be formulated as a
MPF problem include terrain/air vehicles target tracking and
gas clouds monitoring, where the velocity of the target/cloud
specifies the motion of the path. Using the concept of parallel-
transport frame associated to the geometric path, we derive
the MPF kinematic-error dynamics for 3D paths with arbi-
trary motion specified by its linear and angular velocity. An
application is made to the problem of tracking a target on the
ground using an Unmanned Aerial Vehicle. The control law is
derived using Lyapunov methods. Formal convergence results
are provided and hardware in the loop simulations demonstrate
the effectiveness of the proposed method.

I. INTRODUCTION

Two typical motion control problems for autonomous
robotic vehicles are trajectory tracking and path following.
Trajectory tracking (where a vehicle should follow a given
trajectory with time constraints) and path following (where
there are no time constraints and the vehicle can thus,
for example, move with constant speed) control laws for
wheeled mobile vehicles have been proposed in a series
of groundbreaking papers by Samson et al. (see e.g., [1]
and the references therein). For path following a classical
approach consists of defining the error space using the Serret-
Frenet frame concept [2], or a parallel transport frame [3],
[4] associated to the path. The same circle of ideas led to
the development of trajectory tracking and path following
systems for marine vehicles [5], [6] and unmanned aerial
vehicles (UAVs) [4], [7], [8]. Alternative approaches include
[9], [10] and [11].

In this paper, we introduce the moving path following
(MPF) method to the general case of desired paths moving
with time-varying linear and angular velocities, and with
non-constant curvature and torsion. It is important to stress
that MPF is not trajectory tracking because the path to be
followed does not include explicitly time constraints. By
further extending the ideas in [12], we provide a generic tool
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Fig. 1. Error space frames, illustrating for the case of an UAV.

to follow time-varying paths (generalizing the classical path
following for stationary paths) that can be applied to different
vehicles moving in a 3 dimensional space (e.g., UAVs,
AUVs) and mission scenarios, like thermals navigation, gas
clouds monitoring or terrain/air vehicles tracking. We derive
the MPF kinematic-error dynamics for this general case.

An application example using an UAV is presented, and
the control law is derived using Lyapunov methods, assuming
that the UAV flies at a constant altitude and airspeed.

The paper is organized as follows. Section II describes
the 3D moving path following error space, and then, Section
III applies it to the problem of tracking a target on the
ground by an UAV. Section IV presents hardware in the
loop (HIL) simulations that demonstrate the effectiveness of
the proposed method. Finally, Section V presents the main
conclusions and future work.

II. ERROR SPACE FOR MOVING PATH FOLLOWING

This section presents the MPF problem and formulates
the general kinematic model, which is written with respect
to the parallel-transport frame (see definition e.g., [3], [4]),
associated to the given reference path.

Consider a local inertial frame {I} = {−→x ,−→y ,−→z } with
the −→x axis pointing North, −→y East and −→z Down (this
definition is typically referred to as the North-East-Down
(NED) with x-North, y-East, and z-Down). Let pd(`) =[
pdx(`) pdy (`) pdz (`)

]T
be the desired path to be

followed parametrized by `, where for convenience it will be
assumed to be the path length. Note that for a fixed ` ≥ 0,
pd(`) is a path point expressed in the inertial frame. Consider
also a path-fixed frame {P} = {−→x P ,−→y P ,−→z P } that speci-
fies the desired motion of the path pd(`). We denote by p0 the
origin of {P} expressed in {I} that is fixed to the path (but
this does not necessarily means that p0 ∈ pd(`) for some



` - see Figure 1), and by vd =
[
vdx vdy vdz

]T
and

ωd =
[
ωdx ωdy ωdz

]T
the corresponding linear and

angular velocities of the path, respectively, also expressed in
{I}.

The MPF problem can be formulated as follows: Given
a robotic vehicle and a desired moving path Pd =(
pd(`), p0, vd, ωd

)
, design a control law that steers and keeps

the vehicle in the desired path pd(`) with a given speed
velocity V .

Let {F} = {−→t ,−→n 1,
−→n 2} be the parallel-transport frame

associated to the reference path with its orthonormal vectors
(see Figure 1) satisfying the frame equations [3],

d
−→
t

d`

d−→n 1

d`

d−→n 2

d`


=

 0 k1(`) k2(`)
−k1(`) 0 0
−k2(`) 0 0

  −→t−→n 1−→n 2

 ,

where parameters k1(`) and k2(`) are related to the polar
coordinates, and to the path curvature κ and the path torsion
τ through [3], [13],

κ(`) =
√
k1(`)2 + k2(`)2 (1)

τ(`) = − d

d`

(
arctan

k2(`)

k1(`)

)
. (2)

The {I}, {F} and {P} frames are depicted in Figure 1.
Additionally, a wind frame {W} = {−→xW ,−→y W ,−→z W } is
considered, located at the vehicle center of mass and with its
−→xW -axis along the direction of the vehicle velocity vector,
the −→y W -axis parallel to the −→x −−→y plane, normal to −→xW ,
and pointing to the right of an observer that moves in the
same direction of the aircraft, and −→z W -axis orthogonal to
the previous two (see Figure 2). From this definition, vW

W ,
the linear velocity of {W} relative to {I} and expressed in
{W}, is given by vW

W =
[
V 0 0

]T
, where V denotes

the vehicle ground speed.
The vehicle center of mass coordinates are denoted by

p =
[
x y z

]T
when expressed in the inertial frame

{I} and by pF =
[
xF yF zF

]T
when expressed in the

parallel-transport frame. The desired angular velocity of the
path with respect to the inertial frame {I}, written in the
{F} frame, can be computed through

ωF d = RF I ωd

=
[

ωF dx
ωF dy

ωF dz

]T
where RF I is the rotation matrix from {I} to {F}. Ac-
cording to the parallel-transport frame formulas [4], and
admitting that the path is also rotating with an angular
velocity given by ωF d , the angular velocity of the {F} frame
with respect to the inertial frame, written in the {F} frame,
is given by

ωF F =
[

ωF dx
−k2(`) ˙̀ + ωF dy

k1(`) ˙̀ + ωF dz

]T
.

The linear velocity of {W} relative to {I} and expressed in
{I} satisfies

vI W =
[
ẋ ẏ ż

]
= RI W vW

W ,

where RI W is the rotation matrix from {W} to {I}.
The position of the UAV in the {I} frame can be written

as (Figure 1)

p = pd + RI F pF (3)

where RI F is the rotation matrix from {F} to {I}. Differ-
entiating (3) with respect to time yields

ṗ = ṗd + RI F ṗF + RI F S
(
ωF F

)
pF ,

where S (.) is a skew-symmetric matrix that satisfies
S (a) b = a× b. Pre-multiplying by RF I one obtains

RF I ṗ = RF I ṗd + ṗF + S
(
ωF F

)
pF . (4)

The linear velocity RF I ṗd of a point on the path relative
to {I} and expressed in {F} is the sum of the linear velocity
of the point relative to {F} given by vF F =

[
˙̀ 0 0

]T
,

with the velocity of the parallel-transport frame relative to
{I}, both expressed in {F}, i.e.

RF I ṗd = vF F + RF I

(
vd + S (pd − p0) ωd︸ ︷︷ ︸

)
, (5)

vP

where (pd − p0) =
[
4x 4y 4z

]T
is the vector from

the origin of {P} to the origin of the {F} frame on the path.
The path may rotate around p0, and thus, vP is the linear
velocity of pd, due to path’s angular velocity. Note that p0

also moves together with the path (ṗ0 = vd), and thus the
relative distance between the center of rotation of the path
(p0) and each path point remains the same. The left side of
(4) can be rewritten as,

RF I ṗ = RF W vW
W . (6)

Therefore, combining (5) with (6), equation (4) gives

ṗF = RF W vW
W − S

(
ωF F

)
pF − vF F

− RF I (vd + S (pd − p0) ωd) . (7)

The relative angular velocity between the {F} frame and the
wind frame {W}, expressed in {W}, is given by

ωW r
W,F = ωW

W − ωW
F (8)

and thus,

ṘF W = RF W S
(

ωW r
W,F

)
. (9)

The complete MPF kinematic error dynamics is given by
equations (7) and (9).



(a) Lateral dynamics (b) Longitudinal dynamics

Fig. 2. Path following relevant variables, illustrating for the case of an
UAV.

III. MOVING PATH FOLLOWING CONTROL LAW: AN
APPLICATION TO GROUND TARGET TRACKING BY AN

UAV

In this section we start by particularizing the error space
defined in Section II to the case where Euler angles are
used to parametrize the rotation matrices between reference
frames, assuming that the flight path angle will always be
different from π/2. Then, an application is made to ground
target tracking by an UAV.

Starting with the path-following controller, the goal is to
drive the linear distances xF , yF and zF to zero and orient
the UAV such that its velocity vector is aligned with the
vector sum of the parallel-transport frame tangent vector and
the velocity of the parallel-transport frame origin. Note that
by imposing this goal to the kinematic path-following, we
encompass the classical situation of following paths that are
fixed in space [14], [5], [4].

Let ψ be the angle between the projection of the vehicle
velocity vector onto the −→x −−→y plane and North, and let γ be
the angle between the vehicle velocity vector and the −→x −−→y
plane, positive if the third component of the velocity vector
expressed in {I} is negative. Note that these are not regular
yaw and pitch angles since they are the angles between
the wind frame and the inertial frame instead of the angles
between a body frame attached to the vehicle and the inertial
frame. Figure 2 shows the error space for path following.

Additionally, let φf , θf and ψf be the roll, pitch and yaw
angles that parametrize the rotation matrix from {I} to {F}.
The angular displacements between the wind frame and the
parallel-transport frame are φ̄ = −φf , ψ̄ = ψ − ψf and
θ̄ = γ − θf (see Figure 2).

Taking into account the last notation, the UAV kinematic
equations expressed in {I} are given by

ẋ = V cos γ cosψ

ẏ = V cos γ sinψ

ż = −V sin γ.

The angular rates γ̇ and ψ̇ are related to the angular
velocity of the wind frame with respect to the inertial frame,
expressed in the wind frame, ωW

W =
[
qw rw

]T
through

the Jacobian operator [15] (note that the wind frame roll

angle is, by definition, always equal to zero)[
γ̇

ψ̇

]
=

[
1 0
0 sec γ

] [
qw
rw

]
.

The movement of the origin of the {P} frame is described
by the kinematic equations in terms of the total speed ||vd||,
the pitch angle θd and the yaw angle ψd

vdx = ||vd|| cos θd cosψd

vdy = ||vd|| cos θd sinψd

vdz = −||vd|| sin θd.

Therefore, equation (7) can be rewritten as ẋF
ẏF
żF

 =

 V cos θ̄ cos ψ̄
V cos θ̄ sin ψ̄
−V sin θ̄

−
 ˙̀

0
0


− RF I

(
φf , θf , ψf

) vdx
vdy
vdz

+

 ωdx
ωdy
ωdz

×
 4x4y
4z



−


− ˙̀ (k1(`) yF + k2(`) zF )− ωF dz

yF + ωF dy
zF

xF

(
k1 ˙̀ + ωF dz

)
− ωF dx

zF

xF

(
k2 ˙̀− ωF dy

)
+ ωF dx

yF

 .

The relative angular velocity between {F} and the wind
frame {W}, expressed in {W}, as given by equation (8)
can now be written as p̄

q̄
r̄

 =

 0
qw
rw

− ωW
F (10)

where

ωW
F = RW

F

(
φ̄, θ̄, ψ̄

)
ωF F

= RW
F

(
φ̄, θ̄, ψ̄

)  ωF dx

−k2(`) ˙̀ + ωF dy

k1(`) ˙̀ + ωF dz

 .
Using the Jacobian operator that relates the roll, pitch and

yaw angle rates with the angular velocities [15], one can
rewrite equation (9) as ˙̄φ

˙̄θ
˙̄ψ

 =

 1 sin φ̄ tan θ̄ cos φ̄ tan θ̄
0 cos φ̄ − sin φ̄

0 sin φ̄
cos θ̄

cos φ̄
cos θ̄

  p̄
q̄
r̄

 .
The roll rate equation can be omitted since errors in roll
between {W} and {F} do not affect convergence to the
path (in practice, the vehicle will assume a roll angle that
enables it to follow the path). Solving (10) with respect to
the pitch and yaw angle rates gives[

˙̄θ
˙̄ψ

]
= D

(
θ̄, ψ̄

)
+ T

(
φ̄, θ̄
) [ qw

rw

]
with

D
(
θ̄, ψ̄

)
=

[ ˙̀ cos ψ̄ k2(`)− cos ψ̄ ωF dy

− ˙̀k1(`)− ωF dz
− tan θ̄ sin ψ̄

(
− ˙̀k2(`) + ωF dy

) ]



Fig. 3. Moving path following: relevant variables.

and

T
(
φ̄, θ̄
)

=

[
cos φ̄ − sin φ̄
sin φ̄
cos θ̄

cos φ̄
cos θ̄

]
.

Using the feedback linearization law[
qw
rw

]
= T−1

(
φ̄, θ̄
)([ uθ

uψ

]
−D

(
θ̄, ψ̄

))
one can write

˙̄θ = uθ
˙̄ψ = uψ

where uθ and uψ are the new control input signals.
As an application example, the problem of tracking a target

on the ground by an UAV is considered. A lemniscate has
been shown to be an effective way for an autonomous aircraft
to provide surveillance of a slower target [16]. The proposed
strategy is thus to follow a lemniscate path centered at the
actual target position whose angular velocity is the same as
the target, keeping the UAV altitude constant (Figure 3). For
this application, the origin of the parallel-transport frame is
always placed at the point on the path that is closest to the
vehicle. The ground target tracking control law derived here
is an extension of the strategy presented in [12].

From equations (1) and (2) it can be shown that for a
planar path, the corresponding parallel-transport frame k1(`)
and k2(`) parameters are

k1(`) = κ(`)

k2(`) = 0

Thus, for this application, xF = ẋF = zF = żF = φf =
φ̄ = θ̄ = τ = ωdx = ωdy = 0 and the error space can be

simplified to yield, assuming 1− κ(`) yF 6= 0

˙̀ =
V cos ψ̄ − (vdx − ωdz4y) cosψf

1− κ(`) yF

−

(
vdy + ωdz4x

)
sinψf − ωdz yF

1− κ(`) yF

ẏF = V sin ψ̄ + (vdx − ωdz4y) sinψf −
(
vdy + ωdz4x

)
cosψf

˙̄ψ = uψ . (11)

The steady state value ψ̄d for ψ can be computed from (11)
by setting ẏF = 0, which yields

ψ̄d = arcsin

− (vdx − ωdz4y) sinψf +
(
vdy + ωdz4x

)
cosψf

V


Note that the numerator of the arcsin argument is the sum
of target’s speed (vd) with the linear velocity of the origin
of {F}, vP , along the normal to the path. This means that
the above equation is always well defined if the UAV speed
V is greater than the sum of the target speed, ‖vd‖, with
the parallel-transport frame speed, ‖vP ‖, and thus the path
following problem is well posed.

In order to avoid situations in which the UAV is required
to fly near its stall speed, it is desirable to keep the vehicle
airspeed (denoted by V0) constant. Commercial autopilots
usually accept airspeed references, expressed in the vehicle
body frame. The vehicle velocity relative to {I} and ex-
pressed in the wind frame {W}, is given by

vW
W = RW

B (α, β)V0 + RW
I (θ, ψ) vI wind

where vI wind denotes the velocity of the wind relative to
{I} and expressed in {I} and RW

B is a rotation matrix
parameterized by the vehicle angle of attack α and the
sideslip angle β [17]. In general, for fixed wing UAVs, these
angles are usually small, and therefore it is reasonable to
assume that RW

B = I . With this assumption (and since
θ = 0 for planar reference paths), one can write the UAV’s
ground speed as

V = V0 +Wt,

where Wt is the tangential component of the wind pointing
in the same direction as the velocity vector of the aircraft,
being given by

Wt = wx cosψ + wy sinψ.

The derivative of ψ̄d with respect to time, that will be
necessary in the sequence, assuming that the autopilot is able
to keep V0 constant, is

˙̄ψd =
ρ

V

√
1−

(
−(vdx−ωdz4y) sinψf+(vdy+ωdz4x) cosψf

V

)2

−ψ̇ λ

V 2

√
1−

(
−(vdx−ωdz4y) sinψf+(vdy+ωdz4x) cosψf

V

)2

(12)



where

ρ =
(
−ψ̇f (vdx − ωdz4y) + ω̇dz4x+ ωdz4̇x

)
cosψf

+
(
−ψ̇f

(
vdy + ωdz4x

)
+ ω̇dz4y + ωdz4̇y

)
sinψf

+ ||vd||ψ̇d cos (ψd − ψf ) + v̇d sin (ψd − ψf )

λ = (−wx sinψ + wy cosψ) (− (vdx − ωdz4y) sinψf

+
(
vdy + ωdz4x

)
cosψf ),

with

4̇x = ˙̀ cosψf − ωdz4y
4̇y = ˙̀ sinψf + ωdz4x.

Equation (12) can be cast in the compact form

˙̄ψd = P − ψ̇Λ,

with

P =
ρ

V

√
1−

(
−(vdx−ωdz4y) sinψf+(vdy+ωdz4x) cosψf

V

)2

and

Λ =
λ

V 2

√
1−

(
−(vdx−ωdz4y) sinψf+(vdy+ωdz4x) cosψf

V

)2
.

To derive a control law for moving path following, con-
sider now the Lyapunov function

V1 =
1

2

(
y2
F +

1

g2
ψ̃2

)
, (13)

where ψ̃ = ψ̄ − ψ̄d and g2 > 0.

Theorem 1

Considering the control law

ψ̇ = (−g1 ψ̃ + κ (`) ˙̀ + ωdz + P

− g2 yF (((vdx − ωdz4y) sinψf

−
(
vdy + ωdz4x

)
cosψf ))

1− cos ψ̃

ψ̃

+ V cos ψ̄d
sin ψ̃

ψ̃
))/(1 + Λ) (14)

then the closed loop error signals ψ̃ and yF converge to zero
as t→∞.

Theorem 1 can be deduced from standard Lyapunov
arguments using the Lyapunov function (13) and the Barbalat
lemma [18].

The ψ̇ control law (14) is converted to a bank reference
for the inner-loop controller through the coordinated turn
relation [4].

Controller Parameters
g1 = 0.22 ωdz = ψ̇d
g2 = 0.0007 ω̇dz = ψ̈d = −0.0006 sin(0.03 t)

TABLE I

Fig. 4. Control system architecture used in the HIL simulations. Adapted
from Piccolo Setup Guide [20]

IV. SIMULATION RESULTS

The proposed control law was tested through hardware in
the loop (HIL) simulations, using the ANTEX-X02 aircraft
model within the test bed reported in [19]. The UAV has
an off-the-shelf inner loop controller that accepts references
at kinematic level (angular rates and linear velocities) and
generates the UAV control signals necessary to follow those
references in the presence of model uncertainty and external
disturbances, like wind. The outer loop control laws derived
in the previous section provides the references to the inner
control loop.

In the simulation results here presented, the UAV was
required to track a target by following a lemniscate with a
200m distance between foci, keeping the line that connects
the two foci always perpendicular to ψd, moving together
with the target, at 20m/s airspeed.

The target was moving according to

(pdx , pdy , ψd, vd)|t=0 = (0m, 0m, 0, 4m/s)
v̇d = 0.2 sin (0.07 t)

ψ̇d = 0.02 cos (0.03 t)

where t corresponds to the simulation time. The controller
parameters used are listed in Table I.

The hardware in the loop simulations were done using
a laptop that simultaneously ran the control algorithm and
the simulated aircraft dynamics (see Figure 4). Via its RS-
232 port, the laptop received the sensors data from the
Piccolo autopilot [20] and provided to the Piccolo the control
references; through a CAN bus, the laptop received the
control surface and thrust signals from the Piccolo and
returned the corresponding sensors data to the Piccolo. The
telemetry signals from the aircraft were synchronized with a
“faked” GPS data of the target at 1Hz and then fed to the
controller to compute the bank reference to the aircraft.



Fig. 5. Aircraft’s trajectory following a target.

Fig. 6. Position and heading errors.

Figures 5 - 7 shows HIL simulation results which demon-
strate the performance of the overall control system. The con-
trol surface deflections are kept within their linear regions.
Figure 7 shows that there is a considerable delay between
the reference bank and its actual value.

V. CONCLUSIONS

An error space for moving path following was presented,
by formally extending the classic path following algorithms
to the case of time varying paths in a three dimensional
space. The error space derived was used to design a kine-
matic ground target tracking control law for UAVs equipped
with an autopilot that accepts references at the kinematic
level. HIL simulation results demonstrates the effectiveness
of the proposed method. Future work will include the flight
test of the control law onboard the aircraft and address the
problem of acquiring target’s position and velocity using
passive sensors.
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