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Abstract— The accretion of ice layers on wings and control
surfaces modifies the shape of the aircraft and, consequently, al-
ters performance and controllability of the vehicle. In this paper
we propose a multiple models adaptive estimation framework
to detect icing affecting unmanned aerial vehicles using the
following sensors: pitot tube (airspeed sensor), GPS, compass
and IMU. A case-study is provided as support and validation
of theoretical results.

I. INTRODUCTION

Mechanical systems are usually exposed to possible mal-
functions or anomalies; these may either be caused by
faults occurring in actuators, effectors, sensors and other
system components, or be structural, i.e. related to some
modification of the nominal system dynamics. The problem
of fault detection/identification and fault tolerant control has
been widely investigated in recent years [1]; one of the major
challenges to be faced in this topic is the correct identification
of the fault behavior, in order to apply accommodation
policies with the aim of recovering system performances or,
at least, ensuring safe operational conditions.
Among structural faults, icing is a major issue for unmanned
aerial vehicles (UAVs). The phenomenon of ice accretion
on aircraft wings and control surfaces is a well recognized
problem in aerospace engineering: when ice layers build
up, they increase energy consumption and induce a safety
risk, with the worst case scenario that the aircraft crashes
[2] [3] [4]. Large airplanes are commonly equipped with
efficient anti-icing and de-icing devices; however, these are
unsuitable for small unmanned aircrafts, due to their simple
architecture and limited payload. Ice formations on aero-
dynamic surfaces during flight are typically caused by the
impact of supercooled water droplets (SWD). When a water
droplet is cooled, it does not freeze until it reaches very low
temperatures; however, the droplets will instantly freeze in
the case of interaction with external agents, like aircrafts,
releasing their own latent and accreting ice [5]. Both rate
and amount of ice depend on the shape of the surface,
its roughness, traveling speed, temperature and droplet size.
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Large SWD lead to the accretion of clear-ice, having a
smooth and clear structure; it is usually characterized by
horn-like formations on the wing leading edge [6] and it is
the most dangerous type of icing. Rime ice, an opaque and
rougher formation, is instead caused by the impact of small
SWD. The modified shape of an aerodynamic surface due
to ice changes lift, drag and pitch moment characteristics of
the surface itself. For instance, an airfoil subject to horn-like
ice formations may result in a lift coefficient reduction up
to 40%, while the drag may be increased as much as 200%.
A decrease in lift requires more engine power and implies a
premature airfoil stall angle.
Very recently some advanced de-icing devices for UAV
have been proposed based on carbon nanotubes technology
[7] [8]; the wing surface can be painted with layers of
coating material, which can be heated up very quickly using
electricity. However, in order to guarantee the efficiency of
the mechanism, it is very important to rely on icing detection
and identification schemes with fast and accurate responses.
Several approaches have been proposed for icing detection
in aircrafts and unmanned aerial vehicles, namely actuator
fault detection methods [9] [10] [11], Kalman filtering [12]
or comparison methods for sensor failure diagnosis [13] [14].
In this paper we adopt a multiple-model (MM) approach
[15] [16] [17] [18] [19] [20] [21]. Defining a bank of
possible models, corresponding to distinct admissible values
of the icing factor, the proposed algorithm guarantees the
identification of the closest model to the true system as
well as the estimation of the icing severity factor. The
main advantages of the MM framework are cost-efficiency,
robustness, parallel structure and fast transient response. The
paper is structured as follows. The UAV model and the basic
setup are given in Section II, while the MM framework is
introduced in Section III. The main results are presented in
Section IV. Finally, Section V is dedicated to the validation
of the proposed results by means of numerical simulations.

II. UAV MODEL

The longitudinal equations of rigid body motion of an
aircraft are m(u̇+ qw − rv) = −mg sin θ −D cosα+ L sinα+ T

q̇Iyy − pr(Izz − Ixx) + (p2 − r2)Ixz = MA +MT
m(ẇ + pv − qu) = mg cos θ −D sinα− L cosα

where (u, v, w) are the velocities in the directions (x, y, z)
w.r.t. the body-fixed frame, θ is the pitch angle, (p, q, r)
are, respectively, the roll, pitch and yaw rates; Iij are the
coefficients of the inertia matrix, m is the mass of the
aircraft, α is the angle of attack, D is the drag coefficient,



L is the lift coefficient, T is the thrust force and MA, MT
are, respectively, the aerodynamical and thrust moments for
the pitch. The above nonlinear model can be simplified by
linearization with respect to some trim conditions; setting
cα := cosα0, the steady-state longitudinal linear dynamics
is then given by [22]

ν̇
α̇
q̇

θ̇

 =


Xν Xαcα Xq −g cos θ0
Zν
V0cα

Zα
Zq
V0cα

− g sin θ0
V0cα

Mν Mαcα Mq 0
0 0 1 0



ν
α
q
θ



+


Xδth Xδe

0
Zδe
V0cα

Mδth Mδe

0 0

[ δth
δe

]
= A0x+B0u.

(1)
The state variables x to be considered are the horizontal

airspeed ν, the angle-of-attack α, the pitch rate q and the
pitch angle θ. The symbols α0, θ0 and V0 stand for some
suitable trimmed values of angles and airspeed, respectively.
The inputs u = (δth, δe) entering the system are the engine
throttle δth and the elevator deflection δe. The nominal
parameters entering the system matrices can be expressed
as follows

X` = µX` q̄CX` , Z` = µZ` q̄CZ` , M` =
µM`

q̄CM`

Iyy

with ` ∈ {ν, α, q, δth, δe} and where q̄ = 1/2ρV 2
0 is the

trimmed dynamic pressure (ρ being the air density) and
the factors µi depend on the wing spanned area S and
on the airfoil chord c̄. The non-dimensional coefficients
CX` , CZ` , CM`

are usually referred to as stability and control
derivatives. The wind force can be modeled as an additive
input vector given by

W0w =


− cos θ0 − sin θ0

− sin θ0
V0cα

cos θ0
V0cα

0 0
0 0

[ wx

wz

]
(2)

where wx and wz are the wind forces in the horizontal and
vertical direction, respectively. Assuming that the UAV is
equipped with an airspeed measurement device (pitot tube),
compass, GPS and inertial sensors, all state variable are
supposed to be available and hence the output matrix of the
system is C0 = I4×4; however, the measurements can be
affected by noise and hence the output equation is given by

y(t) = x(t) + ω(t),

where ω(t) is unknown but bounded.

A. Icing effect model
The accretion of clear ice on the aircraft surfaces modifies

stability and control derivatives according to the following
linear model [23]

C?]` = (1 + ηK]`)C]` , ] = X,Z,M (3)

with ` ∈ {ν, α, q, δth, δe} and where η is the icing severity
factor and the coefficient Ki depends on aircraft specifica-
tions [4]; the clean condition corresponds to η = 0, while

the all iced condition occurs for η = ηmax, where ηmax can
be determined by the peak in the drag force [3]. It is worth
noticing that the coefficients Ki turn out to be negative, so
that model (3) corresponds to downscaling of control and
stabiliy derivatives.
As a consequence, the overall effect of icing can be modeled
as an additive disturbance term Eη, where η is a scalar
unknown quantity and the vector E is assigned by

E =


KXνXν KXαcαXα Xq 0

KZν
Zν
V0cα

KZαZα KZq
Zq
V0cα

0

KMν
Mν KMα

Mαcα KMq
Mq 0

0 0 0 0



ν
α
q
θ



+


0 KXδe

Xδe

0 KZδe
Zδe
V0cα

0 KMδe
Mδe

0 0

[ δth
δe

]
= AKx+BKu.

(4)
It is worth to note that icing may also alter the airspeed
measurements, both directly and indirectly; in particular, ice
formations inside the pitot tubes are not unlikely. Moreover,
recalling that the angle of attack α is not directly measured
but it is computed through airspeed [24], it follows that also
its estimation may be subject to errors in the case of icing.
We consider an additive model for the icing effect on the
output, i.e. we suppose the output matrix to be given by
C0 + ηCσ , where

Cσ = [σν σα 0 0]T (5)

is a known vector and η is the fault severity factor.
Remark 2.1: It can be noticed that the accretion of ice on

airspeed sensors could be likely faster than on the aircraft
surfaces, and that the effects are possibly more severe: this
may result in the need of considering two distinct icing
severity factors, namely body icing factor ηb and sensor icing
factor ηs.
The following block diagram illustrates all possible interac-
tions of icing with the UAV system.
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Fig. 1. Icing interaction with system components

III. A MULTIPLE-MODEL ADAPTIVE ESTIMATOR

Consider a LTI discrete-time plant of the form

xt+1 = Aκxt +Bκut + Lκξt
yt = Cκxt + ωt

where xt ∈ Rn denotes the state of the system, ut ∈ Rm is
the control input, yt ∈ Rp is the output and ξt ∈ Rr, ωt ∈ Rp



are, respectively, bounded input and output noise terms. The
system matrices Aκ, Bκ, Cκ, Lκ contain unknown constant
parameters denoted by the vector κ.
Consider a finite set of candidate parameter values
k := {κ1, κ2, ..., κN}; a multiple-model adaptive estimator
(MMAE) can be designed according to

x̂t =

N∑
i=1

pitx̂t|κi (6)

ŷt =

N∑
i=1

pitŷt|κi (7)

k̂t = ki? , i? := arg max
i∈{1,...,N}

pti (8)

where x̂t, ŷt and k̂t are the estimates of the state, the output
and the parameter vector at time t and pit are dynamic
weights to be defined. Each estimated state x̂t|κi corresponds
to the ith Krener minimax observer [25]

x̂t+1|κi = Aκi x̂t|κi +Bκiut +Hκi(yt − Cκi x̂t+|κi)
ŷt|κi = Cκi x̂t|κi
Hκi = AκiΣκiC

T
κi [CκiΣκiC

T
κi + Ω]−1,

with Σκi assigned by the discrete algebraic Riccati equation

−Σκi +ATκiΣκiAκi + LκiΞL
T
κi

−ATκiΣκiC
T
κi [CκiΣκiC

T
κi + Ω]−1CκiΣκiAκi = 0,

where Ξ and Ω are symmetric positive definite matrices,
and the pairs (Aκi , Lκi) and (Aκi , Cκi) are controllable and
observable, respectively.
The dynamic weights pit are generated by the recursion

pit+1 =
βie
−σit∑N

j=1 p
j
tβje

−σjt
pit, (9)

where βi is a positive constant coefficient and σit is con-
tinuous function called error measuring function, mapping
measurable plant signals to nonnegative values. These objects
can be defined as follows:

βi =
1√
||Sκi ||

, σit =
1

2
||yt − ŷt|κi ||S−1

κi

with ||x||Q = (xTQx)1/2 and where the positive definite
matrix Sκi is given by

Sκi = CκiΣκiC
T
κi + Ω.

The dynamic weights are positive and they constitute a
partition of unity. These properties are formally stated in
the next theorem.

Theorem 3.1: Suppose that the initial conditions pi0 satisfy
pi0 ∈ (0, 1) ∀i = 1, ..., N and

∑N
i=1 p

i
0 = 1. Then each

pit is nonnegative, bounded and contained in the interval
[0, 1] ∀t ≥ 0. Furthermore

N∑
i=1

pit = 1 ∀t ≥ 0.

Moreover, if a distinguishability condition is met, the dy-
namic weights satisfies an helpful convergence property.

Theorem 3.2: Let i? ∈ {1, 2, ..., N} be an index of a
parameter vector in k and set I := {1, 2, ...., N} \ i?.
Suppose that there exist positive constants n1, t1, ε and ε1
such that for all t ≥ t1 and n ≥ n1 the following conditions
hold:

1

n

t+n−1∑
τ=t

(σi?τ + ε) <
1

n

t+n−1∑
τ=t

min
j∈I

σjτ , (10)

log max
j∈I

βj − log βi? < ε1, with ε1 < ε. (11)

Then the dynamic weights pit satisfy

lim
t→∞

pi
?

t = 1, lim
t→∞

pjt = 0 ∀j ∈ I.
The proofs of Theorem 3.1 and Theorem 3.2 can be found
in [18]. Let us stress that, although the theorem formulation
is given in terms of a limit, the convergence rate of weights
is typically very fast; moreover we point out that persistency
of excitation may be a suitable condition to enhance distin-
guishability.

IV. ICING DETECTION AND IDENTIFICATION

Let us consider the following discretized linear model
derived from (1)-(2) by setting a sampling period τc > 0
and assuming inputs and disturbances to be constant on each
sampled interval:

xt+1 = Ā0xt + B̄0ut + W̄0wt,
yt = C̄0xt + ωt

where Ā0 = eA0τc , B̄0 =
∫ τc

0
eA0(τc−s)B0ds, W̄0 =∫ τc

0
eA0(τc−s)W0ds, C̄0 = C0.

Assuming the icing severity factor to be slowly-variant,
referring to (4), the icing conditions on the system can be
expressed by the following matrices

Āice(η) = e(A0+ηAK)τc , (12)

B̄ice(η) =

τc∫
0

e(A0+ηAK)(τc−s)(B0 + ηBK)ds, (13)

W̄ice(η) =

τc∫
0

e(A0+ηAK)(τc−s)W0ds, (14)

C̄ice(η) = C̄0 + ηCσ (15)

Let us assume the horizontal wind force wx
t to be estimated

through airspeed and GPS measurements, and for sake of
clarity, set

W̄ice(η) = [X̄ice(η) Z̄ice(η)].

Select a set of parameter values N = {η0
1 , ..., η

0
N∗} with

η0
i < η0

i+1, η0
1 = 0 and η0

N∗ ≤ ηmax. In view of Remark
2.1, a vector

ηi = (ηbi , η
s
i ), i = 1, ..., N (16)

can be defined in order to consider different effects of icing
on airfoils and sensors:

η1 := (η0
1 , η

0
1) · · · ηN∗ := (η0

N∗ , η0
1)

ηN∗+1 := (η0
1 , η

0
2) · · · η2N∗ := (η0

N∗ , η0
2)

...
. . .

...
ηN−N∗ := (η0

1 , η
0
N∗) · · · ηN := (η0

N∗ , η0
N∗)



where N can be easily computed as

N = N∗ ·N∗.

Due to (12)-(15) and (16), one can define a bank of possible
system models:

Si = {Aηi , Bηi , Cηi , Xηi , Zηi}, i = 1, ..., N (17)

with
Aηi = Āice(η

b
i ), Bηi = B̄ice(η

b
i ),

Xηi = X̄ice(η
b
i ), Zηi = Z̄ice(η

b
i )

Cηi = C̄ice(η
s
i ).

(18)

We point out that S1 corresponds to the nominal system,
while SN represents a model of the plant with total icing
conditions.

Remark 4.1: The introduction of additional criterions to
exclude the most unlikely events, allows us to reduce the
number of models and the computational complexity.
In this way we can adopt the MMAE formulation and
consider the family of minimax observers

x̂t+1|ηi = Aηi x̂t|ηi +Bηiut +Xηiw
x
t +Hηi(yt − ŷt|ηi)

ŷt|ηi = Cηi x̂t|ηi
Hηi = ATηiΣηiC

T
ηi [CηiΣηiC

T
ηi + Ω]−1,

where the matrix Σηi is the positive stabilizing solution of
the discrete algebraic Riccati equation

−Σηi +ATηiΣηiAηi + ZηiΞZ
T
ηi

−ATηiΣηiC
T
ηi [CηiΣηiC

T
ηi + Ω]−1CηiΣηiAηi = 0,

with positive definite symmetric matrices Ω,Ξ to be com-
puted based on the bounds on the output noise ωt and on
the vertical wind disturbance wzt , respectively. The overall
estimated state x̂t, estimated output ŷt and estimated icing
factor η̂t are obtained from the MMAE as the combinations
(6)-(8), where the dynamic weights pit are defined and
updated according to (9).
Let us fix an arbitrary icing severity factor η̃ = (η̃b, η̃s) ∈
[0, ηmax] × [0, ηmax], and consider the corresponding per-
turbed plant

xt+1 = Āice(η̃
b)xt+B̄ice(η̃

b)ut+X̄ice(η̃
b)wxt +Z̄ice(η̃

b)wzt
yt = C̄ice(η̃

s)xt
(19)

Proposition 4.1: Let `b, `s ∈ {1, ..., N∗− 1} be such that
η̃b ∈ [η`b , η`b+1] and η̃s ∈ [η`s , η`s+1]; assume in addition
that the distinguishability conditions (10)-(11) are fulfilled.
Then the overall estimated state x̂t converges to the state
x̂t|η`∗ of the model S`∗ the closest to the true system xt in
the following sense:

p`
∗

t → 1, pjt → 0 ∀j 6= `∗ (20)

where the index `∗ is characterized by the conditions

either ηb`∗ = ηb`b or η
b
`∗ = ηb`b+1

either ηs`∗ = ηs`s or η
s
`∗ = ηs`s+1.

In particular, there exists Tη̃ > 0 such that the pointwise set
inclusions η̂bt ∈ {η`b , η`b+1}, η̂st ∈ {η`s , η`s+1} hold true for
any t ≥ Tη̃ .

Proof: The statement follows straightforwardly from
Theorem 3.2, provided that the list of claimed values N
does not lead to indistinguishability scenarios.

Remark 4.2: We notice that, by construction, the proce-
dure (18) yields distinct matrices for any different choice
of parameters ηb, ηs, and therefore indistinguishability may
only occur if the system output turns out to be equally
distanced from two given models. However, for any fixed
bank of MM, the largest set of icing values leading to such
symmetry condition is a null-measure set.
Proposition 4.1 provides a method for extracting an es-
timation of the icing severity factor: the accuracy of the
estimation depends on the number of multiple models being
considered. However, the icing severity factor η is typically
a time-variant quantity and therefore a method able to adapt
to possible switches of η is desiderable. To this end, the
update procedure (9) has to be modified in order to prevent
the occurrence of the saturated scenario

pht = 1, pjt = 0 ∀j 6= h ∀t > t1.

Let us consider ε > 0 sufficiently small, i.e. such that ε <
1/N . For ∆ > 0, let us define the truncation operators

sat∆(s) = min(∆,max(s,−∆))

dead∆(s) = s− sat∆(s)

Define the weights pti according to the following procedure:
qit+1 = βie

−σit∑N
j=1 p

j
tβje

−σjt
pit,

rit+1 =
∑
j 6=i dead1−ε(q

j
t+1)

pit+1 = sat1−ε(q
i
t+1) +

rit+1

N−1

(21)

Consider the following scenario, corresponding to a piece-
wise constant behavior of the icing factor:
• There exist two sequences of distinct values
{η̃b1, ..., η̃bR}, {η̃s1, ..., η̃sR} and a sequence of time
instants 0 = t0 < t1 < · · · < tR such that

η̃b ≡ η̃bj in [tj−1, tj)

η̃s ≡ η̃sj in [tj−1, tj)

• The number N of assigned multiple models (17) is such
that N > R and moreover, for any j = 1, ..., R, there
exist `bj , `

s
j with

η̃bj ∈ [ηb`j , η`bj+1], η̃sj ∈ [ηs`j , η`sj+1].

• For any k = 1, ..., R let Tη̃k be the estimation time
horizon associated to the icing factor η̃k, as defined in
Proposition 4.1. Set

Tmax = max
k=1,...,R

Tη̃k (22)

Proposition 4.2: Assume that the length of time intervals
Ij = [tj−1, tj) is sufficiently large, i.e.

min
j=1,...,R

|Ij | > Tmax. (23)

Then the modified weights (21) guarantee that the estimator
x̂t is able to adapt to the switching behavior of the parameter



η̃, i.e. one has that for any j = 1, ..., R there exists τj ∈ Ij
with

η̂bt ∈ {η`bj , η`bj+1} for any t ∈ [τj , tj),

η̂st ∈ {η`sj , η`sj+1} for any t ∈ [τj , tj),

this corresponding to

lim
t→tj

p
`∗j
t = 1− ε, lim

t→tj
pht = ε/(N − 1) ∀h 6= `∗j

where, similarly to (20), `∗j is assigned by

either ηb`∗j = ηb
`bj
or ηb`∗j

= ηb
`bj+1

either ηs`∗j = ηs`sj
or ηs`∗j

= ηs`sj+1.

Proof: It sufficient to apply recursively the scheme given
in Proposition 4.1: thanks to (22)-(23), the convergence is
guaranteed on any subinterval Ij , j = 1, ..., R, with

τj ≤ tj−1 + Tmax.

Moreover, since the update algorithm (21) is introduced in
order to prevent saturation, there is no need to re-initialize the
weights pjt when switchings between subintervals Ij occur.

V. SIMULATIONS

Let us consider the case study of a typical small unmanned
aircraft, the Aerosonde UAV (AAI Corporation, Textron
Inc.). Initial conditions for the state variables have been
chosen as follows: ν0 = 22.9 m/s, α0 = 0.1 rad, q0 =
0, θ0 = 0. Assuming the air density ρ = 1.2682 Kg/m3,
geometric and aerodynamical parameters of the aircraft are
given in the following table [22]:

m 13.5 Kg Zν -0.5385 m/s2

Ixx 0.8244 Kg/m2 Zα -2.1277 s−1

Iyy 1.135 Kg/m2 Zq 22.95 m/s
Izz 1.759 Kg/m2 Mν -0.1134 (m · s)−1

Ixz 0.1204 Kg/m2 Mα -12.1204 s−2

S 0.55 m2 Mq -0.4602 s−1

c̄ 0.1899 m Xδth 59.0570 s−1

Xδe -0.4939 m/s2

Xν -0.4365 s−1 Zδe 4.9230 m/s2

Xα -0.8802 m/s2 Mδth
0 (m · s)−1

Xq -2.3027 m/s Mδe -15.5248 s−2

Using the coefficients listed above, the linearized longitudi-
nal model (1) of the rigid-body aircraft system is derived. The
aircraft attitude is supposed to be controlled by an autopilot,
responsible to maintain the steady-state flight conditions in
spite of wind disturbances. The wind speed components are
assumed to be given by wx = 5.5m/s + noise, wz =
0.5m/s+ noise. The simulated setup is the following:
• The measurements are supposed to be affected by a

bounded noise term ω(t), with ||ω(t)|| ≤ 0.003.
• The icing factor η̃ = (η̃b, η̃s) is supposed to be linearly

increasing (see Fig. 2) and it is assigned by

η̃b =

 0 t ∈ [0, 25)
linear t ∈ [25, 102)
0.13 t > 102

η̃s =

 0 t ∈ [0, 9)
linear t ∈ [9, 102)
0.17 t > 102

• Assuming ηb ≤ ηs and restricting to the most likely
scenarios only, seven multiple models have been con-
sidered, corresponding to the grid of four values η0

1 =
0, η0

2 = 0.06, η0
3 = 0.12 and η0

4 = 0.18:

η1 = (0, 0),
η2 = (0, 0.06), η3 = (0.06, 0.06),
η4 = (0.06, 0.12), η5 = (0.12, 0.12),
η6 = (0.12, 0.18), η7 = (0.18, 0.18).

The results are shown in Figs. 3-7: the norm of the true
system output switches between the multiple-models
as the icing severity factors increase, the weighted
estimated output recovers the true system output and the
correct estimation of the icing factors is achieved. The
dynamic weights (21) have been implemented setting
the saturation threshold ε = 0.02. We notice that the
proximity of two weights only occurs naturally during
transients and hence distinguishability is guaranteed.
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VI. CONCLUSIONS

In this paper the problem of icing detection and identifi-
cation for small unmanned aerial vehicles is tackled using
a multiple-model framework. Referring to the longitudinal
model of the aircraft, which is assumed to be equipped with
an airspeed sensor, a compass, a GPS and inertial sensors,
a bank of possible system models is defined, each one cor-
responding to a different claimed value of the icing severity
factor. Separate effects due to icing on the aerodynamic
surfaces and on the airspeed sensors have been considered.
The structure of the models is based on the classical Krener
min-max observers, and overall state and icing factor esti-
mates are obtained as weighted combinations of the states of
the models and the claimed icing values, respectively. The
proposed multiple-model estimator is shown to be able to
cope with changes of the unknown parameters with a very
fast transient response. Numerical simulations support and
validate theoretical results: the MMAE-based icing detection
and identification scheme has been applied to the case study
of the Aerosonde UAV.
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