
Time-Coordinated Path Following of Multiple UAVs

over Time-Varying Networks using L1 Adaptation∗

A. P. Aguiar † and A. M. Pascoal ‡
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I. Introduction

Unmanned Aerial Vehicles (UAVs) are becoming ubiquitous and play an increasingly important role in
military reconnaissance and strike operations, border patrol missions, forest fire detection, police surveillance,
and recovery operations, to name but a few. In simple applications, a single autonomous vehicle can be
managed by a crew using a ground station provided by the vehicle manufacturer. The execution of more
challenging missions, however, requires the use of multiple vehicles working in cooperation to achieve a
common objective. Representative examples of cooperative mission scenarios are sequential auto-landing
and coordinated ground target suppression for multiple UAVs. The first refers to the situation where a fleet
of UAVs must break up and arrive at the assigned glideslope point, separated by pre-specified safe-guarding
time-intervals. In the case of ground target suppression, a formation of UAVs must again break up and
execute a coordinated maneuver to arrive at a predefined position over the target at the same time.

In both cases, no absolute temporal constraints are given a priori - a critical point that needs to be
emphasized. Furthermore, the vehicles must execute maneuvers in close proximity to each other. In addition,
as pointed out in Refs.1, 2 , the flow of information among vehicles may be severely restricted, either for
security reasons or because of tight bandwidth limitations. As a consequence, no vehicle will be able to
communicate with the entire formation and the inter-vehicle communication network may change over time.
Under these circumstances, it is important to develop coordinated motion control strategies that can yield
robust performance in the presence of time varying communication networks arising from communication
failures and switching communication topologies.

Motivated by these and similar problems, over the past few years there has been increasing interest
in the study of multi-agent system networks with application to engineering and science problems. The
range of topics addressed include parallel computing3 , synchronization of oscillators4 , study of collective
behavior and flocking5 , multi-system consensus mechanisms6 , multi-vehicle system formations7 , coordinated
motion control8 , asynchronous protocols9 , dynamic graphs10 , stochastic graphs10–12 , and graph-related
theory2, 13 . Especially relevant are the applications of the theory developed in the area of multi-vehicle
formation control: spacecraft formation flying14 , unmanned aerial vehicle (UAV) control15, 16 , coordinated
control of land robots8 , and control of multiple autonomous underwater vehicles (AUVs)17, 18 . In spite of
significant progress in these challenging areas, much work remains to be done to develop strategies capable of
yielding robust performance of a fleet of vehicles in the presence of complex vehicle dynamics, communication
constraints, and partial vehicle failures.

In Ref.19 , a general framework for the problem of coordinated control of multiple autonomous vehicles
that must operate under strict spatial and temporal constraints was presented. The framework proposed
borrows from multiple disciplines and integrates algorithms for path generation, path following, time-critical
coordination, and L1 adaptive control theory for fast and robust adaptation. Together, these techniques
yield control laws that meet strict performance requirements in the presence of modeling uncertainties and
environmental disturbances. The methodology proposed in Ref.19 is exemplified for the case of UAVs and
unfolds in three basic steps. First, given a multiple vehicle task, a set of feasible trajectories are generated
for all UAVs using an expedite method that takes explicitly into account the initial and final boundary
conditions, a general performance criterion to be optimized, the simplified UAV dynamics, and safety rules
for collision avoidance. The second step consists of making each vehicle follow its assigned path while
tracking a desired speed profile. Path following control design is first done at a kinematic level, leading to
an outer-loop controller that generates pitch and yaw rate commands to an inner-loop controller. The latter
relies on off-the-shelf autopilots for angular rate command tracking, augmented with an L1 adaptive output
feedback control law that guarantees stability and performance of the complete system for each vehicle in
the presence of modeling uncertainties and environmental disturbances. Finally, in the third step the speed
profile of each vehicle is adjusted about the nominal speed profile derived in the first step to enforce the
temporal constraints that must be met in real-time in order to coordinate the entire fleet of UAVs. In this
step, it is assumed that the vehicles exchange information over a fixed communication network.

The present paper builds on the work reported in Ref.19 but departs considerably from it in that it
allows for the consideration of time-varying communication networks. In particular, we address explicitly
the case where the communication graph that captures the underlying communication network topology
may be disconnected during some interval of time or may even fail to be connected at any instant of time.
We show rigorously that if the desired speed profiles of the vehicles along their paths are constant and the
connectivity of the communication graph satisfies a certain persistency of excitation (PE) condition, then
the UAVs reach agreement. HITL simulation results demonstrate the benefits of the algorithms developed.
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Figure 1. Problem geometry

The paper is organized as follows. Section II presents a path following algorithm for UAVs in 3D space.
At this stage, path following is done at the kinematic level (outer-loop control). Section III derives a strategy
for time-coordinated control of multiple UAVs in the presence of time-varying communication topologies that
relies on the adjustment of the desired speed profile of each vehicle. Section IV describes an L1 adaptive
augmentation technique both for path following and time coordination that yields an inner-loop control
structure and exploits the availability of off-the-shelf autopilots. Sections V and VI solve the problem of
coordinated path following taking into account the UAV dynamics. Section VII describes HILT simulation
results and includes a briefly description of the hardware used in the configuration. The paper ends with
the conclusions in Section VIII.

II. Path Following in 3D Space

This section describes an algorithm for UAV path following in 3D space. We recall that a path is simply
a curve pc : τ → R

3 parameterized by τ in a closed subset of R+, that is, pc = pc(τ). If τ is identified with
time t or is a function thereof, then, and with a slight abuse of notation, pc(t) = pc(τ(t)) will be called a
trajectory. Path following refers to the problem of making a vehicle converge to and follow a path pc(τ) with
no assigned time schedule. However, the vehicle speed may be assigned as a function of the parameter τ .

In what follows we avail ourselves of the results derived in Ref.20 (see also Refs.21, 22) where an algorithm
was proposed to generate space deconflicting feasible paths for multiple AUVs, that is, paths pci(τ) that
do not intersect each other and that yield trajectories that can be tracked by an UAV without exceeding
prespecified bounds on its velocity and total acceleration along that trajectory.

In order for the ith vehicle to follow the spatial path pci(τ) using the algorithm in Ref.20 , a path following
algorithm that extends the one in Ref.23 to a 3D setting with a further modification aimed at meeting time-
critical and inter-vehicle constraints is now presented. At this level, only the simplified kinematic equations
of the vehicle will be addressed by taking pitch rate and yaw rate as virtual outer-loop control inputs. The
dynamics of the closed-loop UAV with autopilot are dealt with in Sections V and VI by introducing an
inner-loop control law via the novel L1 adaptive output feedback controller.

Figure 1 captures the geometry of the problem at hand. Let I denote an inertial frame. Let Q be
the UAV center of mass. Further, let pc(l) be the path to be followed, parameterized by its path length
l, and P be an arbitrary point on the path that plays the role of the center of mass of a virtual UAV to
be followed. Note that this is a different approach as compared to the set-up for path following originally
proposed in Ref.24 , where P was simply defined as the point on the path that is closest to the vehicle.
Endowing P with an extra degree of freedom is the key to the algorithm presented in Ref.23 .

Let F be a Serret-Frenet frame attached to the point P on the path, and let T (l), N(l) and B(l), defined
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as

T (l) =
dpc(l)

dl
/

∥

∥

∥

∥

dpc(l)

dl

∥

∥

∥

∥

,

N(l) =
dT (l)

dl
/

∥

∥

∥

∥

dT (l)

dl

∥

∥

∥

∥

,

B(l) = T (l)×N(l) ,

be an orthonormal basis for F . We recall that these unit vectors define the tangent, normal, and binormal
directions, respectively to the path at the point determined by l. They can be used to construct the rotation
matrix RIF = [T N B] from F to I. Denote by ωFFI the angular velocity of F with respect to I, resolved in
F , given by

ωFFI =
[

ζ(l)l̇ 0 κ(l)l̇
]⊤

,

where κ(l) =
∥

∥

∥

dT (l)
dl

∥

∥

∥ is the curvature of the path and ζ(l) =
∥

∥

∥

dB(l)
dl

∥

∥

∥ is its torsion. Let

qI(t) = [xI(t) yI(t) zI(t)]
⊤

be the position of the UAV center of mass Q resolved in I, and let

qF (t) = [xF (t) yF (t) zF (t)]⊤

be the difference between qI(t) and pc(t) resolved in F . Finally, let W ′ denote a coordinate system defined
by projecting the wind frame W onto a local level plane. (The frame W has its origin at Q and its x-axis is
aligned with the UAV’s velocity vector).

Let

Φe(t) = [φe(t) θe(t) ψe(t)]
⊤

denote the Euler angles that locally parameterize the rotation matrix from F to W ′. In what follows, v(t) is
the magnitude of the UAV’s velocity vector, γ(t) is the flight path angle, ψ(t) is the ground heading angle,
and q(t) and r(t) are the x-axis and z-axis components, respectively, of the vehicle’s rotational velocity
resolved in W ′ frame. For the purpose of this paper and with a slight abuse of notation, q(t) and r(t) will
be referred to as pitch rate and yaw rate, respectively, in the W ′ frame.

With the above notation, the UAV kinematic equations can be written as































ẋI = v cos γ cosψ

ẏI = −v cos γ sinψ

żI = v sin γ
[

γ̇

ψ̇

]

=

[

1 0

0 cos−1 γ

][

q

r

]

.

Straightforward computationsa yield the dynamic equations of the path following kinematic error states
as

Ge :































ẋF = −l̇(1 − κ(l)yF ) + v cos θe cosψe

ẏF = −l̇(κ(l)xF − ζ(l)zF ) + v cos θe sinψe

żF = −l̇ζ(l)yF − v sin θe
[

θ̇e

ψ̇e

]

= D (t, θe, ψe) + T (t, θe)

[

q

r

]

(1)

aSee Ref.20 for details in the derivation of these dynamics.
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where

D (t, θe, ψe) =

[

l̇ζ(l) sinψe

−l̇(ζ(l) tan θe cosψe + κ(l))

]

(2)

T (t, θe) =

[

cosφe − sinφe
sinφe
cos θe

cosφe
cos θe

]

. (3)

Note that, in the kinematic error model (1), q(t) and r(t) play the role of “virtual” control inputs. Notice
also how the rate of progression l̇(t) of the point P along the path becomes an extra variable that can be
manipulated at will.

At this point, it is convenient to formally define the state vector for the path following kinematic dynamics
as

x(t) = [ xF (t) yF (t) zF (t) θe(t) − δθ(t) ψe(t) − δψ(t) ]⊤ ,

where

δθ(t) = sin−1

(

zF (t)

|zF (t)| + d1

)

,

δψ(t) = sin−1

( −yF (t)

|yF (t)| + d2

)

, (4)

with d1 and d2 some positive constants. Notice that, instead of the angular errors θe(t) and ψe(t), we use
θe(t) − δθ(t) and ψe(t) − δψ(t) respectively to shape the “approach” angles to the path. Clearly, when the
vehicle is far from the desired path the approach angles become close to π/2. As the vehicle comes closer to
the path, the approach angles tend to 0. The system Ge is completely characterized by defining the vector
of input signals as

y(t) = [ q(t) r(t) ]⊤ .

Next, we show that there exist stabilizing functions for q(t) and r(t) leading to local exponential stability
of the origin of Ge with a prescribed domain of attraction. We start by assuming that the UAV speed satisfies
the lower bound

vmin ≤ v(t) , ∀ t ≥ 0 . (5)

Let c1 and c2 be arbitrary positive constants satisfying the following condition

νi
△
=

√
cc2 + sin−1

( √
cc1√

cc1 + di

)

≤ π

2
− ǫi , i = 1, 2 (6)

where c > 0 is any positive constant, d1 and d2 were introduced in (4), and ǫ1 and ǫ2 are positive constants
such that 0 < ǫi <

π
2 , i = 1, 2. Let the rate of progression of the point P along the path be governed by

l̇(t) = K1xF (t) + v(t) cos θe(t) cosψe(t) , (7)

where K1 > 0. Then, the input vector yc(t) given by

yc(t) =

[

qc(t)

rc(t)

]

= T−1 (t, θe)

([

uθc(t)

uψc(t)

]

−D (t, θe, ψe)

)

, (8)

where D (t, θe, ψe) and T (t, θe) were introduced in (2) and (3), and uθc(t) and uψc(t) are defined as

uθc(t) = −K2 (θe(t) − δθ(t)) +
c2
c1
zF (t)v(t)

sin θe(t) − sin δθ(t)

θe(t) − δθ(t)
+ δ̇θ(t)

uψc(t) = −K3 (ψe(t) − δψ(t)) − c2
c1
yF (t)v(t) cos θe(t)

sinψe(t) − sin δψ(t)

ψe(t) − δψ(t)
+ δ̇ψ(t) , (9)

stabilize the subsystem Ge for any K2 > 0 and K3 > 0. Figure 2 presents the kinematic closed-loop system.
A formal statement of this key result is given in the lemma below.
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Figure 2. Path following closed-loop system for a single UAV solved at a kinematic level

Lemma 1 Let d =
√
cc1, where c and c1 were introduced in (6). Further, let the progression of the point

P along the path be governed by (7). Then, for any v(t) verifying (5), the origin of the kinematic error
equations in (1) with the controllers q(t) ≡ qc(t), r(t) ≡ rc(t) defined in (8)-(9) is exponentially stable with
the domain of attraction

Ω =
{

x : Vp(x) <
c

2

}

, (10)

where

Vp(x) = x⊤Ppx

Pp = diag

(

1

2c1
,

1

2c1
,

1

2c1
,

1

2c2
,

1

2c2

)

.

Proof. If q(t) ≡ qc(t) and r(t) ≡ rc(t), it is easy to check from (1) and (8) that

θ̇e(t) = uθc(t),

ψ̇e(t) = uψc(t) .

Then, it follows from (1), (4), (7), and (8)-(9) that

V̇p = −x⊤Qpx ,

with

Qp = diag

(

K1

c1

v cos θe
c1(|yF | + d2)

v

c1(|zF | + d1)

K2

c2

K3

c2

)

. (11)

Note that over the compact set Ω the following upper bounds hold

|xF (t)| < d,

|yF (t)| < d,

|zF (t)| < d,

|θe(t)| <
√
cc2 + |δθ(t)| <

√
cc2 + sin−1

(

d

d+ d1

)

= ν1 <
π

2
,

|ψe(t)| <
√
cc2 + |δψ(t)| < √

cc2 + sin−1

(

d

d+ d2

)

= ν2 <
π

2
, (12)

where we have used the relationship (6). Now it follows from (11) and (12) that Qp ≥ Q̄p, where

Q̄p = diag

(

K1

c1

vmin cos ν1
c1(d+ d2)

vmin

c1(d+ d1)

K2

c2

K3

c2

)

. (13)
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Since Q̄p > 0 and

V̇p(x) ≤ −x⊤Q̄px , ∀ t ≥ 0 ,

x(t) converges exponentially to zero over the compact set Ω. Then, it follows from the definitions in (4) that
both δθ(t) and δψ(t) converge exponentially to zero, and thus one finds that θe(t) and ψe(t) also converge
exponentially to zero, which completes the proof.

A more detailed derivation of this proof can be found in Ref.25 . �

Remark 1 The control law (8)-(9) produces angular rate commands defined in W ′ frame. However, a typical
commercial autopilot accepts rate commands defined in body-fixed frame B. The coordinate transformation
from W ′ to B is given by

RBW ′ = RBWR
W
W ′ ,

where the transformation RBW is defined using the angle of attack and the sideslip angle. For the UAVs
considered in this paper, these angles are usually small, and therefore it is reasonable to assume that RBW ≈ I.
On the other hand, RWW ′ is defined via a single rotation around a local x-axis by an angle φW . For small
values of angle of attack and sideslip angle, φW can be approximated by the body-fixed bank angle φ measured
by a typical autopilot. Therefore, in the final implementation, the angular rate commands (8)-(9) are resolved
in the body-fixed frame B using the transformation discussed here.

Thus, in the following sections we assume that both the autopilot angular rates y(t) = [q(t) r(t)]⊤ and
the commanded angular rates yc(t) = [qc(t) rc(t)]

⊤ are resolved in W ′. We notice that this assumption will
not affect the results since, for small angle of attack and the sideslip angle, we have

‖(y(t) − yc(t))
W ′‖2 ≈ ‖(y(t) − yc(t))

B‖2 .

III. Time-Critical Coordination

Having solved the path following problem for a single vehicle and an arbitrary speed profile at a kinematic
level, we now address the problem of time-coordinated control of multiple vehicles. Examples of applications
in which this would be useful include situations where all vehicles must arrive at their final destinations at
exactly the same time, or at different times so as to meet a desired inter-vehicle arrival schedule. Without
loss of generality, we consider the problem of simultaneous arrival. Let tf be the arrival time of the first
UAV. Denote lfi as the total length of the spatial path for the ith UAV. In addition, let li(t) be the path
length from the origin to pi(t) along the spatial path of the ith UAV. Define l′i(t) = li(t)/lfi. Clearly,
l′i(tf ) = 1 for i = 1, 2, . . . , n implies that all vehicles arrive at their final destination at the same time. Since

l̇′i(t) = l̇i(t)/lfi, it follows from (7) that

l̇′i(t) =
K1xFi(t) + vi(t) cos θe,i(t) cosψe,i(t)

lfi
, (14)

where for simplicity we have kept K1 without indexing.
To account for the communication constraints, we introduce the neighborhood set Ji that denotes the

set of vehicles that the ith vehicle exchanges information with. We impose the constraint that each UAV
only exchanges its coordination parameter l′i(t) with its neighbors according to the topology of the commu-
nications.

Then, to solve the coordination problem, we propose the following desired speed profile for the ith UAV20

vci(t) =
ucoordi(t)lfi −K1xFi(t)

cos θe,i(t) cosψe,i(t)
, i = 1, . . . , n , (15)

with the following decentralized coordination law

ucoord1
(t) = −a

∑

j∈J1

(l′1(t) − l′j(t)) +
vd1
lf1

ucoordi(t) = −a
∑

j∈Ji

(l′i(t) − l′j(t)) + χIi(t) , i = 2, . . . , n

χ̇I,i(t) = −b
∑

j∈Ji

(l′i(t) − l′j(t)) , χIi(0) =
vdi
lfi

i = 2, . . . , n
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where we have elected vehicle 1 as the formation leader, vd1 denotes its desired constant speed profile, vdi ,
i = 2, . . . , n, is the speed profile of the follower vehicles, and a, b are positive constants. Note that the
coordination control law has a Proportional-Integral (PI) structure, thus allowing each vehicle to learn the
speed of the leader, rather than having it available a priori.

The coordination law can be re-written in compact form as

ucoord(t) = −aL(t)l′(t) +
[

vd1/lf1
χI (t)

]

, (16)

χ̇I(t) = −bC⊤L(t)l′(t), χIi (0) =
vdi
lfi

(17)

where l′(t) = [l′1(t) . . . l′n(t)]
⊤, ucoord(t) = [ucoord1

(t) . . . ucoordn(t)]⊤, χI(t) = [χI2(t) . . . χIn(t)]⊤, C⊤ =
[ 0 In−1 ], and the n × n piecewise-continuous matrix L(t) can be interpreted as the Laplacian of an
undirected graph Γ(t) that captures the underlying bidirectional communication network topology of the
UAV formation at time t. It is well known that L⊤ = L, L ≥ 0, L1n = 0, and that the second smallest
eigenvalue of L is strictly positive, that is,

min
x 6=0

1⊤

n x=0

x⊤Lx

‖x‖2
= λ2(L) > 0

if and only if the graph Γ is connected (see e.g., Ref.26).
In preparation for the development that follows, next we reformulate the coordination problem stated

above into a stabilization problem. To this aim, we introduce the following notation: let

Π
△
= In − 1n1

⊤
n

n

denote the projection matrix and Q be a (n− 1) × n matrix such that

Q1n = 0, QQ⊤ = In−1.

Notice that Q⊤Q = Π, Π = Π⊤ = Π2, LΠ = ΠL = L, and the spectrum of the matrix L̄
△
= QLQ⊤ is

equal to the spectrum of L without the eigenvalue λ = 0 correspondent to the eigenvector 1n. Define the

state variables ζ(t) =
[

ζ1(t)
⊤ ζ2(t)

⊤
]⊤

as

ζ1(t) = Q l′(t)

ζ2(t) = χI(t) −
vd1(t)

lf1
1n−1 ,

where by definition ζ1(t) = 0 ⇔ l′ ∈ span{1n} which implies that, if ζ(tf ) = 0, then all UAVs arrive at their
final destination at the same time.

Thus, setting

evi(t) = vi(t) − vci(t) , i = 1, . . . , n ,

where evi(t) denotes the velocity error for the ith vehicle in the coordination, it follows from (15) that the
kinematic equation (14) can be rewritten as

l̇′i(t) = ucoordi(t) +
evi(t) cos θe,i(t) cosψe,i(t)

lfi
, (18)

and therefore, the closed-loop coordination dynamics formed by (18) and the coordination control algorithm
defined in (16)-(17) can be reformulated as

ζ̇(t) = F (t)ζ(t) +Hϕ(t) , (19)

where

F (t) =

[

−aL̄(t) QC

−bC⊤Q⊤L̄(t) 0

]

H =

[

Q

0

]

,
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and ϕ(t) ∈ R
n is a vector with its ith element

evi (t) cos θe,i(t) cosψe,i(t)

lfi
.

Next we show that for fixed or time-varying communication topologies but assuming that the graph
remains connected for all t ≥ 0, if every vehicle travels at the commanded speed vci(t) (evi(t) ≡ 0), then the
coordinated system reaches agreement and all the vehicles travel at the same path length rate, that is

lim
t→∞

(

l′i(t) − l′j(t)
)

= 0 , ∀i, j ∈ {1, . . . , n}

lim
t→∞

l̇′(t) =
vd1
lf1

.

On the other hand, if evi(t) 6= 0, then the error of the disagreement vector degrades gracefully with the size
of |evi(t)|.

Lemma 2 Consider the coordination system (19) and suppose that the graph that models the communication
topology Γ(t) is connected for all t ≥ 0. Then, for any selected rate of convergence λ̄ > 0, there exist a
sufficiently large coordinated control gains a, b such that the system (19) is input-to-state stable (ISS) with
respect to ev(t) = [ev1(t) · · · evn ]⊤, that is,

‖ζ(t)‖ ≤ k1 ‖ζ(0)‖ e−λ̄t + k2 sup
τ∈[0,t)

‖ev(τ)‖ , ∀t ≥ 0 (20)

for some k1, k2 > 0. Furthermore, the normalized lengths l′i(t) and path-length rates l̇′i(t) satisfy

lim
t→∞

sup
∣

∣l′i(t) − l′j(t)
∣

∣ ≤ k3 lim
t→∞

sup ‖ev(t)‖ , (21)

lim
t→∞

sup

∣

∣

∣

∣

l̇′i(t) −
vd1
lf1

∣

∣

∣

∣

≤ k4 lim
t→∞

sup ‖ev(t)‖ , (22)

for all i, j ∈ {1, . . . , n}, and for some k3, k4 > 0.

Proof. To prove ISS we first show that the homogeneous equation of the coordination dynamics

ζ̇(t) = F (t)ζ(t) (23)

is uniformly exponentially stable. To this aim, we consider the Lyapunov function candidate

Vc(ζ(t)) = ζ(t)⊤Pcζ(t) (24)

where Pc is defined to have the following structure

Pc =

[

In−1 − δ
λ̄n2

QC

− δ
λ̄n2

C⊤Q⊤ aδ
bλ̄n2

In−1

]

, (25)

with δ > 0 being an arbitrary positive constant.
We notice now that, since the graph Γ(t) is connected for every t ≥ 0, it follows that there exists a

constant δc > 0 such that
λ2(L(t)) > δc, ∀t ≥ 0 . (26)

If we set δ = δc in the definition of Pc in (25), then the lower bound in (26) can be used to show that for
any fixed λ̄ there exist arbitrarily large constant parameters a, b verifying

1

n
<

a

b
λ̄ <

2

n
− 1

kcn
(27)

2bδ >

(

kcn
3 + 1

)

λ̄2

a
b λ̄− 1

n

(28)

with δ = δc and kc > 1, such that for all t ≥ 0

Pc > 0

PcF (t) + F (t)⊤Pc + λ̄Pc < 0 .
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Hence, using the Lyapunov function candidate in (24), it follows that

V̇c(t) = ζ(t)⊤(PcF (t) + F (t)⊤Pc)ζ(t)

≤ −λ̄Vc(t)

and consequently system (23) is globally uniformly exponentially stable. We can now conclude that the
forced system (19) is ISS because it is a linear system, L(t) is bounded and the homogeneous equation is
exponentially stable (see Ref.27), and thus (20) holds.

To prove inequalities (21) and (22), we introduce the disagreement vector ̺(t) = Πl′(t) and use the facts
that

l′i(t) − l′j(t) = ̺i(t) − ̺j(t) i = 1, . . . , n; j = 1, . . . , n (29)

‖̺(t)‖ = ‖ζ1(t)‖ (30)

ζ2i(t) = χIi(t) −
vd1
lf1

i = 1, . . . , n− 1 . (31)

It follows from the relations (29)–(30) that
∣

∣l′i(t) − l′j(t)
∣

∣ = |̺i(t) − ̺j(t)| ≤ |̺i(t)| + |̺j(t)| ≤ 2‖̺(t)‖ = 2‖ζ1(t)‖ ,

and thus equation (20) leads to (21) with k3 = 2k2.
On the other hand, from (16), (18), and (31) one obtains

l̇′1(t) −
vd1
lf1

= −a
∑

j∈J1

(l′1(t) − l′j(t)) + ϕ1(t)

l̇′i(t) −
vd1
lf1

= −a
∑

j∈Ji

(l′i(t) − l′j(t)) + ζ2i−1
+ ϕi(t), i = 2, . . . , n ,

which, along with (20) and |ϕi(t)| ≤ |evi(t)|/lfi, lead to the bound in (22) with k4 = (2a (n− 1) + 1)k2 + 1
lfi

.

�

Next, we consider the case where the communication graph Γ(t) may be disconnected during some interval
of time or may even fail to be connected at any instant of time; however, we assume that the connectivity
of the graph satisfies the following less restrictive persistency of excitation (PE)-like condition

1

T

t+T
∫

t

L̄(τ)dτ ≥ µ̄ In−1, ∀t ≥ 0 (32)

for some T, µ̄ > 0.

Lemma 3 Consider the coordination system (19) and suppose that the Laplacian of the graph that models
the communication topology satisfies the PE condition (32) for some µ̄ and sufficiently small time T . Then,
for any given λ̄ > 0, there exist sufficiently large coordinated control gains a, b such that the system (19) is
ISS with respect to ev(t), and the normalized lengths l′i(t) and path-length rates l̇′i(t) satisfy (21) and (22),
respectively.

Proof. We start by showing that the origin of the homogeneous equation

ζ̇(t) = F (t)ζ(t)

is exponentially stable. Let Vc(ζ(t)) = ζ(t)⊤Pcζ(t), where Pc is defined to have the same structure as in (25).
Then,

V̇c(t) = ζ(t)⊤(PcF (t) + F (t)⊤Pc)ζ(t)

and therefore for any t ≥ 0 we have

Vc(t+ T ) − Vc(t) =

t+T
∫

t

ζ(τ)⊤
(

PcF (τ) + F (τ)⊤Pc
)

ζ(τ)dτ .
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Furthermore, let δc̄ be an arbitrary positive constant satisfying the condition

δc̄ <
1

4

β

β + 1
µ̄ (33)

with some β > 1.
If we now set δ = δc̄ in the definition of Pc, then, it can be shown that for any fixed λ̄ there exist

arbitrarily large constant parameters a, b verifying conditions (27)-(28) with δ = δc̄ and kc > 2, such that
for all t ≥ 0

Pc > 0 ,

and the following inequality holds

Vc(t+ T ) − Vc(t) ≤
t+T
∫

t

ζ(τ)⊤
(

PcF (τ) + F (τ)⊤Pc + λ̄Pc
)

ζ(τ)dτ

≤ −
t+T
∫

t

2aζ⊤1 (τ)L̄(τ)ζ1(τ)dτ +

t+T
∫

t

2aδc̄ ‖ζ1(τ)‖2
dτ −

t+T
∫

t

δc̄

λ̄kcn3
‖ζ2(τ)‖2

dτ

= −
t+T
∫

t

2a
∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ +

t+T
∫

t

2aδc̄ ‖ζ1(τ)‖2dτ −
t+T
∫

t

δc̄

λ̄kcn3
‖ζ2(τ)‖2dτ(34)

where M̄(t) is such that L̄(t) = M̄⊤(t)M̄(t). We now analyze each right hand-side term of equation (34).
Using the PE condition (32), it can be concluded that

1

T

t+T
∫

t

∥

∥M̄(τ)x
∥

∥

2 ≥ µ̄ ‖x‖2 , ∀t ≥ 0 ; ∀x ∈ R
n−1 .

From this, the dynamics of the coordination system (19), and using the relations

‖ζ1(τ)‖2 ≥ 1

2
‖ζ1(t)‖2 − ‖ζ1(τ) − ζ1(t)‖2

‖ζ2(τ)‖2 ≥ 1

2
‖ζ2(t)‖2 − ‖ζ2(τ) − ζ2(t)‖2 ,

it can be proved that the following inequalities hold

t+T
∫

t

∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ ≥ 1

2

t+T
∫

t

∥

∥M̄(τ)ζ1(t)
∥

∥

2
dτ −

t+T
∫

t

∥

∥M̄(τ)(ζ1(τ) − ζ1(t))
∥

∥

2
dτ

≥ 1

2
µ̄T ‖ζ1(t)‖2 − a2M4T 2

t+T
∫

t

∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ − M2T 2

t+T
∫

t

‖ζ2(τ)‖2
dτ(35)

t+T
∫

t

‖ζ1(τ)‖2
dτ ≤ 2

t+T
∫

t

‖ζ1(t)‖2
dτ + 2

t+T
∫

t

‖ζ1(τ) − ζ1(t)‖2
dτ

≤ 2T ‖ζ1(t)‖2
+ 2a2M2T 2

t+T
∫

t

∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ + 2T 2

t+T
∫

t

‖ζ2(τ)‖2
dτ (36)

t+T
∫

t

‖ζ2(τ)‖2 dτ ≥ 1

2

t+T
∫

t

‖ζ2(t)‖2dτ −
t+T
∫

t

‖ζ2(τ) − ζ2(t)‖2dτ

≥ T

2
‖ζ2(t)‖2 − b2M2T 2

2

t+T
∫

t

∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ , (37)

11 of 25

American Institute of Aeronautics and Astronautics



where M > M̄(t).
Thus, substituting (35), (36) and (37) into (34) yields

Vc(t+ T ) − Vc(t) ≤ −α1 ‖ζ1(t)‖2 − α2 ‖ζ2(t)‖2 − ε1

t+T
∫

t

∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ − ε2

t+T
∫

t

‖ζ2(τ)‖2
dτ

+
1

β





t+T
∫

t

2a
∥

∥M̄(τ)ζ1(τ)
∥

∥

2
dτ +

t+T
∫

t

2aδc̄ ‖ζ1(τ)‖2
dτ −

t+T
∫

t

δc̄

λ̄kcn3
‖ζ2(τ)‖2

dτ



 ,

where β > 1 was introduced in (33) and

α1 = aµ̄T − 4
β + 1

β
aδc̄T

α2 =
1

2

δc̄

λ̄kcn3
T

ε1 =
2a

β
−
(

2a3M4 + 4
β + 1

β
δc̄a

3M2 +
1

2

δc̄

λ̄kcn3
b2M2

)

T 2

ε2 =
1

β

δc̄

λ̄kcn3
−
(

2aM2 + 4
β + 1

β
δc̄a +

1

2

δc̄

λ̄kcn3
b2M2

)

T 2 .

It is easy to check that condition (33) leads to α1 > 0. For sufficiently small time T , it follows that ε1, ε2 > 0,
and then one can write

Vc(t+ T ) − Vc(t) ≤ −α1 ‖ζ1(t)‖2 − α2 ‖ζ2(t)‖2 − 1

β
(Vc(t+ T ) − Vc(t)) ,

where we have used inequality (34).
Consequently, for any t ≥ 0, we have

Vc(t+ T ) − Vc(t) ≤ − β

β + 1

(

α1 ‖ζ1(t)‖2 + α2 ‖ζ2(t)‖2
)

,

and therefore there exists ᾱ, satisfying 0 < ᾱ < 1, such that

Vc(t+ T )− Vc(t) ≤ −ᾱVc(t) .

We can thus conclude that

Vc(t+ T ) ≤ (1 − ᾱ)Vc(t) ≤ αVc(t) (38)

where the constant α satisfies 0 < α < 1. Applying now (38) successively we obtain for t = (k − 1)T

Vc(t) ≤ Vc(kT ) ≤ αkVc(0), ∀t ≥ kT , k = 0, 1, . . .

Thus, Vc(t) and consequently ζ(t) converge exponentially fast to zero as t→ ∞. From this and the fact that
the forced system (23) is linear and L(t) is bounded, it follows that the ISS bound (20) holds (see Ref.27).
Then, inequalities (21) and (22) also hold. �

Remark 2 The PE condition (32) only requires the graph be connected in an integral sense, not pointwise
in time. Similar type of conditions for other coordination laws can be found in e.g. Ref.28 and Ref.29 .

IV. L1 Adaptive Augmentation of Commercial Autopilots

So far, both the path following and time-critical coordination strategies were based on vehicle kinematics
only (outer-loop control). In this set-up, the pitch and yaw rate inputs qc(t) and rc(t) were selected so as
to meet the path following objectives, while the speed vc(t) was computed to achieve coordination. It is
now necessary to bring the UAV dynamics into play. To this effect, the above variables must be viewed
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as commands to be tracked by appropriately designed inner-loop control systems. At this point, a key
constraint is included: the inner-loop control systems should build naturally on existent autopilots. Since
commercial autopilots are normally designed to track simple way-point commands, we modify the pitch and
yaw rates, as well as the speed commands computed before by including an L1 adaptive loop to ensure that
the closed-loop UAV with the autopilot tracks the commands vc(t), qc(t), and rc(t) generated by the time-
coordination algorithm and the path following algorithm. The main benefit of the L1 adaptive controller
is its ability of fast and robust adaptation, which leads to desired transient performance for the system’s
both input and output signals simultaneously, in addition to steady-state tracking. Moreover, analytically
computable performance bounds can be derived for the system output as compared to the response of a
desired model, which is designed to meet the desired specifications30–32 .

First, we consider the system Gp, which models the closed-loop system of the UAV with the autopilot:

Gp : y(s) = Gp(s)(u(s) + z(s)),

where Gp(s) is an unknown strictly proper matrix transfer function, y(s) and u(s) are the Laplace transforms
of y(t) and u(t) respectively, and z(s) is the Laplace transform of z(t), which models unknown bounded time-

varying disturbances. The system Gp has the input u(t) = [vad(t) qad(t) rad(t)]
⊤

issued from the L1 adaptive

augmentation and output y(t) = [v(t) q(t) r(t)]
⊤

.
In this paper, Gp(s) is assumed to have the (decoupled) form

Gp :











v(s) = Gv(s) (vad(s) + zv(s))

q(s) = Gq(s) (qad(s) + zq(s))

r(s) = Gr(s) (rad(s) + zr(s))

(39)

where Gv(s), Gq(s), Gr(s) are unknown strictly proper and stable transfer functions, and zv(s), zq(s),
zr(s) represent the Laplace transformations of the time-varying disturbance signals zv(t), zq(t) and zr(t),
respectively. We note that the autopilot is designed to ensure that y(t) tracks any smooth u(t). We further
assume that the time-varying disturbances are bounded functions of time with uniformly bounded derivatives:

|zv(t)| ≤ Lv0 , |żv(t)| ≤ Lv1

|zq(t)| ≤ Lq0 , |żq(t)| ≤ Lq1

|zr(t)| ≤ Lr0 , |żr(t)| ≤ Lr1

where Lv0, Lv1, Lq0, Lq1, Lr0, and Lr1 are some conservative known bounds.
We note that only very limited knowledge of the autopilot is assumed at this point. We do not assume

knowledge of the state dimension of the unknown transfer functions Gv(s), Gq(s) and Gr(s). We only assume
that these are strictly proper and stable transfer functions. This will make the resulting inner-outer control
systems applicable to a wide range of aircraft. We nevertheless notice that the bandwidth of the control
channel of the closed-loop UAV with the autopilot is very limited, and the model (39) is valid only for
low-frequency approximation of Gp.

Then, since qc(t) and rc(t) defined in (8)-(9) stabilize the subsystem Ge, and vc(t) in (15) (with the coor-
dination control algorithm (16)-(17)) leads to coordination in time, the control objective for the subsystem

Gp is reduced to designing an adaptive output feedback controller u(t) = [vad(t) qad(t) rad(t)]
⊤ such that

the output y(t) = [v(t) q(t) r(t)]
⊤

tracks the reference input yc(t) = [vc(t) qc(t) rc(t)]
⊤

following a desired
reference model M(s), i.e.

v(s) ≈ M(s)vc(s)

q(s) ≈ M(s)qc(s)

r(s) ≈ M(s)rc(s) ,

where M(s) is designed to meet the desired specifications. In this paper, for simplicity, we consider a first
order system, by setting

M(s) =
m

s+m
, m > 0 .

Finally, we notice that the L1 adaptive augmentation presented in this section is what allows us to
account for the UAV dynamics.
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In the following sections, we present the L1 adaptive augmentation architecture for the inner-loop (see
Figure 3), and state a computable uniform performance bound for the tracking error between the output of
the adaptive closed-loop system and the reference input signal. We refer to Ref.25 for a detailed derivation
and discussion of this bound. Since the systems in (39) have the same structure, we will define the L1 adaptive
control architecture only for the system Gq(s). The same analysis can be applied to the systems Gv(s) and
Gr(s). The stability of the cascaded coordinated path following closed-loop system with the L1 adaptive
augmentation will be proven in Sections V and VI.

UAVA/P

Gp

L1

Augmentation

u
ry

y

Figure 3. Inner loop structure with the L1 adaptive augmentation

IV.A. L1 Adaptive Output Feedback Controller

We notice that the system

q(s) = Gq(s) (qad(s) + zq(s)) (40)

can be rewritten in terms of the desired system behavior, defined by M(s), as

q(s) = M(s) (qad(s) + σq(s)) , (41)

where the uncertainties due to Gq(s) and zq(s) are lumped in the signal σq(s), which is defined as

σq(s) =
(Gq(s) −M(s)) qad(s) +Gq(s)zq(s)

M(s)
. (42)

The philosophy of the L1 adaptive output feedback controller is to obtain an estimate of the unknown
signal σq(t), and define a control signal which compensates for these uncertainties within the bandwidth of
a low-pass filter C(s) introduced in the feedback loop. This filter guarantees that the L1 adaptive controller
stays in the low-frequency range even in the presence of high adaptive gains and large reference inputs.
The choice of C(s) defines the trade-off between performance and robustness32 . Adaptation is based on the
projection operator, ensuring boundedness of the adaptive parameters by definition33 , and uses the output of
a state predictor to update the estimate of σq(t). This state predictor is defined to have the same structure
of the open-loop system (41), using the estimate of σq(t) instead of σq(t) itself, which is unknown. The
L1 adaptive control architecture for the pitch-rate channel is represented in Figure 4 and its elements are
introduced below.

State Predictor: We consider the state predictor

˙̂q(t) = −mq̂(t) +m (qad(t) + σ̂q(t)) , q̂(0) = q(0) , (43)

where the adaptive estimate σ̂q(t) is governed by the following adaptation law.
Adaptive Law: The adaptation of σ̂q(t) is defined as

˙̂σq(t) = ΓcProj(σ̂q(t),−q̃(t)), σ̂q(0) = 0, (44)
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System

Gq(s)
Control

Law

Adaptive
Law

State
Predictor

L1 Augmentation

−

rq
qad q

q̂

q̃

σ̂q

Figure 4. L1 adaptive augmentation loop for pitch rate control

where q̃(t) = q̂(t) − q(t) is the error signal between the state predictor in (43) and the output of the system
in (40), Γc ∈ R

+ is the adaptation rate subject to a computable lower bound, and Proj denotes the projection
operator.

Control Law: The control signal is generated by

qad(s) = C(s) (rq(s) − σ̂q(s)) , (45)

where rq(t) is a bounded reference input signal with bounded derivative, and C(s) is a strictly proper low-pass
filer with C(0) = 1. In this paper, we consider the simplest choice of a first order filter

C(s) =
ω

s+ ω
, ω > 0 .

The complete L1 adaptive output feedback controller consists of (43), (44) and (45) subject to the
following stability condition: the design of C(s) and M(s) needs to ensure that

H(s) =
Gq(s)M(s)

C(s)Gq(s) + (1 − C(s))M(s)
(46)

is stableb.

IV.B. Analysis of the L1 Adaptive Controller

In this section we discuss the stability of the closed-loop adaptive system and the performance bound for
system’s output with respect to the reference command. We avail ourselves of previous work on L1 augmen-
tation and its application to path following25, 34 .

Lemma 4 Let rq(t) be a bounded reference command with bounded derivative. Given the L1 adaptive con-
troller defined via (43), (44) and (45) subject to (46), if the adaptation gain Γc and the projection bounds
are appropriately chosenc and, moreover, the initial conditions satisfy

|q(0) − rq(0)| ≤ γṙq
m

,

where γṙq is the bound on the derivative of rq(t), then we have

‖q − rq‖L∞
≤ γθ (47)

where γθ = γq + γ̄q +
γṙq
m and, moreover, lim

Γc→∞

(

γq + lim
ω→∞

γ̄q

)

= 0.

bThis stability condition is a simplified version of the original condition derived in Ref.34 , where the problem formulation
includes output dependent disturbance signals z(t) = f(t, y(t)).

cSee Ref.25 for a detailed discussion and derivation of the design constraints on the adaptation gain Γc, the bandwidth of
the low-pass filter ω, and the bandwidth of the state-predictor m.
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Proof. The proof of this Lemma can be found in Ref.25 . �

Similarly, if we implement the L1 adaptive controller for the systems

v(s) = Gv(s) (vad(s) + zv(s))

r(s) = Gr(s) (rad(s) + zr(s))

subject to

|v(0) − vc(0)| ≤
‖v̇c‖L∞

m
,

|r(0) − rc(0)| ≤
‖ṙc‖L∞

m
,

we can derive

‖v − vc‖L∞
≤ γv (48)

‖r − rc‖L∞
≤ γψ (49)

with γv > 0 and γψ > 0 being constants similar to γθ. We note that γv, γθ, and γψ can be rendered arbitrarily
small by increasing the adaptation gain Γc, the bandwidth of the low-pass filter ω, and the bandwidth of
the state predictor m.

Remark 3 We note that the derivation of the performance bounds with the L1 adaptive augmentation as-
sumes bounded reference commands with bounded derivatives, and thus before using these performance bounds
one should make sure that these conditions are satisfied.

V. Path Following with L1 Adaptive Augmentation

At this point, we discuss the stability of the path following closed-loop system with the L1 augmentation
for a single UAV (see Figure 5). First, we need to show that the outer-loop path following commands
qc(t) and rc(t) and their derivatives q̇c(t) and ṙc(t) are bounded, which in turn allows us to prove that the
original domain of attraction for the kinematic error equations given in (10) can be retained with the L1

augmentation.

Lemma 5 If x(t) ∈ Ω̄ for all t ≥ 0, where Ω̄ is the closure of the set Ω, which was defined in (10), and
the UAV speed v(t) is upper bounded (that is, v(t) ≤ vmax), then there exist control parameters Γc, ω and
m such that the outer-loop path following commands qc(t) and rc(t) and their derivatives q̇c(t) and ṙc(t) are
bounded, that is

‖qc‖L∞
≤ γqc , ‖q̇c‖L∞

≤ γq̇c
‖rc‖L∞

≤ γrc , ‖ṙc‖L∞
≤ γṙc ,

(50)

for some positive constants γqc , γq̇c , γrc , and γṙc .

Proof. The proof of this Lemma can be found in Ref.25 . �

Now, we define uθ(t) and uψ(t) as
[

uθ(t)

uψ(t)

]

= D (t, θeψe) + T (t, θe)

[

q(t)

r(t)

]

, (51)

and therefore, from (1), one gets

θ̇e(t) = uθ(t)

ψ̇e(t) = uψ(t) .

Then, it follows from (8) and (51) that
[

uθ(t) − uθc(t)

uψ(t) − uψc(t)

]

= T (t, θe)

[

q(t) − qc(t)

r(t) − rc(t)

]

. (52)
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Figure 5. Path following closed-loop system for a single UAV with L1 adaptive augmentation

Furthermore, we define γuθ and γuψ as

γuθ =
√

γ2
θ + γ2

ψ

γuψ =
1

cos ν1

√

γ2
θ + γ2

ψ , (53)

with γθ and γψ being the bounds in (47) and (49) for rq(t) ≡ qc(t) and rr(t) ≡ rc(t).

Theorem 1 Let d =
√
cc1, where c and c1 were introduced in (6), and let the progression of the point P

along the path be governed by (7). For any smooth v(t), verifying (5), if

1. the initial condition for the path following state vector satisfies

x(0) ∈ Ω ,

where Ω was defined in (10);

2. the initial conditions for the pitch and yaw rates are bounded as

|q(0) − qc(0)| ≤ γq̇c
m

|r(0) − rc(0)| ≤ γṙc
m

where γq̇c and γṙc were introduced in (50); and in addition

3. Γc, ω, and m verify

γuθ + γuψ ≤
√
cc2

2

λmin(Q̄p)

λmax(Pp)
, (54)

where γuθ and γuψ were defined in (53),

then x(t) ∈ Ω for all t ≥ 0, that is

Vp(x(t)) <
c

2
, ∀ t ≥ 0 ,

and the path following closed-loop cascaded system is ultimately bounded with the bounds given in (12).

Proof. The proof of this Theorem can be found in Ref.25 . �

Remark 4 We notice that this approach is different from common backstepping-type analysis for cascaded
systems. The advantage of the above structure for the feedback design is that it retains the properties of the
autopilot, which is designed to stabilize the inner-loop. As a result, it leads to ultimate boundedness instead
of asymptotic stability. From a practical point of view, the procedure adopted for inner/outer loop control
system design is quite versatile in that it adapts itself to the particular autopilot installed on-board the UAV.
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Figure 6. Coordinated path following closed-loop for the ith UAV with L1 augmentation

VI. Combined Path Following and Time-Critical Coordination with

L1 Adaptive Augmentation

This section addresses the stability properties of the combined coordination/path following systems and
the inner-loop with L1 adaptive augmentation. The complete coordinated path following closed-loop system
for a single UAV is presented in Figure 6. The main result is stated in Theorem 2. First, however, we need
to show that the outer-loop reference commands vc(t), qc(t), and rc(t) and their derivatives are bounded.

Lemma 6 If x(t) ∈ Ω̄ for all t ≥ 0, and the the initial conditions and the design of the L1 adaptive
augmentation verify the following relations

|v(0) − vc(0)| ≤ γv̇c
m

∣

∣v(t+s ) − vc(t
+
s )
∣

∣ ≤ γv̇c
m

¯̄k1 ‖ζ(0)‖ <
(vmax − γ̄v) cos ν1 cos ν2 −K1d

lfmax

− vd1
lf1

− ¯̄k2γ̄v , (55)

where ts are the times at which the communication topology switches, γ̄v = max{γv1 , . . . , γvn}, lfmax
=

max{lf1 , . . . , lfn} and some ¯̄k1,
¯̄k2 > 0, then the coordination/path following outer-loop commands vc(t),

qc(t) and rc(t) and their derivatives v̇c(t), q̇c(t) and ṙc(t) are bounded, that is

‖vc‖L∞
≤ γvc , ‖v̇c‖L∞

≤ γv̇c
‖qc‖L∞

≤ γqc , ‖q̇c‖L∞
≤ γq̇c

‖rc‖L∞
≤ γrc , ‖ṙc‖L∞

≤ γṙc ,

(56)

with some positive constants γvc , γv̇c , γqc , γq̇c , γrc , and γṙc . Furthermore, the resulting velocity for the ith
UAV verifies the a priori specified upper bound vi(t) ≤ vmax.

Proof. The proof is omitted due to space limitations. �

Theorem 2 Consider the combined path following system (1) and time-critical coordination system (19)
under the communication constraints of Lemma 2 or Lemma 3. If, for every UAV, we have
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1. the initial condition for the path following state vector satisfies

xi(0) ∈ Ω ,

where Ω was defined in (10);

2. the initial conditions for the speed, pitch rate, and yaw rate are bounded as

|vi(0) − vci(0)| ≤ γv̇c
m

|qi(0) − qci(0)| ≤ γq̇c
m

|ri(0) − rci(0)| ≤ γṙc
m

∣

∣vi(t
+
s ) − vci(t

+
s )
∣

∣ ≤ γv̇c
m

where γv̇c , γq̇c , and γṙc were introduced in (56); and

3. the control parameters Γc, ω, and m verify (54), (55), and also

¯̄k1 ‖ζ(0)‖ <
vd1
lf1

− (vmin + γ̄v) +K1d

lfmin

− ¯̄k2γ̄v , (57)

where lfmin
= min{lf1 , . . . , lfn}, and γ̄v and ¯̄k1,

¯̄k2 > 0 were introduced in Lemma 6,

then xi(t) ∈ Ω for all t ≥ 0 and i = 1, . . . , n, and the complete closed-loop cascaded system is ultimately
bounded with the bounds given in (12). Moreover, the coordination error ζ(t) satisfy

‖ζ(t)‖ ≤ k1 ‖ζ(0)‖ e−λ̄(t) + k2γ̄v , (58)

and the resulting velocity for the ith UAV verifies the a priori specified bounds 0 < vmin ≤ vi(t) ≤ vmax.

Proof. Consider the ith UAV. Using the same Lyapunov function candidate Vp(x) as in Lemma 1, it follows
that

V̇pi ≤ −x⊤i Qpixi +
|θei − δθi |

c2
|uθi − uθci | +

|ψei − δψi |
c2

|uψi − uψci | (59)

where Qpi was defined in (11), and we have taken into consideration the errors between uθi(t) and uθci(t),
and uψi(t) and uψci(t) (or equivalently between qi(t) and qci(t), and ri(t) and rci(t)). Next we will show
that, under the conditions of the Theorem, Qpi is positive definite and the terms |θei − δθi |, |uθi − uθci |,
|ψei − δψi |, and |uψi − uψci | are bounded, and thus the original domain of attraction for the kinematic error
equations given in (10) can be retained.

We prove this Theorem by contradiction. Since xi(0) ∈ Ω by assumption, and Vpi(t) is continuous and
differentiable, if xi(t) ∈ Ω ∀t ≥ 0 is not true, then there exists a time τ such that

Vpi(t) <
c

2
, ∀ 0 ≤ t < τ

Vpi(τ) =
c

2
, (60)

which implies

V̇pi(τ) > 0 . (61)

First, we show that the speed of the ith UAV verifies vi(t) > vmin for all t ∈ [0, τ ], which in turn will
help us prove that Qpi is positive definite. It follows from Lemma 6 that the commanded reference signals
vci(t), qci(t), and rci(t) and their derivatives v̇ci(t), q̇ci(t), and ṙci(t) are bounded for all t ∈ [0, τ ], i.e.

‖vciτ‖L∞
≤ γvc , ‖v̇ciτ‖L∞

≤ γv̇c
‖qciτ‖L∞

≤ γqc , ‖q̇ciτ‖L∞
≤ γq̇c

‖rciτ‖L∞
≤ γrc , ‖ṙciτ‖L∞

≤ γṙc ,

(62)
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and moreover one has

vi(t) ≤ vmax , ∀t ∈ [0, τ ] .

Therefore, from this result and the bounds on the initial conditions in (57), one finds that the bounds
in (47), (48), and (49) hold with rv(t) ≡ vci(t), rq(t) ≡ qci(t), rr(t) ≡ rci(t), and for any t ∈ [0, τ ]. So we
have

‖(vi − vci)τ‖L∞

≤ γvi (63)

‖(qi − qci)τ‖L∞

≤ γθi (64)

‖(ri − rci)τ‖L∞

≤ γψi . (65)

Using (20), similar to (22), it can be shown that

ucoordi(t) ≥ vd1
lf1

− ¯̄k1 ‖ζ(0)‖ − ¯̄k2 sup
t∈[0,τ ]

‖ev(t)‖ , (66)

with ¯̄k1 = (2a(n−1)+1)k1 and ¯̄k2 = (2a(n−1)+1)k2. Since at any t ∈ [0, τ ] the path following error states
xi(t) lie in the compact set Ω̄, then

vci(t) ≥ ucoordi(t)lfi −K1d ,

and thus, applying (57), (63), and (66) to the above inequality yields

vci(t) > vmin + γ̄v .

Finally, since ‖eviτ‖L∞
≤ γvi , it follows that

vi(t) ≥ vci(t) − γvi > vmin ,

for all t ∈ [0, τ ]. This result, along with the fact that xi(t) ∈ Ω̄ for any t ∈ [0, τ ], leads to

V̇pi ≤ −x⊤i Q̄pixi +
|θei − δθi |

c2
|uθi − uθci | +

|ψei − δψi |
c2

|uψi − uψci | , ∀t ∈ [0, τ ] ,

where Q̄pi was defined in (13).
Next we show that, under the conditions of the Theorem, the terms |θei − δθi |, |uθi − uθci |, |ψei − δψi |,

and |uψi − uψci | are bounded. It follows from (52) that

uθi(t) − uθci(t) = cosφei (t) (qi(t) − qci(t)) − sinφei (t) (ri(t) − rci(t))

uψi(t) − uψci(t) =
sinφei(t)

cos θei(t)
(qi(t) − qci(t)) +

cosφei (t)

cos θei(t)
(ri(t) − rci(t)) ,

and hence, from the bounds in (64) and (65), we have

‖(uθi − uθci)τ‖L∞
≤ γuθi

‖(uψi − uψci)τ‖L∞
≤ γuψi , (67)

with γuθi and γuψi defined in (53). Moreover, it follows from (60) that for any t ∈ [0, τ ]

|θei(t) − δθi(t)| ≤ √
cc2

|ψei(t) − δψi(t)| ≤ √
cc2 . (68)

Therefore, from Eqs. (59), (67) and (68), one finds

V̇pi(τ) ≤ −x⊤i (τ)Q̄pixi(τ) +

√

c

c2
(γuθi + γuψi) .

Since

x⊤i (τ)Q̄pix(τ) ≥ λmin(Q̄pi)

λmax(Ppi )
Vpi(τ) ,
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where λmin(Q̄pi) and λmax(Ppi ) are the minimum and the maximum eigenvalues of Q̄pi and Ppi respectively,
it follows from (60) that

x⊤i (τ)Q̄pixi(τ) ≥ c

2

λmin(Q̄pi)

λmax(Ppi)
,

and then the design constraint in (54) leads to

V̇pi(τ) ≤ 0 ,

which contradicts the assumption in (61), and thus xi(t) ∈ Ω holds for all t ≥ 0 and i = 1, . . . , n. Since (60)
leads to (62)-(68) for any time t ∈ [0, τ ], xi(t) ∈ Ω implies that the bounds in (12) hold for all t ≥ 0.

Finally, equations (20) and (63) lead to the bound in (58), which concludes the proof. �

VII. Experimental Results

The complete coordinated path following control system with L1 adaptive augmentation, shown in Fig-
ure 6, was implemented on experimental UAV RASCALs operated by NPS. The Hardware-In-The-Loop
(HITL) and flight test setups20 are shown in Figure 7; note that both configurations are identical except the
sensor data is software generated in the HITL simulation.

 
Figure 7. Avionics architecture including two embedded processors and an AP

Customized RASCAL model aircraft were used for the experimental part of the work. The payload bay
of each aircraft is used to house two PC104 embedded computers assembled in a stack, wireless network link,
and the Piccolo autopilot35 with its dedicated control channel. The first PC-104 board (see SBC (RT) in
Figure 7) runs developed algorithms in real-time while directly communicating with the autopilot (AP) over
the serial link. The second PC-104 computer (see SBC (Win) in Figure 7) is equipped with a mesh network
card (Motorola WMC6300 Mesh Card) that provides wireless communication to another UAV as well as
to the data processing center on the ground. This second computer performs software bridging of onboard
wired and external wireless mesh networks. Thus, direct connection with the onboard autopilot efficiently
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eliminates communication delays between the high-level control algorithm and the autopilot. In turn, an
integration of the self-configuring wireless mesh network allows for transparent inter-vehicle communication
making it suitable for coordination in time.

 
 Figure 8. RASCAL UAV and its payload bay with the custom built avionics

Based on the presented hardware setup, the developed algorithm was flight tested in February 2007.
Figure 9 shows how the developed system was used for the flight testing of the path following/adaptation/co-
ordination algorithms running onboard in real-time; a collective picture of 15 trials obtained during just one
flight test is presented. As for the coordination, the speed of virtual cooperative UAV was simulated to be
constant. In this picture, the red trajectories represent the required/commanded flight path and the blue
one shows the actual flight path of the UAV. Each trial was used to tune the control law parameters in order
to achieve more accurate path following and coordination.
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 Figure 9. Performance comparison with and without L1 adaptation (top) and 3D path following in the autonomous

landing scenario (bottom)

Figure 10(a) presents one of the trials of Figure 9 in details; it shows the inertial position of UAV with
respect to the commanded feasible trajectory generated online as introduced in Section II. Figure 10(b) also
shows the corresponding rate commands of the autopilot as well as errors of the UAV tracking the trajectory.
It can be seen that the maximum deviation from the desired trajectory is about 40m, which corresponds to
the point of the sharp turn. Other than at this point, the tracking errors are very small and the UAV is
following the commanded path very closely.

Figures 10(c)-10(d) include results of an HITL test where two UAVs follow feasible trajectories while
using their velocities to coordinate simultaneous arrival at their respective terminal conditions. Results of
Figure 10(c) show the desired and the actual paths of each UAV. Control commands and errors for both
UAVs are similar to the results of one UAV tracking the path. As in the case of one UAV, the control efforts
required to bring each airplane to the commanded trajectory do not exceed any limitations imposed by the
autopilot and are typical for this class of UAVs. Finally, normalized coordination states for each UAV are
presented in Figure 10(d); two graphs represent coordination efforts required to deliver two UAVs to the
terminal conditions at the same time. Both airplanes arrive at the final position at nearly the same time.

The results presented above demonstrate feasibility of the onboard integration of the path following,
adaptation and coordination concepts. During the flight experiments, the required control commands (in-
cluding adaptive contribution) have never exceeded the limits defined for the UAV in traditional waypoint
navigation mode. At the same time the achieved functionality of the UAV following 3D curves in inertial
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(a) Desired (red) and actual (blue) UAV trajectories
from flight test with L1 adaptive controller

(b) Top: path following turn rate command and con-
tributions from outer loop and L1 adaptation. Bot-
tom: path following errors

 

(c) Simultaneous arrival of two UAVs to the same
terminal conditions (separated by altitude).

 

(d) Coordination states for each UAV.

Figure 10. Flight Test Results (top) and Hardware-in-the-Loop Simulations (bottom)

space has never been available for the airplanes equipped with traditional AP; adaptive concept explicitly
outperforms the conventional waypoint navigation method. Presented results not only demonstrate the
feasibility of the concept but provide a roadmap for further development and onboard implementation of
intelligent multi-UAV coordination.

VIII. Conclusion

This paper presented a solution to the problem of coordinated path following control of multiple un-
manned air vehicles (UAVs) in the presence of time-varying communication topologies with the objective
of meeting desired spatial and/or temporal constraints. As a motivating example, a scenario was consid-
ered where a fleet of UAVs must follow spatially deconflicted paths and arrive at their final destinations
at identical times. The theoretical framework adopted led to a novel methodology for coordinated motion
control that brings together algorithms for path following and vehicle coordination with an inner-outer (that
is, kinematic versus dynamic) structure with L1 adaptation. This is in striking contrast with other algo-
rithms proposed in the literature that yield control laws which are hard to tune and do not exploit the fact
that many autonomous vehicles are naturally equipped with local, highly performing dynamic control loops
(autopilots).

Central to the development of the control laws derived was the combination of nonlinear path following
algorithms, derived at the kinematic level, with an L1 adaptive output feedback control law that effectively
augments an existing autopilot and yields an inner-outer loop control structure with guaranteed perfor-
mance. The same principle was used at the coordination level, where multiple vehicle coordination laws that
generate desired speed profiles for the vehicles in response to data exchanged over a dynamically changing
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communication are complemented with inner speed control loops that are designed by resorting to L1 adap-
tive control techniques. From a theoretical standpoint, the paper offered a complete analysis of the stability
properties of the Combined Path Following and Time-Critical Coordination with L1 Adaptive Augmentation
under time-varying communication constraints. In particular, tools were developed to address explicitly the
case where the communication graph that captures the underlying communication network topology may be
disconnected during some interval of time or may even fail to be connected at any instant of time. Flight
tests and hardware-in-the-loop simulations have shown clearly what steps are required to transition from
theory to practice. The results obtained show that the methodology proposed holds considerable promise
for coordinated motion control of multiple UAVs.
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