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Abstract: Recent research in multiple autonomous marine vehicle (AMV) applications shows
that versatile path planning algorithms are of crucial importance to cooperative control
scenarios. These algorithms need to be lightweight in terms of running time and capable
of incorporating different factors influencing a given mission, like AMV dynamic constraints
and environmental conditions. In addition, the path planner needs to take into account
requirements imposed by multiple vehicle scenarios (of which collision avoidance is an important
issue), and inter-vehicle communication constraints. Mission-related measures have to be
incorporated additionally, such as minimization of energy usage over all participating AMVs,
and simultaneous arrival of the AMVs at their designated target destinations, to name but a few.
These aspects pose considerable challenges both from a theoretical and practical implementation
standpoint.
This paper presents a versatile path planning algorithm for deconflicted multiple AMV
missions at sea, incorporating single vehicle dynamical constraints as well as an inter-vehicle
communication constraint. Additionally, it takes into account unknown constant ocean currents,
and gives an overview on time-coordinated path following, a a closed-loop methodology to
execute the planned mission, reducing the need for replanning in the presence of disturbances.
The paper finishes with an outlook on important future directions to advance the algorithm.

Keywords: Deconflicted Path Planning, Multiple Autonomous Marine Vehicles,
Time-Coordinated Path Following.

1. INTRODUCTION

As versatility and usability of autonomous robots in-
creases, more and more new frontiers are available to be
explored by robots in all kinds of environments. Land,
air, space and marine robots pose active areas of re-
search, boosting exciting developments continuously. This
development is also reflected in marine robotics, as ever
increasing sophistication leads to a growing range of pos-
sible applications, amongst whose the most appealing are
those with the capability of reducing danger for humans
in dangerous environments.

The marine environment poses a rich field of challenges to
multiple vehicle control systems to be dealt with, such as
sea waves, ocean currents, low underwater visibility, lack of
global positioning data under water, and stringent acoustic
communication constraints. Central to the implementation
of systems that are able to cope with all named conditions
is the availability of a multiple vehicle path planning algo-
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rithm, which can take into account the constraints of each
vehicle as well as important environmental conditions.

Figure 1 illustrates the problem at hand and shows how
a cost criterion, initial and final vehicle conditions, and
internal and external constraints are used to produce (if
it exists) a trajectory that meets the constraints and
minimizes the cost. The spatial and temporal coordinates
of this trajectory yield a spatial path and a corresponding
velocity profile.
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Fig. 1. Schema of the path planning system.



This problem and the solutions we propose have been
strongly influenced by several mission scenarios studied
in the scope of the two EU research projects described
in FREE subNET (2006–2010) and GREX (2006–2009).
Previous work on deconflicted path planning for multiple
marine vehicles was recently published in Häusler et al.
(2009a,b). In this paper, we propose advancements of
the algorithm in terms of versatility as well as from
the optimization point of view, and we point out future
improvements which we plan to pursue.

The path planning technique on which we rely is based on
work of Kaminer et al. (2006) for unmanned air vehicles.
The key idea, originally reported by Yakimenko (2000), is
to separate spatial and temporal path specifications, which
allows for decoupling the process of spatial path computa-
tion from that of computing the desired speed profiles for
the vehicles along the paths. This decoupling is achieved
by parameterizing each path as a set of polynomials in
terms of a generic variable τ and introducing a polynomial
function η(τ), that specifies the rate of evolution of τ with
time, that is, dτ/dt = η(τ), see Kaminer et al. (2007).
By restricting the polynomials to be of low degree, the
number of parameters used during the computation of the
optimal paths is kept to a minimum. Once the order of
the polynomial parameterizations has been decided, we
can solve the given multiple vehicle path planning problem
by applying e.g. the zero-order optimization technique de-
scribed in Hooke and Jeeves (1961), from now on referred
to as “H&J”.

Our paper is organized as follows. In Sec. 2 we give
a short description of the theory behind the means of
path generation we employ. Sec. 3 introduces the multiple
vehicle path planning problem and shortly discusses the
concept of spatially versus temporally deconflicted paths,
as well as the optimization approach for multiple vehicles.
Currents and communication constraints are added to the
algorithm in form of environmental constraints in Sec. 4,
where we also show simulation results. In Sec. 5, we
put Sec. 6 shows the connection of the generated paths
and velocity profiles to a path following controller, while
Sec. 7 gives a final outlook on upcoming changes of our
algorithm.

2. POLYNOMIAL PATH PLANNING

In this section, we give a short introduction to our ap-
proach to path generation for the single vehicle case.
Due to space limitations, some important details have to
be omitted. The complete theoretical framework is being
dealt with in all its extent in Häusler et al. (2009a).

2.1 Path polynomials.

Let us begin by recalling the difference between paths and
trajectories. A path is a curve p̄ : τ → R3, parameterized
by τ in a closed subset [0, τf ] with τf > 0. If τ is identified
with time t or a function of time, then (remark the notation
without bar), p : t → R3 with t ∈ [0, tf ], tf > 0 will be
called a trajectory. Path following refers to the problem
of making a vehicle converge to and following a path p̄(τ)
with no explicit temporal schedule. However, the vehicle
speed may be assigned as a function of parameter τ .
Trajectory tracking is the problem of making the vehicle
track a trajectory p(t) = p̄(τ(t)), that is, the vehicle must
satisfy spatial and temporal schedules simultaneously. The
difference is that trajectory tracking depends on absolute
timing, which does not allow for on-line modification of
the plan in case of disturbances during execution. On the

other hand, in the case path following, if the vehicle for any
reason cannot follow the desired speed or stops for some
time, it still can continue following the path with the given
speed profile. See Häusler et al. (2009b) for more detail.

The key point of our technique, as first introduced by
Yakimenko (2000) and later on extended by Kaminer et al.
(2006, 2007), is the separation of spatial and temporal path
description. (For a thorough supportive argumentation,
please refer to Häusler et al. (2009b).) Due to this separa-
tion, the optimization process can be viewed as a method
to produce paths p̄i(τi) without explicit time constraints,
but with timing laws ηi(τ) that effectively dictate how
the nominal speed of each vehicle should evolve along the
path. Using this set-up, spatial and temporal constraints
are essentially decoupled and captured in the descriptions
of p̄i(τi) and ηi(τ) = dτi/dt, respectively, as will be seen
later. Furthermore, adopting polynomial approximations
for p̄i(τi) and ηi(τ) keeps the number of optimization
parameters small and makes real-time computational re-
quirements easy to achieve. Intuitively, by making the path
of a generic vehicle Vi a polynomial function of τi ∈ [0, τfi ],
the shape of the path in space can be changed by increasing
or decreasing τfi—a single optimization parameter. This,
coupled with a polynomial approximation for ηi(τi) makes
it easy to shape the speed and acceleration profile of the
vehicle along the path so as to meet desired dynamical
constraints.

Consider now the path of a single vehicle, denoted by
p̄(τ) = [x̄(τ), ȳ(τ), z̄(τ)]> with a parameterization τ =
[0, τf ]. Each coordinate x̄(τ), ȳ(τ) and z̄(τ) can be rep-
resented by an algebraic polynomial of degree N , i.e.

x̄(τ) =
∑N
k=0 axkτ

k. The minimum degree N? of each
polynomial is specified by the number of boundary con-
ditions to be met; see Häusler et al. (2009a). If desired,
additional degrees of freedom can be included by making
N > N?. For the remainder of the paper, we use N = 5,
which gives us the equation
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 (1)

to compute the coefficients of x̄(τ). x̄′ and x̄′′ denote
first and second “spatial” derivatives of x̄ towards τ .
Given η(τ), the (spatial) boundary conditions on the right-
hand side of (1) can be computed from given (temporal)
boundaries using formulas described in Häusler et al.
(2009b,a); Ghabcheloo et al. (2009).

To shape the speed profile along a trajectory p(t), we now
need to define means of including temporal constraints in
the computation process for a feasible path. This can be
achieved by choosing η(τ) = dτ/dt, which describes the
evolution of τ in time, giving us equations for temporal
speed v(τ(t)) and acceleration a(τ(t)) (we write τ for τ(t))

v(τ) = η(τ)
√
x̄′2(τ) + ȳ′2(τ) + z̄′2(τ) = η(τ)||p̄′(τ)||

a(τ) = ||p̄′′(τ)η2(τ) + p̄′(τ)η′(τ)η(τ)||
(2)

Choosing a particular η(τ), it follows from (2) that a path
p̄(τ) is feasible if all boundary conditions are met, together
with additional speed and acceleration constraints that
can now be specified as

vmin ≤ η(τ)||p̄′(τ)|| ≤ vmax,

||p̄′′(τ)η2(τ) + p̄′(τ)η′(τ)η(τ)|| ≤ amax ∀τ ∈ [0, τf ]. (3)



For a discussion on how a constant velocity profile can be
achieved by specifying η(τ) in a different way, the reader
is referred to Häusler et al. (2009a). A feasible trajectory
can now be obtained by solving

min
Ξ
J

subject to geometric boundary
conditions and (3) for all i ∈ [1, . . . , n] (F1)

where Ξ is the vector of optimization parameters, that may
include τf and the accelerations x̄′′(0), ȳ′′(0) and z̄′′(0).
Also, one could also think of including the jerk x̄′′′(0) etc.,
if (1) is adapted accordingly.

2.2 Cost function considerations.

Imagine a vehicle moving around a circumference: in the
simplest case, i.e. with negligible sideslip, constant speed,
and without current, the propulsion system only needs to
counteract the drag. In case the vehicle is experiencing
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Fig. 2. The forces acting upon a vehicle moving around a circumfer-
ence with constant speed. Here, vtot is the total velocity and
vw is the velocity with respect to the fluid.

current influence, the situation is as depcited in Fig. 2:
the vehicle’s speed with respect to the water, vw has to
be oriented in a manner that allows it to counteract the
current speed in such a way that the total resulting velocity
matches the one required by the computed velocity profile,
tangential to the path. The thrust T is always collinear
with the vehicle’s body axis, but because of the sideslip β,
the vehicle’s motion with respect to the water differs from
the direction of thrust. The drag force D acting on the
vehicle is always collinear with its direction of movement;
the lift force L is always perpendicular to D. The total
hydrodynamic force created by D and L again needs to
be compensated by T so as to meet the requirement that
the centripetal force is pointing towards the center of the
circumference, which defines the magnitude and direction
of thrust needed to move the vehicle with a constant speed.

For a thorough treatment of the mechanics of computing
each force’s influence on the vehicle movement correctly,
the reader is referred to e.g. Spong and Vidyasagar (1989).
In this paper, we are neglecting the vehicle dynamics and
write the cost function J simply as

J =

∫ tf

0

(D + T ) vw(t)dt

=

∫ tf

0

[
1

2
ρCdv

2
w(t)A+maw(t)

]
vw(t)dt, (4)

where ρ is dynamic pressure, Cd is the total drag coefficient
of the vehicle, A its reference area and m its mass. The
subscript w denotes the vectors with respect to the fluid.

3. DECONFLICTED MULTIPLE VEHICLE PATHS

The above methodology is now extended to deal with
multiple vehicles. In particular, we address the problem
of time-coordinated control where all vehicles must ar-
rive at their respective final destinations at the same
time. The dimension of the corresponding optimization
problem increases and the time coordination requirement
introduces additional constraints on the parameters τi,
where i = 1, . . . , n is the number of vehicles. To achieve
simultaneous time of arrival, we adopt the functions

ηi(τi) = ηi(0) +
τi
τfi

(ηi(τfi)− ηi(0)).

Other definitions of η(τ) are possible; they be used to meet
other planning requirements such as constant speed; see
Häusler et al. (2009a). Integrating τ̇i = ηi(τi) yields

τfi = τi(tf ) =


ηi(0)tf ηi(τfi) = ηi(0)
ηi(τfi)− ηi(0)

ln
(
ηi(τfi)
ηi(0)

) tf ηi(τfi) 6= ηi(0) (5a)

and

t

tf
=


τi
τfi

ηi(τfi) = ηi(0)

ln
(

1 +
(
ηi(τfi)
ηi(0) − 1

)
τ
τf

)
ln
(
ηi(τfi)
ηi(0)

) ηi(τfi) 6= ηi(0)
(5b)

Considering tf , in some specified interval [t1, t2], as the
key search parameter in an optimization problem, the final
values τfi of the path parameters τi are uniquely defined by
(5a). This can now be used to achieve either spatial (paths
are separated “geometrically”) or temporal deconfliction
(paths are allowed to intersect or violate the clearance
condition E if the vehicles are not within the conflicting
region at the same instance of time). The elegance of using
our approach for multiple vehicle path planning lies in
the fact that it guarantees exact equal times of arrival.
Simulation results illustrating the difference between the
two types of deconfliction are shown in Figure 3.

All of the graphs presented in this paper show results of
the problem of path generation for two vehicles under the
assumption that the angle of sideslip β is negligible small.
Moreover, the initial headings ψ1(0) and ψ2(0) are open for
optimization, where the initial guesses are the original ve-
hicle headings ψ10 and ψ20 . All other initial guesses are set
to 0 with the exception of the guess of the arrival time tf =
300s. In total, the design variable vector used in all scenar-
ios presented here is the vector I ∈ R9 and has the shape

I = [ tf ψ1(0) θ1(0) |p̈1(0)| |p̈1(tf )| ψ2(0) θ2(0) |p̈2(0)| |p̈2(tf )| ]
T

,
where θi(·) is the pitch angle and is always 0 in the
presented 2D cases. I can easily be shaped according to
one’s requirements, e.g. to include the initial velocities
ṗi(0) as further design variables.

3.1 Spatial deconfliction.

In the case of spatial deconfliction, feasible trajectories for
all the vehicles are obtained by solving an optimization
problem of the form

min
Ξi,i=1,...,n

n∑
i=1

wiJi
subject to geometric

boundary conditions and
(3) for any i ∈ [1, . . . , n], and

min
j,k=1,...,n,j 6=k

||p̄cj (τj)− p̄ck(τk)||2 ≥ E2

for any τj , τk ∈ [0, τfj ]× [0, τfk ] with
τfj , τfk obtained from (5a) and tf ∈ [t1, t2]


(F2)
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(a) Spatial deconfliction with active
communication constraint C = 50m.
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(b) Temporal deconfliction with
C = 80m.

p1 p2
vmin 0.2m

s
0.1m

s
vmax 1.5m

s
1.3m

s
[x0, y0] [79.22, 95.95]m [101.78, 64.53]m
[xf , yf ] [68.90,−143.05]m [63.27,−162.91]m
ψ0 236.07◦ 244.34◦

ψf −15.82◦ −15.82◦

v0 0.25m
s

1.03m
s

vf 0.62m
s

0.62m
s

(c) The randomly generated boundary conditions used
throughout this paper.

Fig. 3. Algorithm runs for spatial and temporal deconfliction with clearance E = 5m.

where Ji represents total energy consumption of vehicle Vi
and the weights wi > 0 penalize the energy consumptions
of all vehicles. Note that in contrast to (F1), in (F2)
an additional constraint was added to guarantee spatially
deconflicted trajectories separated by a minimum spatial
clearance distance E.

In summary, we seek to minimize the used energy, given
the tf that is changed during the optimization runs, and
subject to constraints that include minimum and maxi-
mum vehicle speeds, maximum vehicle accelerations, the
allowed window of times of arrival, and spatial clearance
requirements for deconfliction.

3.2 Temporal deconfliction.

Temporal deconfliction introduces an extra degree of free-
dom (time), that is not available in the case of spatial
deconfliction. As such, it yields solutions whereby paths
are allowed to come to close vicinity or intersect in space.
For achieving temporal deconfliction, the key step involves
changing the collision avoidance constraint in (F2) to

||pi(t)− pj(t)||2 ≥ E2,

∀ i, j = 1, . . . , n; i 6= j and t ∈ [0, tf ], (6)
where tf is the optimization parameter and t is related to
the τi via (5b). Notice that temporally deconflicted path
planning for multiple vehicles is the first step in the general
methodology introduced in Ghabcheloo et al. (2009).

4. INCORPORATING ENVIRONMENTAL
RESTRICTIONS

The constraints nature poses onto a given mission include,
but are by no means limited to, ocean currents and ob-
stacles such as ocean vessels and landmasses. Limitations
in communication range are counted to the environmental
conditions as well. All of these constraints have been in-
corporated into the optimization by employing the barrier
function method described in Hauser and Saccon (2006).
In the remainder of this section, we show results obtained
through simulation.

First, let us consider the effect of ocean currents onto the
planned paths. Of course, currents can and have to be

taken care of the path following controller of the vehicle,
and one might ask why to incorporate ocean currents
already at the path planning level. This is due to the fact
that although the vehicle might be able to track a given
path correctly, this path might not be the most energy
efficient one for facing a given current, i.e. time-optimal
paths depend on currents (see also Kruger et al. (2007)).
This can be taken into account by including the effects of
external currents when computing the required propulsion
energy in (4). The effect of this is shown in Figure 4.

Not only do current effects play a major role in shaping
a path, but also the effects imposed on a multiple vehi-
cle constellation through restrictions in communication.
Fig. 3(b) shows first results where the communication
constraint has been implemented in a way that defines
a loss of communication between both vehicles as ex-
ceeding the maximum permissible distance C. Although
the formulation is at a very early stage and simplified,
the results show that communication constraints influence
path shapes and are necessary to include already at the
path planning stage.

5. ARCHITECTURE OF THE PATH PLANNER

The requirements imposed onto a versatile path planning
algorithm are stated in the schematic shown in Fig. 5. In
the first stage, we want to have a means of path generation
for single vehicles. This has to take as inputs the boundary
conditions, that is initial and final poses (i.e. positions and
headings) and has to output a path between those, which
is, together with an associated speed-profile, passed onto
the optimization algorithm. Additional inputs to the single
vehicle path planner are given by the initial guess vector
I (see Sec. 3); later on, they will be refined through the
optimization process and fed back into the path planner
to generate new and improved results.

The different vehicles’ dynamic constraints are taken into
account as constraints imposed to the optimizer. The
optimizing stage takes as inputs the previously generated
paths as well as the vehicle dynamic constraints (e.g.
minimum and maximum permitted velocity magnitudes
for each vehicle), constraints imposed by the mission
(e.g. spatial clearance and a cost criterion like minimum
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(a) vc = 0.85m
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(b) vc = 0.68m
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, βc = 272.79◦.
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(c) Velocity profiles. The solid lines are ||vw||, the dashed lines
are ||vd|| and the dotted lines are vmin and vmax.

Fig. 4. Results of an algorithm run for temporal deconfliction under different current conditions. The planner’s result without currents is
shown in Figure 3(a) on the right side. The spatial clearance was again E = 5m; all other boundary conditions are given in Tab. 3(c).
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energy usage or minimum simultaneous arrival time),
and environmental constraints (such as current speed and
direction and obstacles). When the results achieved by
repeated calls of the path generator (by the optimization
algorithm) cannot be improved any further, the path
planning system stops and outputs the paths together with
speed profiles, which then can be jointly used in a path
following controller.

Algorithmically, this can be expressed as follows:

MultipleVehiclePathPlanner

1 Get boundary conditions B
2 Get initial guess I
3 Select mode (spatial/temporal)
4 Specify constraints (vmin, vmax, amax, clearance E, etc.)
5 Choose design variables V for optimization
6 Define step size vector S and break tolerance T
7 Ensure size(G) = size(S) = size(V )
8 Call Init-Hooke-Jeeves(G,S, T )

Init-Hooke-Jeeves(G,S, T )

1 for all exploratory and pattern moves of H&J
2 do Generate paths with current V from H&J
3 Evaluate cost J and weighted constraints C
4 if J + C < T
5 then break run of H&J

6. TIME-COORDINATED PATH FOLLOWING

Given temporally deconflicted paths together with nom-
inal speed profiles generated in the previous sections (or
any other methodologies), it now remains to control the ve-
hicles to follow the plan. However, multiple vehicle control
schemes that rely on open-loop “pure planning” strate-
gies suffer from following disadvantages. Firstly, should
one of the vehicles deviate considerably from its planned
trajectory (because of environmental disturbances or tem-
porary failures), replanning becomes necessary. Planning
algorithms are in general computationally demanding, and
require high communication bandwidth among the vehicles
or with a central planning station. Secondly, as it is well
known, trajectory tracking suffers from performance limi-
tations that cannot possibly be overcome by any controller
structure (see Aguiar et al. (2008)). In this section, we
summarize the concept of time-coordinated path following
(TC-PF) first introduced in Ghabcheloo et al. (2009). TC-
PF is a closed-loop solution to the problem above, and
allows us to exploit advantages of path following over
trajectory tracking.

Consider a nominal trajectory pi(γi) to be followed by
vehicle i, parameterized by γi ∈ [0, tf ]. For the sake of
clarity, we refer to the time parameter γi as virtual-time.
This is done to distinguish it from the real time t that
unfolds during the execution of a mission. Further, we let



pi(t) denote actual position of AUV i during the mission.
We now make the key observation that virtual-time can be
simply viewed as a variable that parameterizes the spatial
paths derived from the trajectories above. These paths,
together with the resulting vehicle speed assignments
(specified as functions of γi), are all that is required for
path following, which will dictate how γi actually evolves
in time.

Assume each AUV is equipped with a path-following
control strategy that keeps the following error

epi(t) = ||pi(t)− pi(γi(t))|| (7)

small. The generated trajectories pi(γi) guarantee the
following two facts: 1) if ∀t > 0, γi(t) = γj(t), then vehicle
i and vehicle j will remain deconflicted; 2) vehicle i will
follow its trajectory as planned if γi(t) = t. In the non
ideal case where due to disturbances the vehicles deviate
from the planned trajectories, one must guarantee that the
vehicles will remain deconflicted. Therefore, we would like
to derive time coordination control laws for γ̇i(t) in such
a way that

eci(t) = ‖γj(t)− γi(t)‖ < δ, (8)

for some δ > 0, and in the absence of disturbances, the
dynamics of γ̇i must verify γ̇i(t) = 1, so as to recover
the planned trajectories and optimality is retained. Notice
that the mission will be “near optimal” in the presence
of disturbances. The rationale behind the bounds on
the errors will become clear next: using the mean value
theorem, it is easily shown that

‖pi(ta)− pi(tb)‖ < vmax|ta − tb|;∀i, (9)

and that the trajectories are deconflicted in time to satisfy

‖pi(ta)− pj(ta)‖ > E; ∀ta ∈ [0, tf ], (10)

for all i, j; i 6= j. Comparing equations (7)-(10), if we
neglect path-following error, it can be shown that, as
mision unfolds, clearances remain bounded and satisfy the
following inequality

‖pi(t)− pj(t)‖ > Ē (11)

where Ē = E − δvmax. Notice that Ē < E, thus during
planning phase, we must take into account higher clear-
ance values.

To meet the objectives above, for each vehicle the nominal
speed profile is perturbed by a corrective speed ṽi, that is
function of the errors |γi−γj | so as to keep the latter small
and to drive them to zero in the absence of disturbances.
These adjustments are done by exchanging coordination
information (virtual-time variables γi) among vehicles us-
ing the supporting communication network. In practice,
some assumptions must me made with respect to the con-
nectivity of the underlying communication graph to ensure
adequate behaviour of the coordination system. Another
issue of considerable importance is the impact of the rate
of communications on the convergence rates of appro-
priately defined error variables. The less communication
losses, the faster convergence is. Thus, we incorporated
the communication requirements to decrease probabilities
of communication losses. (See Ghabcheloo et al. (2009) for
more details on TC-PF.)

7. CONCLUSION

In this paper we showed the most recent improvements of
our path planning algorithm for multiple marine vehicles.
Although it proves increasing versatility, there remains a
number of problems that still have to be tackled. In a
recent internal report we were able to show that the run-
time increases exponentially in terms of the number of

computed discrete path points, which suggests to use a
different kind of optimization approach (see e.g. Hauser
(2002); Hauser and Saccon (2006)) and/or a different
means of mathematical path description. Additionally,
the communication constraint currently is simply a path
distance formulation with respect to traversal time, i.e.
the paths are not allowed to be further apart than a given
distance at any instance of time. This can be improved
in various ways; for example, a penalty could be put
on the number of communication losses, so that short
interruptions would be allowed. Last, but not least, the
energy computation has to be argued about more carefully
(see e.g. Harvald (1983)), and the vehicle dynamics have
to be incorporated so as to accurately match the actual
energy consumption, especially in the case of non-constant
vehicle velocity.
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