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Abstract: The estimation of the position and attitude of an autonomous underwater vehicle
(AUV) is a challenging and important problem in marine robotics. It is well known that the
underwater environment posses considerable problems, that include i) the fact that there is no
GPS signal, ii) the communication is usually done through acoustic signals, which suffers from
faults, delays and low bandwidth, and iii) the use of vision and/or laser is very limited due
to poor visibility. In this paper, we combine a multiple set of sensors to address the full state
6DOF pose estimation of an AUV. The problem is formulated assuming that we have partial
measurements from an Inertial Measurement Unit (IMU), an acoustic ranging from a single
beacon buoy, and a monocular camera attached to the AUV. Using multiple model estimation
techniques and the concept of Extended Kalman Filters with Simultaneous Localization and
Mapping (EKF-SLAM), we propose an algorithm that integrates the AUV measurements (that
arrive at different sampling-times) and compute in real time an estimate of the position and

attitude of the AUV. Simulation results are presented and discussed.

Keywords: Underwater Vision, IMU, Extended Kalman Filter, Multiple Model Adaptive
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1. INTRODUCTION

Over the last decade, applications with ocean robotics have
increased dramatically. The use of remotely operated ve-
hicles (ROV) and, more recently, autonomous underwater
vehicles (AUVs) have shown to be extremely important
tools to study and explore the oceans. A key enabling
element for the use of such robotic vehicles is the availabil-
ity of advance navigation and positioning systems. Since
electromagnetic signals do not propagate well below the
sea surface, a solution for communication and positioning
is to use acoustic systems. Examples of positioning systems
include Ultra Short BaseLine (USBL), Long BaseLine
(LBL), and GPS Intelligent Buoy (GIB) [Thomas (1998);
Alcocer et al. (2007)], which all use the concept of bea-
cons and transponders. These systems make use of range
measurements taken from the time of flight of the acoustic
signals. It is worth to stress that acoustic communication
suffers from intermittent failures, latency, and multi-path
effects.

A complementary approach for AUV navigation is to apply
techniques of terrain based navigation, by exploring the
correlation between the range measurements from the
vehicle to the sea bottom and an apriori known map
of the seabed. See for example [Nygren and Jansson
(2004); Teixeira and Pascoal (2005)] where terrain aided
AUV navigation problem using particle filters have been
addressed.
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Another approach is to resort, when possible, to robotic
vision. Notice, however, that vision is conditioned to i)
visibility, which is limited in the underwater environment,
and i) richness of the features, which is usually poor,
unless the vehicle is close to rocks, cliffs, or sea bottom,
that allow to detect features and extracting them from the
surrounding environment.

The problem of using vision to estimate the motion of a
robotic vehicle has been addressed by several authors in
the last decade [Perez et al. (1999); Mallet et al. (2000);
Davison and Murray (2002); Burschka and Hager (2004);
Garcia and Solanas (2004); Davison et al. (2004, 2007);
Aguiar and Hespanha (2009)].

In the underwater field, we point out the work of Ribas
et al. (2006), where the authors have tackled the prob-
lem for partially structured underwater environments by
using a 360° imaging sonar and a feature based SLAM
algorithm. Williams et al. (2000) and Folkesson et al.
(2007) have also addressed the problem using sonar to
detect and localize the features in the environment. In
the work by Augenstein and Rock (2009) particle filters
were proposed to simultaneously track the pose and re-
construct a 3-D point cloud model of the target, based
on SLAM concepts, to enable AUV/ROV station keeping
with respect to target. Williams et al. (2009) combines the
SLAM trajectory estimates with the stereo image pairs to
generate 3D meshes and place them in a common refer-
ence frame. At the University of Michigan, Brown et al.
(2008) have developed a testbed for multi-AUV SLAM
using stereo vision. In [Caccia (2007)] the author addresses
the motion control and estimation of an ROV using a
laser-triangulation optical-correlation sensor. Karras and
Kyriakopoulos (2007) also propose a laser-based vision
system for localization of an ROV.



Fig. 1. Schematic diagram of a robotic vehicle equipped
with a monocular camera. Body-fixed {B}, camera-
fixed {C}, earth-fixed (inertial) {Z}, and visual-fixed
{V} coordinate frames.

In spite of significant progress made in these areas, much
work remains to be done to obtain high performance and
robust navigation systems for underwater robotic vehicles.
In this paper we propose a new and promising algorithm
for AUV navigation that make use (when available) of
partial measurements from an Inertial Measurement Unit
(IMU), an acoustic ranging from a single beacon buoy,
and a monocular camera attached to the AUV. The key
contribution is the integration of multiple model estima-
tion techniques with the concept of Extended Kalman Fil-
ters with Simultaneous Localization and Mapping (EKF-
SLAM) to solve the full state 6 Degree Of Freedom (6DOF)
pose estimation of an AUV. The algorithm was validated
through extensive computer simulations that showed a
promising solution to be implemented for real applications.

The paper is organized as follows: Section 2 formulates the
pose (position and attitude) estimation problem. Section
3 describes the standard EKF-SLAM. Section 4 describes
the proposed multiple model EKF-SLAM algorithm and
Section 5 presents simulation results. Concluding remarks
are given in Section 6.

2. PROBLEM STATEMENT

This section formulates the position and attitude estima-
tion of an AUV with respect to an inertial coordinate
frame. Figure 1 shows a schematic diagram of an AUV
equipped with a camera and the coordinates frames needed
to formulate the problem. In the figure, {B} is the body-
fixed coordinate frame whose origin is located e.g., at
the center of mass of the vehicle, {Z} is the earth-fixed
inertial coordinate frame, {V} denotes another inertial
coordinate frame defined by the visual features, and {C}
is the camera-fixed frame.

In the sequel, the following notation is used. Given two
frames {A} and {B}, the symbol R is the rotation matrix
form {A} to {B}, Pq is the position of the vector g
expressed in {B}, and Pp, is the position of the origin
of frame {A} expressed in {B}.

2.1 Kinematic and Dynamic Equations of Motion

Following standard practice, the general 6DOF kinematic
and dynamic equations of motion of an AUV can be
written in compact form as

Kinematics
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where Ji(n2) = ZR(n2) is the rotation matrix from {B}
to {Z} parameterized by vector ny = [¢,0,1]T of roll,
pitch, and yaw angles, and Ja(n2) is the matrix that
relates body-fixed angular velocities vy = [p,q,7]? with
roll, pitch, and yaw rates. The symbols Mgrp, Crp(v)
denote the rigid body inertia matrix and the matrix of
Coriolis and Centrifugal terms, respectively. The vector
v= i, v = [u,v,w,p,q,7]" consists of the body-fixed
linear and angular velocity vectors, and n = [n{,nd |7 =
[z,v,2,¢,0,1]T the earth-fixed position and attitude. The
vector Trp = [X,Y, Z, K, M, N]T denotes external forces
and moments which can be decomposed as
TRB=T+Ta+7Tp +7Tr+ T4 (3)
where 7p denotes the term due to buoyancy and gravity,
and 74 is the added mass term. The term 7p captures
the damping and lift effects, and 7 represents the forces
and moments generated by the thrusters. The symbol
T4 represents input disturbances. The reader is referred
to [Fossen (1998)] for detailed explanation of the above
equations and further details.

The sampled-data representation of equation (1)-(3), at-
tained by holding the input constant over [kT, kT +T),
where T is the sampling time, can be written in the form

Trt1 = fi(@h; vk, wi) (4a)

Yk = hk (Z’k, Uk, Uk) (4b)

where x = col(n(kT),v(kT)) is the state of the system,

ug, = 7(kT) its input, and wy, = 74(kT") the process noise.

The output equation (4b) is described in the following
section.

2.2 Sensor Measurements

We consider that the AUV is equipped with the following
set of sensors:

- An Inertial Measurement Unit (IMU), that only pro-
vides measurements of angular velocities [p, ¢, |7 and
attitude [¢,0,1]7 with respect to earth-fixed (iner-
tial) {Z} coordinate frame.

- A pressure sensor, which gives the depth z.

- An acoustic modem to obtain range measurements
from the position of the vehicle to a single fixed buoy
with known position.

- A monocular Charged-Coupled-Device (CCD) cam-
era.

Given the heterogeneous sensors described above, it is not
realistic to consider that they all provide measurements at
the same (and constant) sampling rate. To tackle this issue
we first assume that the sampling time 7T is sufficiently
fast so that if there exist measurements provided by the
sensors, they occur at some time t = k7. The output signal
is given by

Yr = COZ(yli7y12fay2a) (5)
where, if at time ¢t = k7T the measurement j is not
available, we set

yi =0, and hi(mk,uhvi) =0 (6)
Otherwise, we have the following:



IMU:

Y= hip (@h, wk, v) = col (P, O, Y, i, Grs i) + v (7)
where v} denotes measurement noise.
Depth sensor:

2 _ 12 2y _ 2
Vi = hii(zr, uk, vi) = 2z + vg, (8)

Acoustic beacon: From the measurements given by the
IMU and the depth sensor it is clear that the entire
position of the AUV cannot be estimated. To tackle this
issue, we resort to range measurements provided by an
acoustic modem. Let ¢, be a priori known fixed position

of a buoy with respect to {Z}. If there is a ranging
measurement available at time t = kT

yi = hi (@, 0}) = [m(kT) = asll2 +07 - (9)
CCD camera: The CCD camera attached to the vehicle
together with a computer vision algorithm provide mea-
surements of the detected features from the surrounding

environment. For each new feature ¢ detected, we add an
output y3*% that can be written as [Ma et al. (2003)]

, 1
yz‘“ — TF q + 113'”, (10)
k
with the constraint
0,0,1]y; ™" =1 (11)

Here, % ¢ is the unknown pOblthIl of the detected feature
q expressed in the camera’s frame {C} at time ¢t = kT,
ui is the unknown image depth of the point ¢’ in the the
camera’s frame {C}, and F is a matrix transformation that
depends on camera’s intrinsic parameters such as the focal
length, the scaling factors, and the centers offsets.

In what follows, we write (10) in the earth-fixed frame.
For simplicity we consider that the vision-fixed {V} and
arth ﬁxed {Z} coordinate frames are coincident. Let Zq,

By, and S be the coordinates of a point ¢ in the frames
{7}, {B} and {C}, respectlvely Then, the follovvlng holds:

% =“Ps+5Rr ", . T¢' ="Psi+5R g (12)
Comblmng equations (10)—( 2), we finally obtaln
1
= PP + PERRLCY ~TPa )l (13
k
[0,0,1]yiT =1 (14)

The next sections address the problem of computing an
estimate of state z for dynamical system described by (4).

3. EKF-SLAM

The past few years have witnessed an increased research
effort on the problem of Simultaneous Localization And
Mapping (SLAM). In the literature we can find two main
forms of SLAM: online SLAM and full SLAM. Online
SLAM involves computing the posterior estimation using
the current pose combined with the map. On the other
hand, full SLAM estimates a posterior over the entire path
combined with map. [Thrun et al. (2005)].

In EKF formulation, it is considered that the size of the
state x is fixed. This is not the case in the EKF-SLAM
where the state estimate & (and covariance matrix P) are
continuously augmented as new features are discovered.
Roughly speaking the EKF-SLAM algorithm can be de-
composed in three steps:

(1) Predict the state estimate using the process model
and the input signal u.

(2) update the current state estimate using the measure-
ments including the re-observed features.

(3) add new features to the current state.

It is important to stress that to implement the EKF-SLAM
the following two tasks must be carefully addressed: i) the
feature detection task and i) the data association task,
that is responsible to classify if the detected feature is a
new one or an old one, and which one. These two tasks are
out of the scope of this paper.

The methodology adopted to augment the state & for the
specific problem addressed in the paper is now briefly
described. At the initial time, the state & is given by
&0 = col(fjo, p), where 7o, and Dy are the initial guesses for
the attitude, and linear and angular velocities respectively.
As soon as a new feature ¢; € R? at time t = kT is
detected, the state Z is augmented with an estimate of the
location of the feature Z§;. To compute the initial estimate
of Z4; we resort to the measurement provided by the vision
system yi“ and equation (13). Notice however that in this
step we have four unknown variables (location of feature
Zq; and depth of image p;) and only three independent
equations.To solve this issue we set fi; = ji;0, where fi;0 is
an initial estimate of the depth (distance to the plane) of
the feature g; in the image. As it will be shown in Section
5, this initial value plays a key role on the convergence of
the EKF-SLAM algorithm.

The covariance matrix P has also to be augmented to
|: Pll P12:| (15)

Py Poy

where P11 :Pk, P12 ZPgi :Hljg, and P22 = JvHQJE-i-Rf.
In the above expressions II; is a mapping which selects the
columns of Py corresponding to 7, Il is a mapping which
selects columns and rows of Py corresponding to 1. J,
represents the Jacobian of vision measurement (13) with
respect to AUV states (1,v), and Ry is the covariance of
measurement noise on the vision measurements.

The algorithm used for EKF-SLAM can be described as
follows:

e Initialize AUV states x and covariance matrix P.

e Predict the AUV states using previous estimated
states, given inputs and the AUV model, presented
in (4).

e Propagate states covariance matrix according to EKF
covariance matrix prediction.

e If measurements, or re-observed features are avail-
able.

- Update the EKF using the measurements avail-
able and re-observed features.

e If feature 7 has been observed for the first time.

- Extract an estimate of Zg; from y3; and an initial
estimate of p; using (13), (14).
%ment the state vector x with the estimate
q; into the states vector together with AUV
states
- Initialize the elements of covariance matrix (15).
) Go to prediction step.

Note that in SLAM, re-observing a feature does not just
improve the estimate of its location, but also improves the
estimate of other features locations and the AUV state.



This fact may not hold when the feature detection and
data association do not work correctly. Further readings
about the EKF-SLAM can be found in [Thrun et al.
(2005)].

4. MULTIPLE MODEL EKF-SLAM

In this section we propose a combined approach of multiple
model and EKF-SLAM. The motivation for this algorithm
arises from the fact that the EKF-SLAM convergence is
very sensitive to the initial guess of p;. To minimize this
problem we propose the following: From a range mea-
surement sensor (or a priori estimate of the image depth)
generate as many multiple models as needed (depending
on the uncertainty of image depth) to cover the range of
uncertainty of p;. Then, apply a multiple model adaptive
estimation scheme. The models and their corresponding
weights are updated by arrival of new measurements ac-
cording to (16)-(18) [Bar-Shalom et al. (2002)].

-1
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where ri, S,i, and pi represent residual, innovation matrix,
and weight of the j** model at time ¢t = kT respectively.

In this approach we have one main model which would
estimate AUV states together with all features locations.
For each new observed feature we would create a set of
N models to extract a good estimative of Zg;. Whenever
these N models corresponding to feature ¢ have converged,
the best estimate of Zg; will be augmented into the main
model. All the multiple models corresponding to initialized
feature is then deleted. The derived estimate will be used
as an initial feature location in the EKF-SLAM of the main
model. Whenever all the features have been initialized,
we would have only the main model containing all the
features estimated locations with AUV states and the
update procedure would follow the same as the standard
EKF-SLAM.

The pseudo code corresponding to the proposed multiple
model EKF-SLAM algorithm is as follows:

e Initialize the main model with initial AUV states and
uncertainty covariance matrix.

e Predict AUV states, given inputs and AUV model.

e Propagate states covariance matrix according to EKF
covariance matrix prediction.

e If measurements, or re-observed initialized features
measurements are available:

- Update the EKF using the measurements avail-
able and re-observed initialized features measure-
ments.

e If new feature ¢ has been observed:

- Generate a set of probable p; with N elements
as, S; = {1, Mik» -y li,N }, Where each p;
represents an initial guess for k" model.

- Extract an estimative of Zg; using yoy; and
for k" model as Zq; 1., using (13), (14).

- Replicate a copy of main model into N created
models.

Table 1. Simulation parameters

T: sample time 25ms
Vision sample time 50ms
Depth sample time 50ms
IMU sample time 25ms

Ranging beacon sample time 1s

AUV initial pose O oo o0 o0 0T
estimator initial pose n 110 0 0T
AUV initial velocity O o o0 o0 0 0T
estimator initial velocity O o o0 o0 0 0T

1% of input T
diag(][0.0524[1, 1, 1],0.01[1, 1, 1]].2)

Process noise
IMU niose covariance

Depth noise covariance 0.12

Vision noise covariance diag([0.1,0.1,0.1].2)
Ranging noise covariance 0.12

gp: Beacon position [10 10 0F

N: Number of models 11

- Initialize models weights pj, with 4.

- Augment estimative of Zg; ) into corresponding
k" model.

- Initialize new elements of k** model covariance
matrix in i set of models, using (15).

o If feature ¢ corresponding to S; has been re-observed.

- Update each model of the corresponding set us-
ing the measurements available and re-observed
feature ¢ measurements.

- Update the weights corresponding to the models
using (16), (17), (18).

- Check if the states of the set have converged to
states of an specific model of the set. If so, use the
converged estimative of Zg; to augment it into the
main model and delete all the converged models.

e Go to prediction step.

5. SIMULATION RESULTS

To illustrate the performance of the SLAM algorithm de-
scribed in the paper, we consider the problem of computing
the position and attitude of an AUV that is required
to move according to the following mission: The AUV
is required to move up and down along the Z axis and
also to rotate along the same Z axis so that it can get
features from different directions. From time to time it will
also move forward and backward along the X axis, which
will make it closer and farther from the features that are
located stationary on the wall in front of the AUV.

The numerical values used for the physical parameters of
the AUV match the ones of the Sirene underwater shuttle
described in Aguiar and Pascoal (1997). The features are
randomly distributed in front of AUV (see Fig 2). Table 1
shows the simulation parameters used in SLAM algorithm.

Figures 2-4 illustrates the performance of the multiple
model EKF-SLAM. Detected features are located on a
wall in front of AUV shown by (x). As it can be seen,
the estimated features locations (o) are close to the true
ones. Figures 3,4 show that the AUV position and attitude
estimation have converged to a finite small bound with
zero mean in all 3 axes, even though we have started from
an initial position farther from the actual initial position
of the AUV. In order to compare the results with standard
EKF-SLAM, we use the same map of features and the same
initial condition as before. Fig. 5 illustrates the results.
Since the initial estimate for p; is not close to the true
ones, the estimated features locations have drifted and
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Fig. 2. True (%) and estimated (o) features locations using
the multiple model EKF-SLAM.
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Fig. 3. Time evolution of the position estimation error and
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Fig.

converged to values with significant error. Also we could
notice that, the estimated position of x and y have been
drifted along time.

Figures 6-8 show the simulation results where there is no
range measurements. As it is expected, in this case the
results are not so good as the ones in Fig. 2, but still
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Fig. 5. True (x) and estimated (o) features locations using
standard EKF-SLAM.
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Fig. 6. True (x) and estimated (o) features locations using
multiple model EKF-SLAM and without benefiting
from ranging measurement.
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7. Time evolution of position estimation error and 3¢
uncertainty bound corresponding to Fig. 6. The first
20 seconds are zoomed in.

acceptable. Notice also that, they are better than the EKF-
SLAM with range measurements.

6. CONCLUSIONS

In this paper we have proposed a new SLAM algorithm
for an AUV that integrates the measurements provided by
an IMU, a depth sensor, a buoy range, and a monocular
camera attached to the AUV. The key contribution was
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the use of multiple model adaptive estimation tools to
extend the standard EKF-SLAM. The simulation results
illustrated the efficiency of this new approach. We could
also notice that the computation power needed to use
the multiple model EKF-SLAM is in the same order of
the standard EKF-SLAM after the convergence of the
multiple models. During the transient, the computation
effort increases and has a direct relation with the number
of models multiplied by the landmarks that have not
converged yet. Future work will include experimental tests.

REFERENCES

Aguiar, A. and Pascoal, A. (1997). Modeling and control
of an autonomous underwater shuttle for the transport
of benthic laboratories. In Proc. of MTS/IEEE Confer-
ence, OCEANS ’97, volume 2, 888-895.

Aguiar, A.P. and Hespanha, J.P. (2009). Robust filtering
for deterministic systems with implicit outputs. Systems
& Control Letters, 58(4), 263 — 270.

Alcocer, A., Oliveira, P., and Pascoal, A. (2007). Study
and implementation of an EKF GIB-based underwater
positioning system. Control Engineering Practice, 15(6),
689 — 701.

Augenstein, S. and Rock, S. (2009). AUV/ROV Pose
and Shape Estimation of Tethered Targets without
Fiducials. In Proc. of UUST’09.

Bar-Shalom, Y., Kirubarajan, T., and Li, X.R. (2002). Es-
timation with Applications to Tracking and Navigation.
John Wiley & Sons, Inc., New York, NY, USA.

Brown, H.C., Kim, A., and Eustice, R.M. (2008). Develop-
ment of a multi-AUV SLAM testbed at the University of
Michigan. In Proc. of IEEE/MTS OCEANS Conference
and Ezhibition, 1-6. Quebec, Canada.

Burschka, D. and Hager, G. (2004). V-GPS (SLAM):
Vision-based inertial system for mobile robots. In Proc.
of ICRA, 409-415.

Caccia, M. (2007). Vision-based ROV horizontal motion
control: Near-seafloor experimental results. Control En-
gineering Practice, 15(6), 703 — 714. Special Section on
Control Applications in Marine Systems - CAMS2004,
Control Applications in Marine Systems.

Davison, A., Cid, Y., and Kita, N. (2004). Real-time
3D SLAM with wide-angle vision. In Proc. of IFAC
Symposium on Intelligent Autonomous Vehicles, Lisbon.

Davison, A. and Murray, D. (2002). Simultaneous Local-
ization and Map-Building Using Active Vision. IEEFE

Transactions on Pattern Analysis and Machine Intelli-
gence, 24(7), 865-880.

Davison, A., Reid, I., Molton, N., and Stasse, O. (2007).
MonoSLAM: Real-time single camera SLAM. [EEFE
Transactions on Pattern Analysis and Machine Intel-
ligence, 29(6), 1052.

Folkesson, J., Leonard, J., Leederkerken, J., and Williams,
R. (2007). Feature tracking for underwater navigation
using sonar. In Proc. of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS, 3678~
3684.

Fossen, T.I. (1998). Guidance and control of ocean vehi-
cles. John Wiley & Sons, Inc., New York, NY, USA.
Garcia, M. and Solanas, A. (2004). 3D simultaneous
localization and modeling from stereo vision. In Proc. of
IEEE International Conference on Robotics & Automa-

tion, volume 853.

Karras, G. and Kyriakopoulos, K. (2007). Localization of
an underwater vehicle using an IMU and a laser-based
vision system. In Proc. of MED ’07. Mediterranean
Conference on Control & Automation, 1-6.

Ma, Y., Soatto, S., Kosecka, J., and Sastry, S.S. (2003).
An Invitation to 8-D Vision: From Images to Geometric
Models. SpringerVerlag.

Mallet, A., Lacroix, S., and Gallo, L. (2000). Position
estimation in outdoor environments using pixel tracking
and stereovision. In Proc. of IEEE International Confer-
ence on Robotics and Automation, volume 4, 3519-3524.

Nygren, I. and Jansson, M. (2004). Terrain navigation for
underwater vehicles using the correlator method. IFEE
Journal of Oceanic Engineering, 29(3), 906-915.

Perez, J., Castellanos, J., Montiel, J., Neira, J., and Tar-
dos, J. (1999). Continuous mobile robot localization:
vision vs. laser. In Proc. of IEEFE International Confer-
ence on Robotics and Automation, volume 4, 2917-2923
vol.4.

Ribas, D., Ridao, P., Neira, J., and Tardos, J. (2006).
SLAM using an imaging sonar for partially structured
underwater environments. In Proc. of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,,
5040-5045.

Teixeira, F. and Pascoal, A. (2005). AUV terrain aided
navigation using Particle Filters. In Proc. of Interna-
tional Workshop on Underwater Robotics, Genoa, Italy,
207-216.

Thomas, H. (1998). Gib buoys: An interface between space
and depths of the oceans. In Proc. of IEEE Autonomous
Underwater Vehicles, Cambridge, MA, USA, 181-184.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press.

Williams, S., Newman, P., Dissanayake, G., and Durrant-
Whyte, H. (2000). Autonomous underwater simultane-
ous localisation and map building. In Proc. of IEEE
International Conference on Robotics and Automation,
ICRA ’00., volume 2, 1793-1798 vol.2.

Williams, S., Pizarro, O., Jakuba, M., and Barrett, N.
(2009). AUV benthic habitat mapping in south eastern
tasmania. In Proc. of Field and Service Robotics.



