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Abstract: This paper addresses the problem of cooperative motion control (CMC) of multiple
autonomous marine vehicles, taking explicitly into account collision avoidance in dynamic
environments. A Collision Avoidance System (CAS) for a CMC architecture is proposed that
consists of two subsystems: Collision Prediction and Collision Avoidance. Collision Prediction
aims at estimating the most probable trajectory of a given obstacle. To this effect, a bank
of Kalman filters are run in parallel, with each filter using a different plausible model for
obstacle motion. The most probable model is chosen according to a decision algorithm. Each
of the vehicle trajectories is then checked for possible collision with the obstacle. Should the
possibility of a collision occur, Collision Avoidance is achieved either by controlling the speed
of each vehicle along its assigned path or through path re-planing using harmonic potential
fields. Because group coordination must be taken into consideration, collision avoidance is
implemented using a decentralized system that is suited for multiple heterogeneous vehicles.
The paper summarizes the key concepts and the methodology used to implement a Collision
Avoidance System for teams of vehicles. The efficacy of the system is assessed in simulation
with dynamic models of a group of marine surface craft using NetMarSys, a Cooperative
Motion Control Simulator developed at ISR/IST.

Keywords: Cooperative Motion Control, Collision Avoidance, Collision Prediction, Autonomous
Marine Vehicles, Potential field theory, Kalman filtering

1. INTRODUCTION

Often, the execution of multiple vehicle missions requires
that the vehicles move in coordination while holding a
desired geometrical formation pattern. This problem has
been addressed extensively in the literature, both from
a theoretical and practical standpoint; see for example
Skjetne et al. (2003); Kyrkjebø et al. (2004); Aguiar and
Pascoal (2007); Vanni et al. (2008); Ghabcheloo et al.
(2009) and the references therein. The problem becomes
especially challenging when communication constraints are
explicitly taken into account. Another level of complexity
arises when the vehicles must react to prevent collisions
with stationary or moving obstacles, the location of which
is not known a priori. In this case, upon detection of
a possible collision, the original formation and/or team
speed must change temporarily so as to avoid contact and
return to the desired formation pattern/speed afterwards.
A representative collision avoidance scenario is shown in
Fig.1, where a group of three autonomous surface craft
(ASC) performing a cooperative path following mission in
formation face a number of static and moving obstacles in
their area of operations.

There is a wealth of literature on collision avoidance for
autonomous robots moving in environments with static
obstacles. See for example Fahimi (2009) and the refer-
ences therein. The plethora of methods available defies a
simple summary. Representative examples include geomet-

1 This work was supported in part by projects FREEsubNET (EU under

contract number MRTN-CT-2006-036186), Co3-AUVs (EU FP7 under grant

agreement No. 231378), NAV/FCTPT(PTDC/EEA-ACR/65996/2006), CMU-

Portugal program, and the FCT ISR/IST plurianual funding program.

Fig. 1. Collision avoidance: a group of autonomous surface
craft on a data-gathering mission at sea.

rical methods such as the road map and cell decomposition
of Bhattacharya P. (2008) or methods that are based
on potential field theory, see Yun and Tan (1997). See
also Hausler A.J. (2009) where a centralized methodol-
ogy for multiple vehicle path generation is described that
addresses explicitly energy constraints and the goal of
reaching specific target locations at the same time. The
problem becomes considerably more difficult in the pres-
ence of dynamic obstacles. In fact, when moving objects
are present in the environment it becomes necessary to
predict their behaviour in order for evasive maneuvers
to be performed so as to avoid imminent collision situ-
ations. Clearly, prediction methods play a key role in any
integrated strategy for obstacle detection and avoidance.
Representative work along these lines can be found in



Foka A.F. (2002) and Xu Y.W. (2009) that describe the
application of partially observable Markov decision process
(POMDP) and extended Kalman filters, respectively to
the detection of collisions between robotic vehicles and
pedestrians.

In this paper, inspired by previous work on collision de-
tection/avoidance and cooperative path following reported
in Kim Jin-Ho (1992) and Ghabcheloo et al. (2009), re-
spectively, an integrated solution is offered to the problem
of cooperative motion control in the presence of moving
obstacles. Our purpose is to contribute to the development
of efficient solutions to the abovementioned problem by
bringing attention to some of the challenging issues that
remain to be solved and to show via simulations, how
the integration of existing techniques holds promise for
future applications. The solution proposed at this point
is supported on an “event-based” architecture, where the
vehicles commute from a mission execution state to a colli-
sion avoidance state. A collision prediction module acts as
the trigger between states. During mission execution, the
architecture will naturally yield the following sequence of
steps:

(1) Upon detection of an obstacle by one of the vehicles,
the latter will track the obstacle and adopt a model
for its motion (out of a finite number of possible
models). Tracking of the obstacle will continue until
it gets out of sensor range.

(2) Based on the model adopted for obstacle motion, and
within a given time horizon into the future, the vehicle
trajectory will be checked for possible interactions
with the obstacle.

(3) In the presence of an imminent collision situation, a
collision avoidance mode will be activated according
to the type of interaction detected. The ensuing
action can be either speed correction or path re-
planning, based on the type of situation encountered.

(4) The original mission plan is resumed once an obstacle
is labeled as harmless; as a consequence, the vehicle
goes back to its original mission plan.

The paper is organized as follows. Section 2 gives the
reader an overview of the interaction between the Cooper-
ative Control and Obstacle Avoidance Systems. Section 3
details the Target Tracking and Collision Prediction mod-
ules, while Section 4 contains the core of the algorithms
for Collision Avoidance. Finally, Section 5, includes the
results of illustrative simulations. Concluding comments
are found in section 6.

2. COOPERATIVE CONTROL AND OBSTACLE
AVOIDANCE: AN OVERVIEW

This section describes a Collision Avoidance module and
its integration into a cooperative mission control architec-
ture. The rationale for the system can be simply explained
with the help of the mission scenario depicted in Fig. 1.
In the figure, three autonomous marine vehicles undertake
the mission of following an ’L’ shaped path, while main-
taining a triangular formation among them. Static and
moving obstacles intersect the vehicles trajectories, and
it is therefore necessary to take preemptive measures to
avoid collisions.
The example above displays the two main, possibly com-
peting tasks involved in any cooperative control mission
with due account for collision avoidance: i) to execute
a specific multiple vehicle maneuver such as cooperative
path following or cooperative target tracking; see Aguiar

Fig. 2. Petri net representation of an architecture for
cooperative control and collision avoidance.

and Pascoal [2007] and ii) to avoid collisions among the
vehicles or between the vehicles and static or dynamic
obstacles.
Because the execution of both tasks implies obvious trade-
offs, it is important to establish a hierarchical relationship
between them. In the approach proposed in the paper, it
is assumed that for the majority of missions “self preser-
vation” is the priority. Thus, if during mission execution a
command for collision avoidance is issued, it will overwrite
any command for mission execution control. This behavior
can be interpreted as the transition between two states, a
mission state and a collision avoidance state.
The abovementioned hierarchical organization is clarified
in Fig. 4, as embodied in a Petri net. In the presence of
an obstacle at sensing range, the Target Tracking stage is
launched and kept alive until the obstacle is out of range.
Target tracking provides for a model from which to derive
the probable trajectory of the obstacle. Collision Predic-
tion can then determine if a collision is imminent, and
trigger the transaction to the Collision Avoidance state.
The Collision avoidance module then takes the necessary
measures to ensure that collision is avoided. As explained
later, this can be done by changing, for each of the vehicles,
the path or the velocity profile planned for the mission.
Once the maneuver is completed, and if no more imminent
collisions are detected, the mission execution state can
resume. In the sections that follow we describe briefly each
of the relevant modules involved in Collision Prediction /
Avoidance.

3. TARGET TRACKING AND COLLISION
PREDICTION

The ability to successfully avoid collision with an obstacle
is closely related to how far in advance a vehicle can
become “aware of it”, even more so when the obstacle
is moving. Being able to predict a collision ahead of
time, will not only give the vehicle time to react to
dynamic obstacles, but also the ability to do so in a safe
and smooth manner. This requires putting together the
Target Tracking and Collision Prediction modules that are
described next.

Target Tracking

Target tracking is activated once an obstacle is at sensor
range (e.g. radar at the surface or a sonar underwater). It
is assumed the position of the obstacle can be determined



at every interrogation time step and that the measurement
error is adequately described (at least for design purposes)
by a stochastic Gaussian process with zero mean. During
the time window over which the trajectory is to be pre-
dicted, it is assumed that the obstacle has bounded linear
and angular velocities denoted by v and ω, respectively
and that its behavior is described by the kinematic model ẋ = v cos(θ)

ẏ = v sin(θ)
θ̇ = ω

(1)

where (x, y)T is the position of the center of mass of the
obstacle in 2D and θ denotes path angle. To estimate v and
ω and thus predict the trajectory followed by the obstacle,
an Interactive Multiple Model Kalman filter (IMM-KF) is
used. The IMM-KF is a nonlinear filter that is composed
by a bank of Kalman filters running in parallel, each one
using a different model for target motion. The output of
the IMM-KF is the state estimate given by a weighted
sum of the state estimations produced by each Kalman
filter. The weights are on-line adjusted according to the
priori probabilities of each KF. Further details on the
IMM-KF can be found in the book by Bar-Shalom Y. and
X.R. (2002). For the implementation of the IMM-KF in
the collision prediction module the solution developed in
M. Bayat and Aguiar (2009) was applied. In this set-up,
each Kalman filter j is designed according to the following
discrete process model with a constant sampling time ts
(the speed v has been added as an extra state variable):

xjk+1 = xjk + tsv
j
k cos θjk

yjk+1 = yjk + tsv
j
k sin θjk

θjk+1 = θjk + tsω
j + ηjθk

vjk+1 = vjk + ηjvk

(2)

where k is a discrete time index, vjk is linear speed, and ωj
is angular speed, which takes a finite set of values between
wmin and wmax, including 0 (straight line motion). Notice
that ωj is constant for each model j. In (2), ηjθk and
ηjvk denote zero mean stochastic Gaussian processes with
appropriate covariances. At this point it is convenient
to stress that the option for an IMM-KF instead of the
standard EKF is due to the fact that the IMM-KF exhibits
superior performance (Bar-Shalom Y. and X.R., 2002).
This fact is particular important for this type of marine
scenarios where the dynamic obstacles are typically marine
vehicles that can rapidly change their course.

Collision Prediction

Once a set of state variables x, y, v, and θ of the obstacle
kinematic model have been determined at some point via
the target tracking system, it then becomes possible to
predict its motion over a time window into the future by
resorting to model (1). Furthemore, because the vehicle
is performing a mission along a pre-defined path, it can
be determined if a collision between the vehicle and the
object is likely to occur.
It is important to stress that even though a larger time
window could in principle help predict collisions further
in advance, it may also add increasing uncertainty to
the estimated position of the obstacle position. For these
reasons, it is important to use for each complete prediction
cycle a Time Varying Dynamic Window (TVDW), the
length of with reflects prior knowledge on vehicle cruising
speed, expected obstacle linear and angular speeds, etc. In
this work, the computation of the TVDW length at time
t0, denoted W t0 , takes into account the time required for a
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Fig. 3. Collision scenarios in an environment with dynamic
obstacles

vehicle to come to a complete halt when traveling a certain
speed, as follows:

W t0 = [t0, t0 + δ], δ =
v0
a

+ ζ,

where v0 is the velocity of the vehicle at time instant
t0, a is the maximal breakage deceleration of the vehicle
undergoing translational motion, and ζ is a desired safety
margin. The methodology adopted for collision prediction
between a vehicle and a moving obstacle is illustrated in
Fig. 3, where two different scenarios are shown. Let A0

vh

and A0
ob denote polygonial regions that bound the actual

areas occupied by the vehicle and the obstacle, respectively
at time t0. The evolution of these regions in 2D space can
be described formally as

Atvh = Φv(xv(.), yv(.), A0
vh), ∀t ∈W t0

Atob = Φo(xo(.), yo(.), A0
ob), ∀t ∈W t0

where Φv(.) denotes a transition operator from region A0
vh

to region Atvh at time t, based on the evolution of the
position xv(τ), yv(τ) of the vehicle for τ ∈ [t0, t]. Similar
conditions and notation apply to the obstacle. Formally,
there is potential for a collision to occur at time tc ∈W t0

if
Atcvh ∩A

tc
ob 6= ∅ (3)

In practice, an algorithm must be devised to check whether
the above condition holds true. This process can be sim-
plified as follows. Let to be the time at which a colli-
sion prediction phase starts, and let the corresponding
time window be W to . Start by computing estimates of
the centers of mass of the vehicle and obstacle, denoted
Pv(t) = (xv(t), yv(t)) and Po(t) = (xo(t), yv(t)), respec-
tively, for t ∈ W to . Assume, for simplicity of explanation,
that the regions occupied by two moving bodies are inside
two circles of radii Rvh and Rob, and let ε = Rvh+Rob. Let
d(t) = ||Pv(t)− Po(t)|| be the estimated distance between
the vehicle and the obstacle. A collision will not occur
during the time window W to if d(t) ≥ ε,∀t ∈W to . In this
case, no more calculations are needed and the execution
of the Collision Prediction module (at the current step) is
stopped. If (3) is violated, then a collision may occur and
corrective actions must be taken, as explained in the next
section.



4. COLLISION AVOIDANCE

Upon detection of a potential collision situation, the mech-
anisms for collision avoidance must be activated. In what
follows we summarize briefly the methodology adopted for
collision avoidance that is rooted in previous work reported
in Carvalhosa et al. (2009), Kim Jin-Ho (1992), and Yun
and Tan (1997).
In a dynamic environment, there are essentially two ac-
tions that a vehicle can take to avoid collisions: i) to
spatially deconflict the paths of the vehicle and the ob-
stacle by computing a new local path for the vehicle, or
ii) to temporally deconflict the trajectories of the vehicle
and the obstacle by acting on the vehicle’s speed. In the
present paper, the decision to opt for one of the above
actions depends on the values of ∆tob, which is defined as
follows: Let Bvh and Bob be the areas swept by the vehicle
and the object, respectively during the time interval W t0 .
Further, let ti and tf inW t0 be the initial and final instants
of time of the interval in which Bob intersects Bvh. If
the estimated linear velocity of the target object is small
(which means that the object is probably static) re-assign
tf to tf = t0+δ, which is the final time in the window W t0 .
We define ∆tob as ∆tob = tf − ti and impose the following
rule: Let ∆tthr be an adjustable threshold. Action named
i) is activated if ∆tob < ∆tthr, while action named ii) is
activated otherwise. This strategy captures the fact that if
the projected paths of the vehicle and object overlap for a
long period of time, then the safest approach is to locally
deform the vehicle path. The sections that follow describe
briefly actions i) and ii).
4.1 Path re-planning using harmonic potential fields

The Potential field method, which will be used for online
local path re-planning, consists of assigning an artificial
potential field to the area where the vehicles operate. An
attractive potential describes the goal position, while if
there are obstacles in the area we assign them repulsive
potentials. The new path can be derived from the gradient
of the total artificial potential.
It is common for potential field methods to suffer from
local minima. A local minimum can attract and trap the
vehicle, preventing it from reaching its final goal. For this
reason, harmonic potential fields are utilized by employing
the panel method known in fluid mechanics. In this case,
under suitable conditions (see Kim Jin-Ho (1992)) the
harmonic function completely eliminates local minima,
which eliminates the possibility of generating a stationary
point in the velocity field except at the goal point. To this
effect, all the potential functions used in the creation of
the artificial field obey the Laplace equation ∇2φ = 0,
and can generate either attractive or repulsive potentials
as follows:

φg =
λg
2π

ln(
√

(x− xg)2 + (y − yg)2), (4)

φu = −U(x cosα+ y sinα). (5)
Equations (4) and (5) refer to the goal and uniform
flow potential respectively, where (xg, yg) are the goal
coordinates, α is the angle between the x − axis and
the direction of the uniform flow, and λg and U are the
potentials strengths. Both potentials will drive the vehicle
to its desired goal position. See Kim Jin-Ho (1992) for
complete details.
Panel method

The panel method that has been used to solve the potential
flow of a fluid around bodies of arbitrary shape is in this

case used to derive an obstacle avoidance algorithm. The
boundary of an obstacle in 2D space will be approximated
by line segments (panels), each of them with source or
sink singularities having a uniform density. The distributed
singularities are used to deflect the oncoming stream so
that it will flow around the body. The velocity potential
at any point (x, y) in space caused by a panel j is

φp =
λj
4π

∫
j

ln(Rj)dlj

where Rj = (x − xj)2 + (y − yj)2, and λj is the strength
of the source field per unit length. The overall potential
created by an obstacle at a given point is the result of the
net effect of all the panels that compose the obstacle frame
i.e., φob =

∑m
j=1 φj . The total artificial potential field is

then given by
φtotal = φg + φu + φob

= −U(x cosα+ y sinα) +
λg
2π

ln(
√
Rg)

+
m∑
j=1

λj
4π

∫
j

ln(Rj)dlj (6)

A typical environment is illustrated in Fig. 4 where all
the potentials are represented. Let Vi > 0 be the desired
outward normal velocities at the center points of the panels

∂

∂ni
φ(xic, yic) = Vi, i = 1.2.....m (7)

where n denotes a vector normal to the panel. Setting λg
and U , the values of λj can be chosen so that inequality (7)
is verified. The equations for λj ’s are derived in Kim Jin-
Ho (1992) for a set of desired Vi. The values set for Vi do
however need to be limited so that convergence to the goal
position is guaranteed. As shown in Fig. 4, for large Vi’s
the vehicle might miss the goal. The m normal outward
velocities Vi must be chosen such that, after solving (7),
the following condition is satisfied

−λg >
m∑
i=1

λiLi > 0 (8)

The solution adopted in this paper is based on the work
of Fahimi (2009) which provides a way to automatically
compute a set m of Vi that satisfy inequality (8). The
corresponding velocity field, v = (ẋ, ẏ), is then derived
from v = −∇φ and using eq. (6), yielding

vx(x, y) = U cosα− λg
2π

∂

∂x
lnRg −

m∑
j=1

∫
j

∂

∂x
lnRjdlj

vy(x, y) = U sinα− λg
2π

∂

∂y
lnRg −

m∑
j=1

∫
j

∂

∂y
lnRjdlj

The resulting velocity vector v = (vx, vy) is characterized
by its length V = (vTv)

1
2 and direction β = arctan( vy

vx
).

Following v throughout the potential field will result in an
obstacle free path.

4.2 Velocity correction

Velocity correction is applied when the detected trajectory
intersections have a time span ∆tob lower than the defined
threshold ∆tthr. In this case, the obstacle can in principle
be avoided by either increasing or decreasing the velocity
of the vehicle. To this effect, recall first that in the set-up
adopted for cooperative path following (see Ghabcheloo
et al. (2009); Aguiar and Pascoal (2007)), the path to be
traversed by the vehicle is parameterized by a scalar γ,
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and the speed along the path is always given in terms of
the desired time-derivative of γ. The conversion from the
latter to inertial speed is done by each vehicle at the path
following level. As in the previous section, let ti and tf in
W t0 be the initial and final instants of time of the interval
in which Bob intersects Bvh. Let Pv(t) = (xv(t), yv(t))
denote the position of the center of mass of the vehicle
at time t. Then, Pv(t0) = Pv(γ0) and Pv(ti) = Pv(γg)
for some values of γ0 and γg. In the situation depicted
in Fig. 6, collision is avoided if the vehicle will arrive at
Pv(γg) at time tf . This is done by considering a virtual
vehicle traveling along the path at a constant velocity Vd,
such that at some desired instant of time tg ≥ tf , the
virtual vehicle will be located at a goal position Pv(γg).
The virtual vehicle velocity along the parameterized path
is then given by

Vd =
γg − γ0

tg − t0
from which it follows that

γd(t) =
∫ t

t0

Vd dt = Vd(t− t0) + γ0.

The objective is now to make the vehicle track this virtual
vehicle. To this effect, let e(t) = γ(t)− γd(t). Since γ̇ = v,
it follows that and ė(t) = v(t)− Vd. Thus, by setting

v = Vd − k(γ − γd), k > 0
it can be concluded that with the above control law
ė = −ke, that is, the γ- tracking error converges to zero
exponentially and collision will be avoided.
4.3 Right of Way
It is important to remark that the issue of collision
avoidance bears close connection with classical rules for
right of way during maneuvers at sea. This topic deserves
attention but will not be studied in detail here. Notice
however that the primary drive for the vehicle is to give
right of way to an obstacle, that is, once an obstacle is
detected and labeled as dynamic, the vehicle will take
the safest approach, which is to decrease velocity and let
the obstacle pass, resuming the velocity profile set for the
mission once collision avoidance is guaranteed. The only
exception to this behavior will occur in the presence of
another automated vehicle, possibly a team member. In
this scenario, priority will be issued to the vehicle traveling
on a starboard track.

5. SIMULATION RESULTS

The performance of the algorithms described in the pre-
vious sections was assessed through Matlab simulations.

First, the individual modules described were analyzed. The
overall cooperative path following / collision avoidance
system was then tested by resorting to a new simulator
named NetMarSys (Networked Marine Systems Simulator)
developed at ISR/IST. Fully supported on Simulink and
Matlab, the simulator models the key different aspects
of cooperative multiple vehicle systems. All simulations
relate to the application of the Collision Avoidance system
to Autonomous Surface Craft (ASC), for which the path-
following controllers described in Maurya P. (2009) were
used.
Fig. 6 shows collision prediction between the ASC and
an incoming dynamic obstacle. The targets position is fed
directly into the Interactive multi model Kalman filter
(IMMKF) once every second, with a zero mean Gaussian
additive error. The linear and angular estimated velocities
of the target, ω = 0.0312 and v = 1.5723, respectively
returned by the IMM-KF are used to derive a probable
trajectory for the obstacle. An intersection of paths is de-
tected for a time span larger than the defined ∆ttreshold =
15s, resulting in the creation of a Static Virtual Obstacle
that can later be used to compute an alternative path.
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Fig. 6. Simulation results for the Collision Prediction
module: tracking of a dynamic obstacle

Fig. 7 shows the implementation of the Collision Avoid-
ance System for a team of three ASC performing a path-
following mission. In this scenario, two of the team mem-
bers perform path re-planing to avoid collision with the
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obstacles and reach a ”bottleneck” situation; velocity con-
trol comes into play to prevent inter-vehicle collisions. The
team moves past the bottleneck in a coordinated manner.

6. CONCLUSIONS

The paper proposed a collision avoidance system for au-
tonomous vehicles working in dynamic environments. To
integrate collision avoidance in a typical cooperative mo-
tion control (CMC) architecture, an hierarchical struc-
ture was devised. This approach allows for a team of
autonomous vehicles to maneuver cooperatively and avoid
collisions. The problem was decoupled into a collision
prediction stage and a corresponding collision avoidance
maneuver. Prediction is realized by first estimating the
target’s velocity through the use of an Interactive multi
model Kalman filter, and then deriving its probable tra-
jectory within a given time window. Two strategies were
then devised to avoid collision: Path re-planing based on
harmonic potential field theory, or by controlling the speed
of each of the vehicles along their assigned mission path.
The efficiency of the solutions was illustrated in simula-
tion. Two key issues will be addressed in future work:
1) optimal trajectory re-planning by taking into account
energy consumption or other mission-related constraints,
and ii) implementation and testing of selected obstacle
avoidance algorithms at sea.
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