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Abstract— We address a cooperative motion control
problem for a fleet of Unmanned Aerial Vehicles (UAVs).
The problem partially decouples in two tasks: path-
following and coordination control. The former requires
the vehicle to converge and follow a desired path with no
temporal constraints. The latter coordinates the elements
in a fleet to travel on a desired pattern. In this paper
we provide a practical and correctly provable solution
by resorting to Lyapunov based nonlinear techniques to
explicitly take into account the nonlinearities inherent
to the mathematical model, graph theory to describe
the inter-vehicle communication topology, and supported
by Flight Variable Management System (FVMS) and
Microsoft Flight Simulator (MSFS) to evaluate the pro-
posed method through by Software in the Loop (SiL)
simulations. Moreover, coordination in a switching com-
munication topology is achieved.

I. INTRODUCTION

Unmanned aerial vehicles do not only prevent
human pilots from hazardous situations, but they
are also a cheap and reliable solution when con-
trasted to other manned vehicles. A single UAV
may alone fulfil a task in a simple application.
However, the success of more challenging mis-
sions requires the employment of multiple ve-
hicles working in cooperation towards the same
goal. This concept is based on the advantages
of distributed systems, such as robustness, flex-
ibility and scalability, which endow a fleet of
simple and cheap vehicles to perform tasks that
are not feasible for an expensive single unit. Aerial
robotic construction [1],[2], persistent surveillance
[3], search and rescue operations [4],[5] are some
applications envisioned for these systems.

Many challenges arise in a multi-UAV sce-
nario: data fusion, coordination, collaborative plan-
ning and assignment, just to name a few. The
present paper focuses on cooperative path follow-
ing (CPF). The problem unravels in two tasks: i)
path-following (PF) motion control, where a single
vehicle is required to converge and keep track of
a pre-specified spatial path with a desired speed
assignment without temporal requirements, and ii)
coordinated control, in which the vehicles are re-
quired to follow a desired inter-vehicle formation.

Pioneering work on the PF problem for wheeled
mobile robots is described in [6]. The approach is
further extended for the three-dimensional case in
[7] using Lyapunov based control laws. The strat-
egy adopted employs a virtual target point (VTP)
and a tangent frame associated to the projection of
the vehicle on the path, called Serret-Frenet. In this
solution, the vehicle converges and remains inside
a tube that involves the path. However, the radius
of the tube must be less than the shortest curvature
of the path, otherwise a singularity may arise. The
work in [8] proposes an alternative solution to
remove the singularity. The origin of the Serret-
Frenet frame is not attached to the projection point,
instead evolves in time according to a certain
function. Using the ideas in [9] and [10], the work
in [11] presents a solution by decomposing the
problem in two tasks (geometric and dynamic)
for underactuated vehicles. The geometric task
aims to bring the vehicle and assures it remains
inside a tube centered around the desired path. The
dynamic assignment task assigns a speed profile to



the path.
Theoretically, vehicles could share all internal

and external information to improve coordination
performance. However, in general, such approach
is not feasible in terms of bandwidth and compu-
tational complexity. Moreover, the communication
topology may vary over time due to link or even
vehicle failure. A suitable communication con-
straints representation is a methodology based on a
framework as addressed in [12]. It relates the con-
cept of Graph Laplacian to represent links between
vehicles. Particularly, the work demonstrated in
[13] explicitly shows how the Graph Laplacian
associated to a formation interconnection structure
plays a fundamental role in assessing stability of
the behavior of the components in coordination.

In [14] a model-independent for multi-agent
formation control is proposed. The authors decou-
ple the coordination problem into a planning and
tracking problem. The work in [15] discusses a
framework that takes into account the topology of
the communication links, the logic based nature
of communications and the cost of exchanging
information. In [16] the authors consider an alter-
nately connected and disconnected communication
topology, therein called brief connectivity losses. It
also discusses a second scenario, named uniformly
connected in mean, which captures the union of
communication graphs connected over uniform
intervals of time. See also the work in [17], where
a Lyapunov-based approach for time-coordinated
path-following of multiple quadrotors is proposed.

Following the cooperative control architecture
presented in [15] and [16], the present paper ad-
dresses a decentralized multi-vehicle control struc-
ture for a set of UAVs, where the vehicles and
communication topology constraints are taken into
account. High-fidelity numerical simulations using
the Flight Variable Management System (FVMS)
and Microsoft Flight Simulator (MSFS) are used
to evaluate the performance of the proposed coop-
erative path-following controller.

This paper is organized as follows. Section II
presents basic graph theory concepts. In Section
III the problem is formally introduced, and in
Section IV the proposed solution for the problem
is presented. Section V illustrates the performance
of the method. In Section VI concluding remarks

are reported.

II. BACKGROUND

The communication topology may vary over
time due to link or vehicle failure. These communi-
cation constraints are properly modelled by graph
theory. The fundamentals concepts are introduced
next.

A digraph or directed graph denoted by G(V , E)
or simple G is composed of a set of vertices
(nodes) V and a set E that corresponds to its edges
(arcs). Let each node of V represent a vehicle in
the fleet, the edges of E the data link and G the
inter-vehicle communication network. The ordered
pair (vi,vj) ∈ E is called adjacent if there is an
arc (vi,vj) joining them. The first element of the
ordered pair is said to be the tail of the arc and the
second is its head. It is stated that the arc (vi, vj)
points from vi to vj and the flow of information is
directed from head (transmitter) to tail (receiver).
The in-degree of a node vi is the number of arcs
with vi as its head. Analogously, the out-degree of
a node vi is the number of arcs with vi as its tail.
A graph is said to be complete if all vertices are
pairwise adjacent.

A path of length m from a node vi to vj is a
sequence of m + 1 distinct nodes such that for
k = 0, 1, ..,m − 1, vk and vk+1 are adjacent. If
a path links vi to vj , then vi can access vj and
vj is said to be reachable from vi. If a node is
reachable from any other node then it is globally
reachable. If a graph G has a globally reachable
node, it is called quasi strongly connected (QSC).
If every node is globally reachable, then the graph
is strongly connected. A graph with disjoint sets
of nodes is called disconnected.

A matrix can be used to represent a graph.
Consider the adjacency matrix A(G), a square
matrix of size |G|, where aij = 1 if vivj ∈ E and
aij = 0, otherwise. Remember that the relation
vivj = vjvi is not necessarily true. The degree
matrix of a directed graph G, denoted by D(G), is a
square matrix whose elements of the main diagonal
are the out-degrees of the respective node vii. The
Laplacian of a graph is expressed as L = D −A.
By definition the vector 1 belongs to its kernel
Ker(L), i.e. L1 = 0.

Let G be a complete graph, i.e., all possible arcs
1 . . . n̄ exist. Consider the piecewise continuous



function pi(t) : [0,∞) → {0, 1}, where i =
1, . . . , n̄.

pi(t) =

{
1, existence of arc i at time t
0, otherwise

The switching signal is defined as the column
vector p(t) = [pi]n̄×1. For each time instant, the
graph Gp(t) is defined by (V , Ep(t)). Consider that,
in a given interval of time T, there are q graphs
defined, Gi; i = 1, · · · , q. Each graph has an
associated Laplacian matrix Li. The union graph,
denoted as G = ∪iGi, is the graph whose arcs are
the union of the arcs Ei of Gi; i = 1, · · · , q.

Definition 1: A graph Gp(t) is said to be uni-
formly quasi strongly connected (UQSC) if, for
every t0 > 0, there is a T > 0 such that the union
graph G([t, t+ T )) is QSC.

III. PROBLEM STATEMENT

Consider an inertial frame {I} fixed to the
ground and a body-fixed frame {B} attached to
the center of gravity of the vehicle, with the x-axis
indicating the front of the aircraft and the y-axis
tangent to its right wing. It is possible to describe
the kinematic model of an aircraft moving in the
horizontal plane as

ṗ(t) = R(t)v(t) + vw,

Ṙ(t) = R(t)S(r),
(1)

where p(t) ∈ R2 defines the position and R(t) ∈
SO(2) the rotation matrix from body to inertial
frame, i.e. the orientation of the vehicle. The vector
v(t) = (va, 0) ∈ R2 stands for airspeed vector
where va is the forward speed in the wind frame,
vw = (vwx , vwy) is the wind velocity with respect

to the inertial frame and S(r) =

(
0 −r
r 0

)
is a

skew symmetric matrix associated to the angular
velocity r. Let u = (va, r) ∈ R2 be the input vec-
tor. The path-following problem is now introduced.

Problem Statement 1: (Path-following)
Assume a desired spatial path pd(γ) : R → R2

parametrized by γ ∈ R and a desired speed
assignment vd(γ) ∈ R. Suppose also that pd(γ)
is sufficiently smooth with respect to γ and
its derivatives are bounded. Design a feedback
control law for u and γ̈ such that i) the position

xI

yI

va

vW

pd

e

p

Fig. 1. Path following frame on the xy plane

of the vehicle converges and remains inside
a tube centred around the desired path, i.e.
‖p − pd‖ → ‖ε‖ where ε = [ε1, ε2]T ∈ R2

is a nonzero constant vector that can be made
arbitrarily small and ii) the vehicle satisfies the
desired speed assignment, i.e. ‖γ̇ − vd(γ)‖ → 0.
Consider a fleet of n vehicles denoted by the set
N = {1, . . . , n}. Suppose each vehicle converges
to its respective VTP. Therefore, if the n virtual
target points asymptotically synchronize, the vehi-
cles asymptotically reach a desired formation. The
parametric variable γi describes the position of the
ith VTP and is said to be the coordination state.
The definition of desired speed profile is extended
to

vd = vL(γ)1 + ṽr (2)

where the elements of vd = [vd1, . . . , vdn] and
ṽr = [ṽr1, . . . , ṽrn] correspond to the desired and
correction speeds of each vehicle i ∈ N , respec-
tively. The formation speed, denoted by vL(γ), is
common to all vehicles in the flock. Let Ni be the
set of vehicles from which the ith UAV is able to
receive information. As formally stated in Section
II, it is not necessarily true that j ∈ Ni ⇒ i ∈ Nj ,
since unidirectional communication is considered.

Problem Statement 2: (Coordination) Assume
that for each vehicle i ∈ Ni, the variables γi and
γj , j ∈ Ni are available. Derive a control law for
ṽri, such that, for all i, j ∈ N , (γi−γj) and (γ̇i−γ̇j)
converge to zero as t→∞.

IV. PROPOSED SOLUTION

This section proposes a cooperative path-
following controller for a set of UAVs and pro-
vides conditions under which the proposed solu-
tion achieves convergence of the path-following
and coordination errors to a small ball around zero.



A. Path-following
From the path-following problem statement, the

error associated with the position of the vehicle e
and the error for the evolution of the parametric
variable z can be defined according to

e = RT (ψ)(p− pd(γ))− ε
z = γ̇ − vd(γ)

(3)

The problem is depicted in Fig. 1. The task con-
sists in assuring that the position error is ultimately
bounded and, after a transient time, it converges to
a region close to the origin. Define the composite
error vector ec = [e, z]T . The time derivative of e
is given by

ė = ṘT (ψ)(p− pd(γ))−RT (ψ)(ṗ− γ̇ ∂pd(γ)

∂γ
)

which, applying (1) and (3) and simplifying the
remainder algebraic equation, yields

ė =− S(r)e+ ∆u+RT (ψ)vw

−RT (ψ)γ̇
∂pd(γ)

∂γ

(4)

where ∆ =

[
1 ε2
0 −ε1

]
. By now, it shall be clear

to the reader why the vehicle was set to converge
and remain inside a tube centered around pd(γ),
and not the desired position itself. If ε had not
been introduced, the control variable r (yaw rate)
would not appear in (4) to enforce the convergence
of the error to zero, as explained in the next result.

Theorem 1: Consider the system described by
(1) in a closed-loop with the control laws

u = ∆−1(RT (ψ)vd
∂pd(γ)

∂γ
−RT (ψ)vw −Kpe)

γ̈ = eRT (ψ)
∂pd(γ)

∂γ
− ∂vd(γ)

∂γ
vd(γ)− kγz

(5)

where Kp =
[
kx 0
0 ky

]
is a diagonal matrix with

positive eigenvalues, kγ is a positive constant with
kγ > vd(γ)|∂vd(γ)

∂γ
|, and ε1 is nonzero. The origin

ec = 0 is a globally asymptotically stable equilib-
rium point for the closed-loop system.

Proof: Define the composite Lyapunov func-
tion

Vc = Ve + Vz =
1

2
eTe+

1

2
z2

Pathdfollowing
controller
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(UAVdDynamics)d

UAVd
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Fig. 2. Path-following motion control architecture for a single
UAV

where its time-derivative is given by

V̇c = V̇e + V̇z = eT ė+ zż

Since ż = γ̈ − γ̇ ∂vd(γ)
∂γ

, using (4) we obtain

V̇c =eT (−S(r)e+ ∆u+RT (ψ)vw −RT (ψ)vd
∂pd(γ)

∂γ
)

+ z(γ̈ − (z + vd(γ))
∂vd(γ)

∂γ
− eTRT (ψ)

∂pd(γ)

∂γ
)

Now, applying the control laws for u and γ̈ that
are expressed in (5), yields

V̇c = −eTKpe− (kγ − vd(γ)|∂vd(γ)

∂γ
|)z2

= −ecTKcec

where Kc =

[
Kp 0
0 kγ

]
and ec = [e, z]T .

Thus, from Lyapunov theory, it can be con-
cluded that the origin ec = 0 is a globally
uniformly asymptotically stable equilibrium point.
Therefore, the position error e converges to a
neighborhood of ε and the speed assignment error
z converges to zero.

Fig. 2 illustrates a schematic of the PF control
architecture. The smaller the values of ε are, the
closest to the neighborhood of the desired path the
vehicle converges. However, the input signal may
take high values in the transient. Analysing the
matrix ∆, the value ε2 may be set to null, but ε1
cannot be zero, or ∆ will not be invertible.

B. Coordination
Consider a piecewise constant switching signal

p(t), whose discontinuities are apart from each
other by a minimum time span τ > 0, called
dwell time. Consider also that the communication
topology may fail to be connected at any time
instant, but over a defined period T > 0 the union
graph Gp(t) is uniformly quasi strongly connected.
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Fig. 3. Cooperative path-following architecture

The following agreement result, borrowed from
[18], holds.

Theorem 2: Assuming that the union graph of
the communication topology is UQSC, then the
system

γ̇ = −KLpγ (6)

satisfies the property that for any initial condition
γ(0) = γ0, the coordination errors γi-γj , ∀ i, j ∈
N converge exponentially fast to zero and γ̇ → 0
as t→∞.

In [19], the authors generalize the previous
result to the system

γ̇ = vL(γ)1−KLpγ

This is straightforward obtained by applying the
change of variables

γ̃ = γ − 1

∫ t

0

vLdτ

and

˙̃γ = vL1−KLpγ − vL1
= −KLpγ̃

Applying Theorem 2, γ̃i-γ̃j and ˙̃γ converges
to zero as t → ∞. Consequently, γi-γj and γ̇
converge exponentially fast to zero and vL, respec-
tively, as t→∞. Thus, from the above results, by
setting ṽr introduced in (2) as

ṽr = −KLpγ (7)

it follows that in the manifold z = 0 the formation
achieves coordination.

Theorem 3: Consider the overall CPF system
composed by n UAVs modeled by (1) in closed-
loop with the PF controllers (5) and in coordination
according to (2) and (7). Suppose that the Lapla-
cian of the graph that models the communication

topology Lp satisfies the UQSC condition. Then,
there are suitable control gains that guarantee that
the path-following and the coordination errors are
ultimately bounded and, in particular, they con-
verge to a small neighbourhood of zero as t→∞.

Proof: [Outline] The proof follows similar
arguments described in [16] and [15].

First, using Lyapunov theory, it can be shown
that the path-following errors e and z defined
in (3) of each UAV described by (1) in closed-
loop with (5) are input-to-state stable (ISS) with
respect to the input ṽr. Also, for the coordination
system, it follows that γ̇i = vdi(γ) + z. Thus, it is
also possible to show that the coordination errors
γi − γj are ISS with respect to the input z and
consequently that the output signal ṽr is input-
to-output stable. Therefore, an application of the
small-gain theorem [20] allows to conclude the
result.
Fig. 3 illustrates the cooperative path-following
control architecture.

V. SIL RESULTS

In this section SiL simulations assess the perfor-
mance of the proposed cooperative path-following
solution. The task was supported by Microsoft
Flight Simulator (MSFS) and Flight Variable Man-
agement System (FVMS). The role of the FVMS
platform is to provide an interface to the GNC
algorithms using MSFS. The latter is a powerful
aeronautical tool that simulates the dynamical be-
haviour of aircraft in a reliable and very detailed
manner. Fig. 4, adapted from [21], illustrates the
SiL architecture. In order to communicate with
MSFS, FVMS captures MSFS memory address.
For more information about the system the reader
is referred to [22], [21].

The SiL simulations were performed with the
fixed-wing aircraft Cessna C17SP. Applying the
method known as banked turn or coordinated turn
[23], it is possible to define the bank angle as
a function of the desired yaw rate. The wind
was set to 36 kts, South. Moderate turbulence
and gusts were introduced. The mission profile
contains two vehicles. Both take off from the same
lane with a safe time interval. Vehicle 1 broadcasts
its coordination variable at a frequency of 2Hz
over a UDP network. The second vehicle does not
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transmit its coordination variable, but it is able to
receive messages from vehicle 1. Some messages
are lost due to link failures, setting up the UQSC
communication topology.

Fig. 5 illustrates the mission evolution over time
where snapshots of both vehicles taken at different
instants of time show how the synchronization
takes place. Shortly after vehicle 2 (red) takes-
off from position (0,0), vehicle 1 is approximately
2000 m ahead at (0, 2000). The fourth snapshot
shows that both vehicles are following their desired
path in a coordinated fashion. More precisely,
Fig. 6 evidences the synchronization behaviour by
showing that the coordination error ξ = γ1−γ2 ap-
proaches zero. As a consequence of computational
and network delays, the error exhibits a slightly
oscillating pattern.

Fig. 7 shows the true airspeed and heading of
both vehicles. Vehicle 2 increases its speed as it
catches up vehicle 1. Once both vehicles are in
coordination, the vehicles’ true airspeeds stabilize
around a similar value. The UAVs slightly face the
wind to compensate the 36kts wind speed vector,
directed perpendicular to the desired trajectory.
Finally, Fig. 8 shows the communication signal
for a given time interval. The packet losses and
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Fig. 5. Vehicle 1 (blue, left) and vehicle 2 (red, right) displacement
evolution along time
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the communication sampling time influence the
coordination convergence. Yet, as long as a UQSC
network is maintained, the consensus problem is
solved.

VI. CONCLUSION

This paper addressed the cooperative path-
following problem. In the solution adopted, the
CPF is divided in two almost decoupled prob-
lems: path-following and coordination. The former
assures that the vehicle follows a virtual target.
Meanwhile, the latter adjusts the VTP evolution
along the desired path. The control laws herein
discussed are supported by nonlinear Lyapunov
stability theorems and graph theory.
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The results from SiL simulations show that the
performance of nonlinear path-following is satis-
factory under bad atmospheric conditions. The dy-
namics of the vehicle are not explicitly addressed
in the control law presented for control design.
This allows the kinematic controller to be appli-
cable to other vehicles, equipped with different
dynamic controllers. The coordination results con-
firm that it is possible to achieve coordination in
a switching inter-vehicle communication topology.
Moreover, as expected, the results report that in a
uniformly quasi strongly connected topology, even
under intermittent link failures, the coordination is
accomplished.
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