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Path-Following for Non-Minimum Phase Systems
Removes Performance Limitations

A. Pedro Aguiar, João P. Hespanha, and Petar V. Kokotović

Abstract—We highlight an essential difference between path-following
and reference-tracking for non-minimum phase systems. It is well-known
that in the reference-tracking, for non-minimum phase systems, there
exists a fundamental performance limitation in terms of a lower bound
on the L2-norm of the tracking error, even when the control effort is
free. We show that this is not the case for the less stringent path-following
problem, where the control objective is to force the output to follow a
geometric path without a timing law assigned to it. Furthermore, the same
is true even when an additional desired speed assignment is imposed.

Index Terms—Non-minimum phase systems, path-following, cheap-
control, reference-tracking

I. INTRODUCTION

Obstacles to achieving perfect tracking with feedback systems have
been well understood and quantified with classical Bode integrals
and as the limits of cheap optimal control performance [1]–[5]. In
the absence of unstable zero dynamics (non-minimum phase zeros)
perfect tracking of any reference signal is possible, that is, the
L2-norm of the tracking error can be made arbitrarily small. With
unstable zero dynamics this is no longer possible, because an amount
of “output energy” must be used for stabilization. For linear systems
the tracking error increases as the signal frequencies approach those
of the unstable zeros [4], [6].
The limitations introduced by unstable zero dynamics are struc-

tural. They cannot be avoided without changing the system structure
or re-formulating the tracking problem. One such reformulation is to
select a new output for which the zero dynamics are stable and perfect
tracking is possible [7], [8]. As discussed in [8], the new output
should be physically meaningful and allow a good approximation to
the original tracking task.
Another reformulation of the tracking problem investigated in this

note is to divide it into two tasks: geometric path following and speed
assignment along the path. As shown in [9], this two-task formulation
is suitable for many applications. It also offers the flexibility to use
the timing law as an additional control variable and thus change the
input/output structure of the system. In particular, this flexibility can
be employed for a rescaling of the exosystem eigenvalues in the
internal model approach.
The main contribution of this note is to present conditions under

which for linear non-minimum phase systems the two-task path
following problem can be solved with arbitrarily small L2-norm of
the path following error. In Section II we formulate the path-following
problems. After a brief review of reference-tracking in Section III,
Section IV presents the main results of the note showing that the
well-known performance limitations imposed on reference-tracking
by non-minimum phase zeros do not appear in the less stringent path-
following problem. An example in Section V illustrates the results.
Concluding remarks are given in Section VI.
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Notation: Transpose is denoted by ′, complex conjugate by �,
and complex conjugate transpose by H . The complex plane is denoted
by C = C

− ∪ C
0 ∪ C

+, where C
− := {s ∈ C : Re(s) < 0},

C
0 := {s ∈ C : Re(s) = 0}, and C

+ := {s ∈ C : Re(s) > 0}, Re
is the real part and Im is the imaginary part. The Laplace transform
of x(t) is X(s). L2 is the space of square integrable vector functions
over [t0,∞) with norm

∫ ∞
t0

‖ · ‖2 dt.

II. PATH-FOLLOWING PROBLEMS

Path-following problems are primarily concerned with the design
of control laws that drive an object (robot arm, mobile robot, ship,
aircraft, etc.) to reach and follow a geometric path. A secondary
goal is to force the object moving along the path to satisfy some
additional dynamic specification. A common approach to the path-
following problem is to parameterize the geometric path yd by a path
variable θ and then select a timing law for θ, [9]–[13]. Extending
the approach of [10], a path-following controller was proposed in
[9] for a class of uncertain strict feedback nonlinear systems. A
framework for path-following as a method to avoid some limitations
in reference-tracking was described in [13]. The key idea is to use θ
as an additional control input to stabilize the unstable zero-dynamics
while the original control variables keep the system on the path.
In this note, we consider geometric path-following for non-

minimum phase systems and paths formed by a linear combination of
sinusoids in θ. When the control effort is free, we show that there is
no limitation upon the achievable path error performance. The same
result holds even when we impose an additional speed assignment vd

for the path variable θ(t).
This essential difference between reference-tracking and path-

following shows that is not appropriate to re-formulate a path-
following problem as a reference-tracking by making θ(t) = vdt.
In many applications this would introduce limits on the achievable
performance that are not inherent to the original problem.
We now proceed with the problem formulation. For the linear time-

invariant system

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0 (1a)

y(t) = Cx(t) + Du(t), (1b)

where x(t) ∈ R
n is the state, and u(t) ∈ R

m the control, the output
y(t) ∈ R

q , m ≥ q, is required to reach and follow a geometric path

yd(θ) :=

nd∑
k=1

[
akejωkθ + a�

ke−jωkθ]
, (2)

where θ is the scalar path parameter, ωk > 0 are real numbers, and
ak are non-zero complex vectors.
The geometric path yd(θ) can be generated by an exosystem of

the form

d

dθ
w(θ) = Sw(θ), w(θ0) = w0 (3a)

yd(θ) = Qw(θ), (3b)

where w ∈ R
2ndq is the exogenous state and S + S′ = 0. For any

timing law θ(t), the path-following error is defined as

e(t) := y(t) − yd(θ(t)). (4)

The two path-following problems to be solved are as follows.
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Fig. 1. Trajectory of the vehicle: 1(a) reference-tracking, 1(b) path-following.

Geometric path-following: For a desired path yd(θ), design a
controller that achieves:

i) boundedness: the state x(t) is uniformly bounded for all t ≥ t0
and every initial condition (x(t0), w(θ0)), θ0 := θ(t0),

ii) error convergence: the path-following error e(t) converges to
zero as t → ∞, and

iii) forward motion: θ̇(t) > c for all t ≥ t0, where c is a positive
constant.

Speed-assigned path-following: In addition to geometric path-
following, given a desired speed vd > 0, it is required that either
θ̇(t) → vd as t → ∞, or θ̇(t) = vd for t ≥ T and some T ≥ t0.
As illustrated by Skjetne et al. [9], these path-following problems

provide natural settings for many engineering applications, including
situations when the timing law θ(t) is determined by a human oper-
ator. From a theoretical standpoint our main interest is to determine
whether the freedom to select a timing law θ(t) can be used to
achieve an arbitrarily small L2-norm of the path-following error, that
is, whether δ > 0 in

J :=

∫ ∞

t0

‖e(t)‖2 dt ≤ δ (5)

can be made arbitrarily small.
Before we address this question in Section IV, let us briefly recall

that for the standard reference-tracking the answer is, in general,
negative.

III. REVIEW OF REFERENCE-TRACKING

The standard linear reference-tracking problem is to design a
feedback controller for (1) such that the closed-loop state is bounded,
and for any reference signal r(t), the output y(t) asymptotically
approaches r(t). For r(t) generated by a known exosystem,

ẇ(t) = Sw(t), r(t) = Qw(t), (6)

the so-called regulator or servomechanism problem, was shown in
[1], [14]–[16], to be solvable if and only if (A, B) is stabilizable,
(C, A) is detectable, the number of inputs is at least as large as the

number of outputs (m ≥ q) and the zeros of (A, B, C, D) do not
coincide with the eigenvalues of S.
In that case, the internal model approach of Francis [15], [17] uses

matrices Π and Γ that satisfy

ΠS = AΠ + BΓ,

0 = CΠ + DΓ − Q,

to design the reference-tracking controller

u(t) = Kx(t) + (Γ − KΠ)w(t),

where K is such that (A+BK) is Hurwitz. With this controller, the
transients x̃ := x − Πw and ũ := u − Γw converge to zero and are
governed by ˙̃x = (A + BK)x̃, ũ = Kx̃.
An important issue in reference-tracking problems is whether the

L2-norm of the tracking error can be made arbitrarily small, that is,∫ ∞

t0

‖y(t) − r(t)‖2 dt ≤ δ,

can be satisfied for any δ > 0. For this to be the case, the zeros of
(A, B, C, D) must be in the open left half-plane C

−.
The non-minimum phase zeros, that is the zeros in C

+, impose
a fundamental limitation on the attainable tracking performance J .
This is revealed by the fact that the limit as ε → 0 of the optimal
value of the cost functional

Jε = min
ũ

∫ ∞

t0

[‖y(t) − r(t)‖2 + ε2‖ũ(t)‖2] dt (7)

is strictly positive, [1]. Qiu and Davison [4] showed that for x(t0) =
0, r(t) = η1 sin ωt + η2 cos ωt, the best attainable performance is

J = η′Mη, η = col(η1, η2)

trace M =

p∑
i=1

(
1

zi − jω
+

1

zi + jω

)
,

where M ≥ 0, and z1, z2, . . . , zp are the non-minimum zeros of
(A, B, C, D). With ω = 0 the same formula holds for r(t) = const.
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For step reference signals and multivariable linear systems, Chen,
Qiu, and Toker [18] show that the effect of nonminimum phase zeros
is determined not only by the zero locations, but also the mutual
orientation between zero and input signal directions. For more general
reference signals, Su, Qiu, and Chen [6] give explicit formulas which
show the dependence of J on the non-minimum phase zeros and their
frequency-dependent directional information.
Seron et al. [5] re-interpreted the Qiu-Davison formula [4] and

generalized it to a class of nonlinear systems. They showed that
the best attainable value of J is equal to the lowest control effort,
measured by the L2-norm, needed to stabilize the zero dynamics
driven by the system output y(t). It is its role as a stabilizing control
input that prevents the output y(t) from perfect tracking. Extensions
to non-right-invertible systems are given in [19], [20]. Control energy
constraints as another source of fundamental performance limitations
have been investigated in [21].

IV. MAIN RESULTS

We now show that the attainable performance for the path-
following problems is not limited by non-minimum phase zeros. As
in [4], [6], [19], [20], we assume that initially the system is at rest,
that is, we let x(t0) = 0.

Theorem 1: If (A, B) is stabilizable, then for the geometric path-
following problem and any given positive constant δ there exist
constant matrices K and L, and a timing law θ(t) such that the
feedback law

u(t) = Kx(t) + Lw(θ(t)) (8)

achieves (5).
Proof: Using (8) and the timing law

θ̇(t) = vd, θ(t0) = θ0 (9)

where vd > 0 is a constant to be selected, we can view the path-
following problem as the reference-tracking of the signal

r(t) = yd(θ(t)) =

nd∑
k=1

[
akejωkθ(t) + a�

ke−jωkθ(t)] (10a)

=

nd∑
k=1

[
ak0ejvdωk(t−t0) + a�

k0e−jvdωk(t−t0)], (10b)

where ak0 := akejωkθ0 . From the exosystem (3) and (9) we obtain
the set of equations

ẋ(t) = Ax(t) + Bu(t), (11a)

ẇ(t) = vdSw(t), (11b)

e(t) = Cx(t) − Qw(t), (11c)

that describe a regulator problem to which the results of [15], [22],
[23] are applicable. The constant vd should be selected such that the
zeros of (1) do not coincide with the eigenvalues of vdS.
To prove that for any δ > 0, we can select K, L, and vd such that

(5) holds, we apply the results in [4], [6] to (10b)–(11) and obtain

J = η′Mη ≤ ‖η‖2 trace M,

trace M =

p∑
i=1

nd∑
k=1

(
1

zi − jvdωk
+

1

zi + jvdωk

)
, (12)

where z1, z2, . . . , zp are the zeros of (A, B, C, D) in C
+ and

η := 2 col(Re a10 , Im a10 , Re a20 , Im a20 ,

· · · , Re and0 , Im and0). (13)

This is shown in Appendix and will also be useful in the proof
of Theorem 2. The result follows from (12) because for any δ > 0
there is a sufficiently large vd such that (5) holds.

Remark 1: We stress that the stabilizability of (A, B) is the
only condition (necessary and sufficient) for the solvability of the
geometric path-following problem using (8).
Next we show that an arbitrarily small L2-norm of the path-

following error is attainable even when the speed assignment vd is
specified beforehand.

Theorem 2: Let vd be specified so that the eigenvalues of vdS
do not coincide with the zeros of (1), and assume that (A, B) is
stabilizable. Then, for the speed-assigned path-following problem,
(5) can be satisfied for any δ > 0 with a timing law θ(t) and a
controller of the form (8) but with time-varying piecewise-constant
matrices K and L.

Proof: To construct a path-following controller that satisfies (5)
we start with the following structure

u = Kσ(x − Πσw) + Γσw, (14a)

θ̇ = vσ, (14b)

where for each positive constant v�, � ∈ I, the matrices Π� and Γ�

satisfy

v�Π�S = AΠ� + BΓ�, (15a)

0 = CΠ� + DΓ� − Q, (15b)

and σ(t) : [t0,∞) → I, I := {0, 1, 2, . . . N} is the piecewise
constant switching signal

σ(t) =




0, t0 ≤ t < t1
1, t1 ≤ t < t2
...
N, t ≥ tN

Each K� is chosen such that the matrix (A + BK�) is Hurwitz. The
existence of matrices Π� and Γ� presumes that v� will be chosen so
that the eigenvalues of v�S do not coincide with the zeros of (1). We
observe that (14) is a speed-assignment path-following controller for
which θ̇(t) converges to vN = vd in finite time.
We now prove that any given performance specification δ, (5)

can be satisfied by appropriate selection of the finite sequence
t0, t1, . . . , tN together with the parameters (v0, Π0, Γ0, K0),
(v1, Π1, Γ1, K1), . . . , (vN , ΠN , ΓN , KN ) used in the feedback con-
troller (14). We start by selecting v0 sufficiently large such that
defining

J̄0 := ‖η‖2
p∑

i=1

nd∑
k=1

(
1

zi − jv0ωk
+

1

zi + jv0ωk

)
, (16)

where z1, z2, . . . , zp are the zeros of (A, B, C, D) in C
+ and η is

defined by (13), J̄0 is upper-bounded by δ
4
. We show in Appendix

that J is upper-bounded by

J ≤ J̄0 +

N∑
�=1

γ(v�−1 − v�)
2‖η‖2

+ 2
N∑

�=1

x̃ in
�−1(t�)

′(x̄ in
�−1(t�) − x̄ in

� (t�)
)

+

N∑
�=1

‖x̃ in
�−1(t�)‖2, (17)

where γ is a positive constant, x̄ in
� := F�w, with the F� constant

matrices of appropriate dimensions, and the transient state errors
x̃ in

� (t) converge to zero as fast as e(A+BK�).
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We show that each term of (17) can be upper-bounded by δ
4
so that

J ≤ δ. The first term is smaller than δ
4
by construction. To prove

that the second term in (17) is also smaller than δ
4
, we select the

parameters v�, � ∈ I to satisfy

v�−1 − v� = µ, vN = vd, � = 1, 2, . . . , N (18)

where µ := δ/(4γ‖η‖2(v0 − vN )), and N := v0−vN
µ

. Then, it
follows that the second term in (17) can be upper-bounded by

N∑
�=1

γ(v�−1 − v�)
2‖η‖2 ≤ Nγ‖η‖2µ2

= (v0 − vN )γ‖η‖2µ =
δ

4
.

The above selection for the v�, � ∈ I, is made under the constraint
that the eigenvalues of v�S do not coincide with the zeros of (1).
This can always be satisfied by appropriately adjusting v0. Finally,
for a given finite N , each of the last two terms in (17) can be made
smaller than δ

4
by choosing t�, � = 1, 2, . . . , N sufficiently large.

V. ILLUSTRATIVE EXAMPLE

A vehicle with mass M moving in the plane, on top of which lies
a mass m, is modeled by

Mÿ = D(ż − ẏ) + u, mz̈ = D(ẏ − ż) + G(z − y), (19)

where D = diag(d1, d2) > 0, G = diag(g1, g2) > 0, u ∈ R
2 is the

force, y ∈ R
2 and z ∈ R

2 are the positions of the vehicle and the
mass m, respectively. The mass m is “carried” by the vehicle via the
viscous friction force D(ẏ − ż), while the gravity force G(z − y)
drives the mass away from the position z = y because the top of the
vehicle is not flat. The system is non-minimum phase with two zeros
in C

+ located at zi = (
√

d2
i + 4mgi − di)/(2m), i = 1, 2.

The path-following task is to move the vehicle along a circular path
with the desired steady-state velocity vd = 1. The path is centered
at the origin with radius R = 1. The vehicle starts with zero initial
conditions and the model parameters are M = 1, m = 0.1, D =
diag(15, 10), G = diag(1.5, 1).

For the sake of comparison, we first recast this problem as a
reference-tracking problem by creating the reference signal

r(t) = col
(
R cos(vd(t − t0)), R sin(vd(t − t0))

)
, ∀t ≥ t0

Fig. 1(a) displays the simulation results obtained with the control gain
K computed by solving the optimal cheap control problem (7) with
ε = 0.001. As expected, the convergence to the desired trajectory is
achieved with a significant transient error: J 	 0.23.

In contrast, Fig. 1(b) shows the simulation results obtained with
the path-following controller described in the proof of Theorem 2.
Starting with v0 = 10, the values of v� were selected to decrease by
0.5 in 10 seconds to vN = vd = 1 (N = 18) at time t = tN = 180 s.
The values of the control gains K�, � ∈ I, are all equal to the value
of K used in the first experiment. As it can be seen, the convergence
of the vehicle to the path is much smoother and the transient error
is reduced to J 	 0.06.

VI. CONCLUSIONS

We have revisited the classical issue of performance limitations
in reference-tracking for linear non-minimum phase systems. We
have demonstrated that the performance limitations can be avoided
by reformulating the problem as path-following, where the path
variable θ is treated as an additional control variable. This conceptual
result may be of practical significance, because the path-following
formulation is convenient for many applications. Design of path-
following controllers for non-minimum phase systems and the study
of performance under control energy constraints are topics for future
research.

APPENDIX

To derive (12) and inequality (17), we will need the following
results:

– A transfer matrix Pin(s) is said to be inner if Pin(s) is stable
with all the zeros located in C

+ and P ′
in(−s)Pin(s) = I ∀s ∈

C. A transfer matrix Pout(s) is said to be outer if it has full
row rank in the open right half complex plane. Every transfer
matrix P(s) can be factored as P(s) = Pin(s)Pout(s) such
that Pin(s) is inner and Pout(s) is outer [4, Lemma 2].

– A minimal realization (A, B, C, D) of a stable transfer matrix
P is called a balanced realization if the solutions P , Q to the
Lyapunov equations

AP + PA′ = −BB′

A′Q + QA = −C′C

are diagonal and equal.

A. Derivation of (12)

This derivation closely follows [4]. Since x̄ = Πw, ū = Γw, the
transients x̃ = x − x̄, ũ = u − ū satisfy

˙̃x = Ax̃ + Bũ, x̃(t0) = −x̄(t0), (20a)

e = Cx̃, (20b)

ũ = Kx̃. (20c)

We need to compute the limit J = limε↓0 Jε of the cheap optimal
control problem

Jε = min
ũ

∫ ∞

t0

[
e(t)′e(t) + ε2ũ(t)′ũ(t)

]
dt, ε > 0

for (1) with zero initial conditions. The optimal control law is
ũ = Kεx̃, where Kε = − 1

ε2
B′Pε, and Pε is the unique, positive

semidefinite solution of the algebraic Riccati equation

A′Pε + PεA + C′C =
1

ε2
PεBB′Pε.

It is well known [1] that P0 = limε↓0 Pε exists, and is independent of
which stabilizable and detectable state-space realizations the plant is
used. As in [4] and without loss of generality, we let (A, B, C, D) be
consistent with the inner-outer factorization P(s) = Pin(s)Pout(s),
where P(s) is the transfer matrix of system (1), Pin(s) is a square
stable inner transfer matrix and Pout(s) is a minimum phase right-
invertible transfer matrix. Let (Ain, Bin, Cin, Din) be a balanced
realization of Pin(s) and (Aout, Bout, Cout, Dout) be any stabiliz-
able and detectable realization of Pout(s). The partitioning of x as
x = col(xin, xout) gives

A =
[

Ain BinCout
0 Aout

]
, B =

[
BinDout

Bout

]
,

C = [ Cin DinCout ] , D = DinDout,
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and from Theorem 1 in [4] it follows that P0 = limε→0 Pε = [ I 0
0 0 ],

and hence

J = lim
ε→0

Jε = x̃ in(t0)
′x̃ in(t0) = x̄ in(t0)

′x̄ in(t0)

since x̃ in(t0) = −x̄ in(t0). The Laplace transform of x̄ in(t) and
ȳ(t) are

X̄ in(s) = (sI − Ain)−1BinȲ out(s),

Ȳ (s) = Pin(s)Ȳ out(s).

Therefore,

X̄ in(s) = L(s)Ȳ (s), L(s) = (sI −Ain)−1BinP−1
in (s). (21)

Since ȳ = yd, the substitution of yd(t) from (10a) gives

x̄ in(t) =

nd∑
k=1

[
L(jvdωk)akejωkθ(t)

+ L(−jvdωk)a�
ke−jωkθ(t)] (22a)

= 2

nd∑
k=1

[
Re L(jvdωk) Re ak0

− Im L(jvdωk) Im ak0

]
. (22b)

The computation of J = x̄ in(t0)
′x in(t0) results in J = η′Mη

where M is shown at the bottom of the page, and η is given in (13).
Finally, the formula (12) is obtained by observing that
trace M =

∑nd
k=1 trace

[
LH(jvdωk)L(jvdωk)

]
, Pi is a inner

matrix, and BiB
′
i = −Ai − A′

i, [4]. �

B. Derivation of (17)

We first compute

J� :=

∫ ∞

t�

e(t)′e(t) dt, � ∈ I

with σ(t) = � for all t ≥ t� and note that

J ≤
N∑

�=0

J�. (23)

As in the derivation of formula (12), we get

J� = x̃ in
� (t�)

′x̃ in
� (t�), (24)

where x̃� := x − x̄� is partitioned as x̃� = col(x̃ in
� , x̃ out

� ), and
x̄� = Π�w, that is, x̄� is the steady-state of x when σ(t) = � for
all t ≥ t�. For � = 0, J0 is given by (12) replacing vd by v0, and
satisfies J0 ≤ J̄0, where J̄0 is defined in (16). For � = 1, 2, . . . , N

we substitute x(t�) = x̃�−1(t�) + x̄�−1(t�) in (24) and get

J� =
(
x̄ in

�−1(t�) + x̃ in
�−1(t�) − x̄ in

� (t�)
)′

× (
x̄ in

�−1(t�) + x̃ in
�−1(t�) − x̄ in

� (t�)
)

=
(
x̄ in

�−1(t�) − x̄ in
� (t�)

)′(
x̄ in

�−1(t�) − x̄ in
� (t�)

)
+ 2x̃ in

�−1(t�)
′(x̄ in

�−1(t�) − x̄ in
� (t�)

)
+ x̃ in

�−1(t�)
′x̃ in

�−1(t�).

With θ(t) = v�−1(t − t�−1) substituted in (2) and using (22a) we
obtain

x̄ in
�−1(t�) − x̄ in

� (t�) =

nd∑
k=1

[
L(jv�−1ωk)akejωkθ(t�)

+ L(−jv�−1ωk)a�
ke−jωkθ(t�)

− L(jv�ωk)akejωkθ(t�)

+ L(−jv�ωk)a�
ke−jωkθ(t�)

]

= 2

nd∑
k=1

[(
Re L(jv�−1ωk)

− Re L(jv�ωk)
)
Re ak�

− (
Im L(jv�−1ωk)

− Im L(jv�ωk)
)
Im ak�

]
,

where ak� := akejωkθ� , � ∈ I, k = 1, 2, . . . , nd, and θ� := θ(t�),
� ∈ I. Since Pi(s) has no poles on the imaginary axis, Re L(jv�ωk)
and Im L(jv�ωk) are continuously differentiable functions of v�, and
by the mean value theorem, it follows that the equation shown at
the top of the next page holds, where A�,k, B�,k, k = 1, . . . , nd,
� = 1, . . . N are constant matrices and the vector η is defined in
(13). Therefore,

J� = η′M� η(v�−1 − v�)
2 + 2x̃�−1i(t�)

′
(
x̄ in

�−1(t�) − x̄ in
� (t�)

)
+ x̃�−1i(t�)

′x̃�−1i(t�) (25)

where

M� :=




A′
�,1

−B′
�,1

...
A′

�,nd

−B′
�,nd


 [ A�,1 −B�,1 ··· A�,nd

−B�,nd ] .

Then (17) follows from (23), (25), and the fact that there exists a
sufficiently large γ > 0 such that trace(M�) ≤ γ for any v� ∈
[vd, v0].

M :=




Re′ L(jvdω1)

− Im′ L(jvdω1)

...
Re′ L(jvdωnd

)

− Im′ L(jvdωnd
)


 [ Re L(jvdω1), − Im L(jvdω1), ··· , Re L(jvdωnd

), − Im L(jvdωnd
) ] ,
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x̄ in
�−1(t�) − x̄ in

� (t�) = 2

nd∑
k=1

[
A�,k(v�−1 − v�)Re ak�−1 − B�,k(v�−1 − v�) Im ak�−1

]

= [ A�,1 −B�,1 ··· A�,nd
−B�,nd ] η (v�−1 − v�),
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