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Abstract—Many nonlinear systems of practical interest evolve

on Lie groups or on manifolds acted upon by Lie groups. Ex-
amples range from aircraft and underwater vehicles to quantm

mechanical systems. In this paper, we develop an algorithnmof

solving continuous time optimal control problems for systens
evolving on (noncompact) Lie groups. This algorithm genertizes
the projection operator approach for trajectory optimization

originally developed for systems on vector spaces. Notion®r

generalizing system theoretic tools such as Riccati equatis and
linear and quadratic system approximations are developedin

this development, the covariant derivative of a map betweetwo

manifolds plays a key role in providing a chain rule for the
required Lie group computations. An example optimal contrd

problem on SO(3) is provided to highlight implementation details
and to demonstrate the effectiveness of the method.

I. INTRODUCTION

The purpose of this paper is to present an algorithm for
solving continuous time optimal control problems for syste
evolving on Lie groups. The proposed numerical algorithm
can be used for solvingeneraloptimal control problems on
Lie groups, without restricting the attention to left (ogt)
invariant optimal control problems. Part of this work hagie
reported in preliminary form in [8], [9], [10].

Theoretical investigations on optimal control problems on
Lie groups has started in the ‘70, with the pioneering works
of Brockett [11] and Baillieul [12]. The literature on optah
control problems on Lie groups has grown steadily since then
and the field is still an active area of research [13]. Quite
interesting sources are the excellent book of Jurdjevi¢ [14
Chapter 12] and the more recent book of Agrachev and
Sachkov [15, Chapter 18] and references therein.

The optimal control of a continuous time process is amongDespite the large and growing literature on geometrical
the oldest and most extensively studied problems in colfitegration [16], [17] and finite dimensional optimizatiom
trol theory. The main pillars of optimal control theory arémooth manifolds [18], [19], there are not so many numeri-
Bellman’s princip|e of optima"ty [1] and Pontryagin’s max cal algorithms available for soIving continuous-time O’[ﬂl
imum principle [2], both developed during the 60’s, and theontrol problems on Lie groups. Exceptions to this general

Hamilton-Jacobi-Bellman partial differential equationdaits

statement include the recently-proposed numerical alyos

uniqueviscosity solution [3], [4], studied deeply in the 80'sfo address optimal control problems forechanical systems
Many books have been written on the subject, a samplifjolving on smooth manifolds (such as Lie groups) presented

includes [5], [6], [7].

in [20], [21], [22].

Various numerical methods have been proposed in theThe algorithm proposed in this work isdirect method for

literature for solving optimal control problems dR™. A

solving continuous time optimal control problems, geriatat

method is calledndirect if it seeks to solve the first order@ descending sequence of system frajectories. In contast t
necessary optimality conditions of the Pontryagin maximufany direct methods, the continuous-time optimal control
princip|e, requiring the solution ofm\/()-point boundary value problem is not transcribed into a discrete optlmlzatlonbpro

problem On the other hand, a method is callédect if

lem, but rather a continuous-time second-order approximat

the minimization problem is tackled directly, generating & computed at each iteration. We borrow from and expand the

descending sequence of trajectories. In a direct methed,

continuous-time optimal control problem is typicaltyan-

key results of the projection operator approach for optatian
of trajectory functionals developed in [23] to the class of

scribed into a finite dimensional constrained optimizatiorystems evolving on Lie groups. The projection operatoethas

problem by discretizing the continuous time dynamics,graé
cost, and state-input constraints; the transcribed pnobie

optimization approach can handle optimal state transfé} [2
and state-control constraints using a barrier functiorr@ggh

then solved by using a state-of-the-art nonlinear programgm [25]. It has been used, in the context of virtual prototyping

solver.
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to obtain a dynamic inversion procedure for the dynamics of
a racing motorcycle [26]. Further applications include][27
[28], and [29].

The algorithm can be viewed as a generalization of New-
ton’s method to the infinite dimensional setting and exBikit
second order convergence rate to a local minimimzer at which
the second order sufficient condition (SSC) for optimality

C‘)Bfgﬁllggr’holds. At each step, a quadratic model of the original cost

functional is constructed about the current trajectoryatie
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tives of the incremental cost, terminal cost, and contretew

vector field. An interesting property of the algorithm, winic

connects it to indirect methods, is that it also generates a



easiest formulation, allows one to perform local Newton (or
guasi-Newton) optimization of the cost functional

h(z,u) = /0 ' Wz(r),u(r),7)dr +m(x(ty)) 1)

over the set of trajectories of a nonlinear system f(z,u),

x € R", u € R™, subject to a fixed initial condition. In
Tg"]' this paper, we use the wotthjectoryin an extended sense to
indicate the state-control pair(t) = («(t),u(t)), t > 0, that
satisfiesi(t) = f(x(t),u(t)) for all ¢ > 0. As usual, “all¢”
means “almost alt” in the sense that

£(t) = 2(0) + / f((r), u(r))dr

(c) line search (d) update

Fig. 1. The projection operator approach; (a) at each itevathe lineariza- where [ ... dr is the Lebesgue integral. The cost functional
tion of the control system about the trajectcfy defines the tangent space j, appearing in (1) — which is defined in terms of the

to the trajectory manifold7 at &;; (b) the constrained minimization over . | d inal d I h
the tangent space of the second order approximation of then@ed cost incremental and terminal costsand m — as well as the

functional b = h o P yields thesearch direction(;; (c) the optimalstep size control vector fieldf are assumed to be sufficiently smooth
is computed through a line search alogg (d) the search directiog; and gnd regu|ar [23]
step sizey; are combined to obtain a newpdatetrajectory&;. 1. - . . .

b sizey w jectory&i+1 As shown in [30], the seT of trajectories of the nonlinear

control systemi = f(z,u) has the structure of a (infinite

sequence of adjoint state trajectories that converges, eas §{ensional) Banach manifold, a fact that allows one to use

approach a local minimum, to the adjoint state trajectory §ECLOr Space operations [31] to effectively explore it. Torkv

the first order necessary condition. These key properties & the trajectory manifold’, oneprojectsstate-control curves

maintained in the extension to Lie groups that we propodt the ambient Banach space ortoby using a local linear

in this work. We also provide a simple nontrivial optimizati UMe-varying trajectory tracking controller. To this ersdjp-

example which is worked out in detail to illustrate the metho POS€ that(t) = (a(?), u(t)), t > 0, is a bounded state-control
The paper is organized as follows. The projection operafgffVe (@n approximate trajectory) and iit) = (w(t), u(t)),

approach for the optimization of trajectory functionals ih = 0. be the trajectory ofi = f(xz,u) determined by the

Banach space, originally proposed in [23], is reviewed io-SeNonlinear feedback system

diferontal geometry used ifvoughout the paper, a hightle #(0) = Fal ul0)

description of the projection operator approach on Lie gsou u(t) = p(t) + K(#)(a(t) - =(1)),

is presented. The remaining sections of the paper providith z:(0) = 2. Under the hypotheses that the control vector

the low-level details of the method. In particular, Sectltin field f is (at least) twice continuously differentiable and

introduces the definition of the left-trivialized lineaaition of the gain K is bounded [30], this feedback system defines a

a control system on a Lie group and Section IV present®ntinuous, nonlinear operator

the key concept otovariant derivative of a mappetween

two manifolds. Section V defines the Lie group projection Prg=(a,p) = n=(z,u).

operatorP together with its linearization and second covariang is straightforward to see that is a fixed point of P,

derivative. Section VI details the search direction subfmm £ = P(¢), if and only if ¢ is a trajectory of the control

which is at the heart of the projection operator optimizratiosystemi = f(z,u). This ensures thaP? = P so that

strategy. A numerical example is presented in Section VII {0 is a projection operator With this projection operator at

demonstrate the effectiveness of the method. Conclusins Rand, one can see [23] that the constrained and unconstraine
drawn in Section VIII. Further technical details are calé®t optimization problems
in the Appendices A and B.
min h(¢) and Hgnh(P(i))
€ S

Il. THE PROJECTION OPERATOR APPROACH . . . . !
are essentially equivalent in the sense that a solutioretdirtt

This section reviews the projection operator approach @Bnsirainedproblem is a solution to the secondconstrained
a vector space [23], before presenting its extension to Ligohiem while a solution to the second problem is, projgcte
groups. The section also introduces the basic notation a&gp, a solution to the first problem. Using these facts, one
symbols that will used frequently throughout the paper. 5y develop Newton and quasi-Newton descent methods for

trajectory optimization in an effectively unconstrainedmmer

A. A review of the projection operator approach on a vectdsy working with the cost functionah(¢) := h(P(€)). The
space algorithm proposed in [23] is the following:

The projection operator approach to the optimization oAlgorithm (Projection operator Newton method)
trajectory functionals is an iterative algorithm which, ils  given initial trajectoryé, € T



for i=0,1,2,...
redesign feedback’ if desired/needed
(search directioh

G =arg min DA(&)-C+3D*h(&) - (0 ()

B. Notation and definitions

We assume that the reader is familiar with the theory of
finite dimensional smooth manifolds, matrix Lie groups, and
covariant differentiation. We refer to the books [32], [33]
[34] for a review on differentiable manifolds and covariant
differentiation and to [35], [36], [37] for a review of theery
of Lie groups and Lie Algebra. Many of these topics are also

v; = arg min h(& +~¢) (step sizp 3)
~¥€(0,1]
§iv1 =P(& + %) (updatg (4) covered in [38] and [39].
end Notation
Note that the functionak and the projection operatoP M, N

degend on the choice of the feedbakk In (2), Di(¢;) and
h(¢&:) are the first and second Fréchet derivatives of thg, a7, T M
Banach space functional. When¢ € 7 and(¢ e TeT, the

v, W
first der|vat|veDh(§) ¢ simply equalDh(§) - ¢, i.e., it does TM, T*M
not depend orP (as in this cas®P(€) - ¢ = (). T TM— M

At each step, the minimization of a second order approx : M — T M
imation of the extended cost functionalprovides asearch f: A/ — N
direction Then an optimastep sizés computed through aline Df : TM —TN
search (a pure Newton method would use a fixed step size®f (&) - ¢
~v; = 1). Combining the search directiofy with step size
7:; @ newupdatetrajectoryé; 1 is computed by projecting the D?a(¢) - ((1, (o)
curve&; +;¢; into the trajectory manifold™ and the algorithm
restarts (unless a termination condition is met). An itagon o : M — N
of the approach is shown in Figure 1. 'Y

The optimal search directiog; computed in (2) is con-
strained to lie on the tangent space to the trajectory miaéfio
the current iterate, i.e(; € T¢, 7. This is not restrictive since, ¢, X
as established in [30, Proposition 3.2 ,can be used to define
a bijection between the neighborhood of a trajectoey7 and v
the origin of its tangent spac& 7. The condition(; € 7., 7 VyY
simply means that;(¢) := (z;(t),v;(t)) € R® x R™, t > 0,
is a trajectory of the linearization of the control systenpy . X
& = f(x,u) about the current trajectory iterag The search p,
direction subproblem (2) is, in practice, a linear quadrati
(LQ) optimal control problem where the functional to bey(t), t € I
minimized,DA(&;)- C+3 LD2R(&)-(¢, ), is the quadratic model Pt1<—tov
functional given by the first two terms of the Taylor expamnsio
of the funcuonalh(gZ + ¢) with respect to¢ [23, Section D2 f(x) - (v, w)
3]. The LQ problem is defined using first and second order
derivatives of the nonlinear system and the incremental and
terminal costs about the current (nonlinear system) trajgc
iterate. It can be solved by computing the solution to g
suitable differential Riccati equation (and an associamjdint ¢
system). In particular, in the vector space case, the usaahc Ly, Ry
rule applies and one finds thath(¢) - (¢, ¢) is a well defined !
object given by

D2h(£)-(¢,¢) = D*A(€)-(¢, ¢)+Dh(€)-D*P(€) - (¢, C),

for ¢ € T and¢ € T T [30]. Note thatD*P(¢) is the second [, ]
Fréchet derivative of the Banach spamgeratorP. Ad,

When the system evolves on a Lie group, a number af,
interesting questions arise. What is the linearization haf t
system? How do we define and compute a second ordep:g — G
approximation of the system? What Riccati equation(s) cdog : G — g
we associate with a Lie group trajectory optimization peoh?
One purpose of this paper is to develop appropriate notmnsd
address these questions.

9z, X9,
| 9

Smooth manifolds

Point on the manifold

Tangent and cotangent spacesidfat «
Tangent vectors

Tangent and cotangent bundles df
Natural bundle projection frorid’ M to M
Generic vector field o/

A map fromM to N

Tangent map of f

Fréchet derivative of the functionalat £
in the direction(

Second Fréchet derivative afat ¢ in the
directions¢; and ¢,

Diffeomorphism betweed/ and N
Pull-back of the vector fieldy” on N
throughe,

i.e., oY (z) := Dy~ (p(2)) - Y(p(2))
Push-forward of the vector field on M
throughy, i.e., 0. X = (p71)*X

Affine connection

Covariant derivative of the vector field
in the directionX

Covariant derivative (alternative notation)
Covariant differentiation with respect to
the parametet

Curve (defined on the intervdl C R)
Parallel displacement along fromt¢ = ¢
tot = t;, of the vectorVy € T, ;) M
Second covariant derivative of the mgp
at x € M evaluated in the directions,
weT.M

Lie group

Lie algebra ofGG

Group identity

Left and right translations ot € G by
ge G

Shorthand notation fof.,z and R,z
Shorthand notation forDL,(z) - v,
DRy(x) - v, with v € T, M

Lie bracket operation

Adjoint representation ofz on g

Adjoint representation ofg onto itself
(adys = [o,<))

Exponential map

Logarithm map (inverse of thexp in a
neighborhood ot)

Trivialized tangent of a local diffeormor-
phism betweeny and G



Similarly, given a local diffeomorphis : G — g, the(right)
The (0) connection on a Lie group.On a Lie group, trivialized tangentof H at¢ is the linear map #, : g — g
left-invariant connections are those for whidlL,).VxY = defined by
V(r,).x(Lg)«Y , while right-invariantconnections are, simi-
Iaﬁly, )tho(squvhich commute with the push-forward of the tigh dHen := DH(g) - 19, (10)
translation. There is a one-to-one correspondence betwien with ¢ = H~'(¢). More details on the trivialized tangent and
invariant (respectively, right-invariant) affine conrieas onG  their use can be found in [17] and [43, section 4]. In this pape
and bilinear maps : g x g — g [40, Theorem 8.1] given by we make use of the trivialized tangents of the exponentidl an

wlo) = (Vx,X)(0), ocea ©6) logarithm maps, using’(£) = exp(§) and H(g) = log(g).

for X,(g) := DLgy(e) - o (respectively,:= DRy(e) - 0). C. The Lie group projection operator approach
The b|||pea:r fupl;:tlonw ap?earflng Itn rEG) 5 tirmed thk?ft A control vector field on a Lie grougs is a (sufficiently
(res_p_ec Velyrg .) connection functioior 'v. A connhection smooth) mapf : G x R™ x R — TG, (g,u,t) — f(g,u,t),
is bi-invariant if it is both right- and left-invariant. For bi- . m
. . . . : ; such thatr f(g,u,t) = g for each(g,u,t) € G x R™ x R.
invariant connections, the right and left-connection fiores . T :

incid d safi Ad. 0. Ad _ Ad ¢ I A trajectory of the control system = f(g,u,t) is a state-
coincide and satisfy(Adge, Adys) = Adgw(e,s), for all oneorciven(s) = (g(t), u(t)) € G x R™, ¢ € R, with g(t)

9 € G and o, s €8 (.3|ven. alLie group of dimension, an absolutely continuous and(t) integrable, satisfying a.e. the
invariant connection is uniquely specified by thé numbers differential equation

that characterize the bilinear connection function.
Amongst all possible bi-invariant affine connections, ¢hre g(t) = fg(t),u(t),t). (11)

are particularly useful: they are th{e-), (+) and (0) Cartan- - . .

Schouten connections. These connections were studied ang'mIlarly to what is done on a vector;nspace, given a state-

generalized to homogeneous spaces by Nomizu in [40, Sect?&r?.trOI curves - (O‘(t)’“.(t.)) € G x R™, t € R, we can

11], although in the context of Lie groups they were intraeflic assign a cost to it by defining a cost functional

by E. Cartan and J. Schouten in [41] and further developed by ts

E. Cartan in [42]. For these connections, every 1-parameter h(€) ::/0 1(&(T), 7) dr + m(m&(ty)) (12)

subgroupy,(t) := exp(tp) is a geodesic meaning that its m

covariant éerivative satisfie®;4,(t) = 0. The (—) and Wheremg(tf) — q(t-f) andi: G xR xR =R and_m :

(+) connections are flat (i.e., the curvature tensor of th — Rare given mc_:r_eme_ntal and te”‘?‘”a' cost functions. We

connection is identically zero), implying that the assteia are interested in minimizing the functionalover the set of

parallel displacement imdependenbf the path, depending trajectories off starting from a given initial conditiopy € G.
only on its initial and final points ' The projection operator approach on vector spaces [23],

In this paper, we only make use of tii@)-connection. Its reviewed at the beginning of this section, is generalized to

connection function and parallel displacement satisfgpee- Lie grpups as. follows. o
Algorithm (Lie group Projection operator Newton method)

tively, . - .
) ) given initial trajectoryéy € T
w(0,5) == [0,5] == ads, (7) for z:_O, 1,2, ... _ _
% 2 redesign feedback if desired/needed
(0) phietoy, = 5 (2129 vo + vozg 'a1) +o(ts —to)  (8) (search directiol

_ - 27
where g, ¢ € g, v : R — G is a curve satisfying Ci—arg&CIQITiTDh(@)'§i<+%D h(&) - (&€, &C) (13)
v(to) = zp andy(t1) = z1, andvy € T,,G. The parallel

displacement® P is path dependent as tf8)-connection is ¢ ~ *'& _Z(g"; h(&i exp(76:)) (step sizp (14)
not flat. The approximate expression given in the left handgi+1 = P(& exp(1iG)) (updatd (15)
side of (8) is a handy and useful formula to compute covari- ’

ant differentiation. Note thatyz; 'vo = (7Pt "oy, and end

voxg iy = (+>P§1<—t0vo appearing in (8) are, respectively,The algorithm is closely related to the one proposed forarect
the (path independent) parallel displacements of the(flgt spaces. In fact, whed’ = R”, it is actually equivalent to
and (+) connections [40]. it. Note that the perturbation;(t) = (z;(t),vi(t)), t € R,
is now a curve ing x R™ while the current iteraté;(¢) =
The trivialized tangent of a (local) diffeomorphism betwea  (g:(t), u;(t)), t € R, is a trajectory inG x R™. Moreover, the
g and G. Let G be a Lie group with Lie algebrg. Consider operationt; +;¢;, which does not make sense on a Lie group,
a (local) diffeomorphisni¥’ : g — G between a neighborhoodis replaced with the operatigh exp(v;(;), where the exponen-
Ny of the origin ofg and a neighborhood/. of the identity tial acts pointwise in time. Specifically, from now on, we ptio
of G. Given¢ € Ny C g the (right) trivialized tangentof ' the following convention. Given a curve i x R™, £(t) =
at¢ is the linear map #; : g — g defined by (a(t), u(t)), t > 0, and a curve i xR™, {(t) = (6(t), v(t)),
. t > 0, we writeexp(¢) andlog(¢) for the pointwise operators
dFen := (DF(E) - m) F(§) (9)  defined byexp(C)(t) = (exp(3(t)),v(t)) € G x R™ and



log(&)(t) = (log(a(t)), pu(t)) € GxR™, t > 0. We also adopt Proof: Sinceg.(t) = g(t)z.(t) is a trajectory of (16) with
the notation{¢ to mean the curve if'(G x R™) defined as input signalu.(t), it satisfies
E(OC(1) = (9(t)=(1), v(8)), t > 0. p

In the following sections, we define the linearization of lg(t)z(t)] = g(t)z-(t)A(g(t)zc(t), uc(t), t) . (20)
a control system on a Lie group, the Lie group projection . . )
operatorP and detail the search direction subproblem (13 .he left ha”‘?‘ side of (.20). IS e_qual tg(t):?g(t.) +g(t) -
In particular, in Section VI we show that the search directio exp(z: (1)) - 2:(t). Substituting this expression into (20) and

PR ; —1
subproblem (13) is in fact a linear-quadratic problem on ﬂ{gulnplymg both sides by (t)™", we get

Lie algebra of¢;. Dexp(ze) - 2e = (AdwsA(gx57u57t) - /\(gaua t))xsa (21)
1. LINEARIZATION OF CONTROL SYSTEMS ONL IE where for brevity we have dropped the explicit dependence on

GROUPS time. Since the inverse map Bfexp(-) at z is Dlog(exp(z))

and Dlog(exp(z1)) - (z2exp(z1)) = dlog,, 2o for eachz,

Given a control vector fieldf on a Lie group, itsleft
trivialization is the mapXA : G x R™ x R — g defined as
Mg, u,t) :== g1 f(g,u,t). The left trivialization\ allows one
to write equation (11) equivalently as

25 € g, the result follows. [ |
Proposition 3.2: The left-trivialized perturbed trajectory

ze(t), t > 0, can be expanded to first order as(t) =

ez(t) + Ra(e,t), with Ry of order higher than one ia and

9(t) = g(O)A(g(t), u(t), 1) (16) () satisfying

As we show in the following, the use of an element on the #(t) = A(n(t), 1) z(t) + B(n(t), ) v(t), 2(0) =0, (22)

Lie algebra to uniquely represent a generic tangent veator @nere A(n(t),t) and B(n(t),t) are given by (17) and (18),
the Lie group is key in developing the concept of linearmmati respectively.
along a trajectory of the control system. An equivalenttieo  proof: The result follows from standard perturbation
can be obtal_ned using right .tr_anslatlion,.the.chm.ce betwleen theory (see, e.g., [44, Chapter 8]) realizing that (19) @sfin
two depending on the specific application in mind. a differential equation in the form = F(y,e,t) with initial
Left-trivialized linearization around a trajectory. Let conditiony(0) = 0, whereF (-, -, -) is smooth with respect ta
n(t) = (g(t),u(t)) € G xR™, t >0, be a trajectory of penoting byy(t), ¢ > 0, the solution of (19) foe = 0, from
the control system (16), with(0) = go. perturbation theory we gef.(t) = yo(t) + ez(t) + Ra(e, 1),
Definition 3.1: The left trivialized linearization of (16) wherey, (t) is the solution ofjo = F(yo,0,¢) with 3(0) = 0
about the state-input trajectonyt), ¢ > 0, is the linear system gng =(t) satisfies

2(t) = A(n(t),t) 2(t) + B(n(t),t) v(t) , 3(t) = D1 F(yo(t),0,t) - 2(t) + DaF(yo(t),0,¢) - 1, (23)
with z(t) € g andv(t) € R™ and where z(0) = 0.
A(n,t) := D1A(g,u, t) 0 DLy(e) — by (g s (17) Equation (19) is in the formy = F(y,e,t) =

BOp.t) = Do(g,u,1). (18) M((y) cy(y, ev(t), ) with M (y) = [dlog,] and
In the remaining of this section, we detail in which sense ey, v,t) =

(17) and (18) represent a linearization of (16). Given a Adexpy A(g(t) expy, u(t) +v,t) — AMg(t), u(t), 1) .

bounded curve() € R™, ¢ > 0, ande € R “small’, consider oo thatas(0) = 1 ande, (0,0,¢) = 0, ¢ > 0. Sincey(0) =

the perturbation of the input defined as(t) := u(t) + cv(t). 0, it follows that yo(t) = 0, ¢ > 0. Equation (23) can be
Indicating with g. the state trajectory associated with, we written as -

have

Je (t HA(ge (), ue(t), t 0 2= (D1M(0) - 2) ¢y(0,0,1)

9e(t) = ge(O)A(ge (1), ue(t), 1), 9:(0) = go - + M(0)(D1¢, (0,0,t) - z + Dacy (0,0,4) - v),  (24)
In the (possibly small) interval0,T;), the solutiong. will 2(0) = 0.

remain in a neighborhood of the unperturbed trajecigy, )
¢ > 0, so that we can use the exponential coordinates to parami?ce¢,(0,0,t) = 0, ¢ > 0, and M (0) = I, we only need to
eterize neighboring trajectories of the nominal stateettairy COMPute the partial derivatives of (-, -, -) with respect to the
g(t). To this end, we define théeft-trivialized perturbed first two argumentsdaroun(d), 0,¢) to compute the right hand
trajectory z. (t), ¢ € [0,T), such that.(t) = g(t) exp(z.(t)), Side Of (24). SinceiLAdexp(-y)|._, = ad, , we obtain
te [Ot,_TE). The trajectory:. satisfies the following differential Dicy(0,0,¢) - = = ad A(g(t), u(t), t)
equation.

Proposition 3.1:Let z.(t) = exp(z(t)), t € [0,T.). The +D1A(g(t) u(t). ) - 9(t)z,
left trivialized perturbed trajectory:.(t), t € [0,7%), satisfies D2cy(0,0,t) - v = D2A(g(t), u(t),t) - v.

. _ _ The result follows noting thatd(n,t) = Di¢,(0,0,¢) and
b = dlog., (Ad: A9, )=A(90.)) - 22(0) _8’9) B(1,t) = Dac,(0,0,¢). Recall that agk = —ad.o, for all

S, 0€ Q. |



IV. DIFFERENTIATION OF MAPS BETWEEN MANIFOLDS the result follows. [ |

In this section, we define thsecond covariant derivative ~Remark 4.1:0One can define higher order covariant deriva-
of a mapbetween two manifolds that will play a key role intives of a map °f, D*f, and so on) by requiring that
computing the second order approximation of the projectidsibnitz’s rule holds. Moreover, the symbdl can be used,
operatorP on Lie groups. This covariant derivative is require§-9- to indicate the covariant derivative of a vector fi¢ld
to obtain a formula analogous to (5) in the context of Lié the directionX, i.e., DX -Y (whose standard notation is
groups providing, in particular, an understanding of theosel VxY) as well as the covariant differentiation of the “product”
derivative of a map between two manifolds, each endow& - X, with f : M — N a map andX a vector field over
with an affine connection. The symbdl is introduced to . Note that covariant differentiation is defined in such a way

indicate this particular notion of covariant differentiat. that Liebnitz’s rule holds, so that one obtains, e.g., theaidy

D(Df-X)-Y =D*f-(X,Y)+Df - (DX -Y),
A. The second covariant derivative of a map
Let M, and M, be smooth manifolds endowed with affing¥here X and Y are vector fields oved/ and D*f is the
connectiondV and?V, respectively, and lef : M; — M, be second covariant derivative of the mgp The vector fieldX
a smooth map. The second covariant derivative is a tool tiftd the tangent map f are, in fact, special cases t\lﬁo-pomt
extends the classical (Leibniz) product rule to the covarial€nsor fieldsnamely a, o)-tensor field and 4; ;)-tensor

derivative of the “productDf (v (t)) - Vi(t), whereV; is a field, respectively [45]. Two-point tensor fields (sometime
vector field along a curve; in M. also called double tensor fields) and their covariant dévies

Givenz € M; and the tangent vectorsandw € T, M;, let &€ not commonly encountered in standard differential and
v : I — My be a smooth curve id/; such thaty, (t) = « Riemannian geometry textbooks and, to our_understandmagZ a
and 1 (t,) = w. Let Vi be a smooth vector field along mostly encountered in the context of continuum mechanics,
such thatV; (ty) = v. If follows that Va(¢) := Df(yi(t)) - guantum physics, and advanced dlffergntlal geometry eqpli
Vi(t) € Ty(y (1)) M2 is @ smooth vector field along the curvdions. They are the natural generalization of vector _f|eiui$ a
Y2 (t) = f(1 (1) in Mo. one forr_ns over maps. From now on, the operé))qwnl t_>e

Definition 4.1: The second covariant derivative of the ma}Sed to indicate covariant differentiation of a generic-eont
f: M, — M, atz € M, in the directionsv, w € T, M, is tensor field [45].

the bilinear mam?f (z) : Ty M x Ty My — T2y Mo defined Remark 4.2:The key role played by covariant differentia-
by tion in the context of this paper can be understood through

a finite dimensional analogy. Lét/ and N be differentiable

D?f(x) - (v,w)=D;Va(to) =Df (71 (t0)) -D:Vi(to) ~ (25) manifolds, each endowed with an affine connection, and let
where D;V; and D,V denote covariant differentiation with” : K™ — M, q : M — N, p: N — R" be three given
respect to'V and2V, respectively. dlfferent_lgble functions, withm qnd NS N a_rbltrary. T_he
compositionpogor : R — R™ is a differentiable function

Proposition 4.1: Denote by 'P and 2P the parallel dis- that can be expanded about a given point. In the context of
placements associated wiltv and 2V, respectively. Then, this work, p may be thought of as the cost functionalas

equation (25) is equivalent (far= t,) to the projection operator, and as the pointwise exponential
. operator. Covariant differentiation allows us to use Léiis
L (optett . 1ptteet rule to express the second order term using intrinsicall
;%E(Pw “Df(ni(t+¢)) - PEEV (1) p g y

defined derivatives of, ¢, andr. Indeed, one obtains

~Df (1) -Vi(t)). (26)
) pq(r(z + 2))) = p(q(r(x))) + Dp-Dg - Dr - z
Proof: The connection’V allows us to compute the +1/2(D* - (Dg-Dr-2,Dq-Dr-2)
covariant derivative of the vector field, along~, as +Dp D% (Dr-z,Dr- 2)

(DyV5)(t) = lim 1<2ngt+6x/2(t +e)— VQ(t)>. (27) +Dp-Dq-D*r-(z,2)) +o(|z?).  (29)

e—0 ¢
It is this abstract and high level splitting of the secondeord
term into its “elementary” parts that allows us to analyzesth
parts separately and obtain explicit and computable faasul
for use in the projection operator approach.
(28) Due to limited space, we will not present explicit formulas
Adding and subtracting the terr:lzptv;—t-f-s Df(y(t + ¢)) - for the covariant derivative ofatwo—point_tensorfield. er_
lpz'nylrsetVl(t) inside the parenthesis of the previous expreéhe reader to [45] and.references thereln for further regadn_n
sion, and noting that (i’ M) Ir_1 th_e next subsection, we prc_mde some useful_covarlant
derivatives of maps and vector fields defined on Lie groups
lim l2pfgt+s|3f(% (t+¢))- (V1 (t+e)— 1;:>t741r€HﬁV1 (t)) that will be used in the derivation of the Lie group projentio
e0¢€ operator approach. The subsection can be skipped on the first
= Df(m(t)-DiVi(t),  reading of the paper.

The right hand side of equation (27) can be expanded into

lim * (%P T4D (3 (1+2)) Va (4+2) ~DF (1) Vi (1))

e—=0 ¢



B. The covariant derivative on Lie groups: Differentiation In the following, we would also impose some smoothness

rules for the(0) connection and boundedness conditions brand restrict, without loss of
The second and higher order covariant derivatives of @nerality, our attention to a feedback of the form
map between two Lie groups can be computed as soon as
e et o A . u(t) = k(g(t). a(t), n(t), 1
pecify affine connections on domain and codomain. In .
this subsection, we restrict our attention to second ceméri = p(t) + K(t)log(g(t)~ a(t)), (32)

derivatives with respect to théd)-connection because this . .
P €) since, as for any control system 4", a trajectory¢ of

connection is used for computing the second order approx--, . . . o .

S S . . .a C* nonlinear system is exponentially stabilizable if and

imation of the projection operator in Section V-D. The Lie . : . . -
qnly if there is a bounded gain matriX that stabilizes the

algebrag, bein.g a vector space, 's endowed with the triViEhnearization of f about&. Note thatK(¢) is a linear map
affine connection (the parallel displacement along anye:ur}/rom g to R™. It will be evident from next section that the

is the identity map). The following results may be verified b}fnearization of the closed loop system (31) with feedb@®) (

straightforward computations. . o . ) ,
Proposition 4.2: Let X (g) :— g¢(g) and Y (g) = £(g)g be around a state trajectory is given by the linear differential

vector fields o7, whereg — £(g) is a differentiablgy-valued equation
function. Then 2(t) = [A(E(t),t) — B(E(t), 1)K ()] 2(t), (33)
DX(g)-gn = 9(De(9) - gn+1/2 0. E(9)] with A and B defined by (17), (18).

DY () - ng = (D&(g) - ng+1/2[€(9),nl)g- (30) Definition 5.1 Projection operator P): Equation  (31)
with the initial conditiong(0) = go and feedback (32) defines
Proposition 4.3:Let G > g — &(g9) € ¢ be defined as a causal operator, called tipgojection operatoy which maps
971X (g) = DL,-1(g) - X(g), whereX(g) is a vector field. a state-input curve(t) = (a(t), u(t)) € G x R™, t > 0,
Then into the state-input trajectory(t) = (g(¢),u(t)) € G x R™,

1 1 t > 0, that satisfies
D&(g) -gn=g (DX(g) - gn)+1/2 l97'X(9),m].

Proposition 4.4:For eachp, < € g, we have u(t) = uk(g,§(t),1), (35)
D2exp(0) - (0,) =0,  and DZlog(e) - (0,<) = 0. 9(0) = 9o, (36)
where
Proposition 4.5:Let ¢t — V(¢) be a vector field along the
curvey C G, g € G a constant, andlV’ (t) := g V (t) a vector Ak (9,6:) = Mg, uk (9,6, 1), 1), (37)
field along the curvery. Then, ug (g,&,t) = p+ K(t)log(g '), (38)
DWW (t) = gDV (t). and ) : G x R™ x R — g denotes the left trivialization of
the control systemy = f(g,u,t). In short, we writen =
V. THE PROJECTION OPERATOR ONLIE GROUPS P (&) or, whengy and K are clear from the context, simply

B= P(&). As in the vector space case, the projection operator

In this section we define the projection operator for L S o 2
dynamical system evolving on a Lie group. The standarfisfies the projection properB(¢) = P(P(¢)) =: P*(¢).

projection operator for a nonlinear system evolving on daec
space, introduced in [30], was reviewed in Section II-A. B The local projection operator and its properties

o We are interested in studying the effect of a perturbation
A. The projection operator of the curve¢ in the direction¢, that is, we study the
Let f: G x R™ x R — T'G be a control vector field o. mapP({exp(e()), for e € R “small”. We can parameterize
A state-input trajectory(t) = (a(t), u(t)), t > 0, is called P(£exp(e¢)) using the left-trivialized perturbed trajectory
exponentially stabilizablé& (and only if) there is a feedback x.(¢) € g x R™, ¢ > 0, defined by
law u(t) = k(g(t), a(t), u(t),t), with k(a(t), a(t), u(t),t) =
p(t) for all ¢ > 0, such thaty is an exponentially stable (state) P(Eexp(e()) = P(§) exp(xe) - (39)

trajectory of the closed loop system
] y P sy Definition 5.2 The local projection operator N¢): The

g(t) = fg(),k(g(t), a(t), u(t),t),t) (31) left-trivialized local projection operatoraround the curve,
, ) written asx = Ng(¢), is the operator that takes the curve
that is, there exisf/ < oo, A > 0, andé > 0 such that C(t) = (B(t),v(t)) € g x R™, & > 0, to the left-trivialized
[log(g(t) ta(®)| < M e 20=1) | log(g(te) alty))||  trajectoryx(t) = (y(t),w(t)) € g x R™, t > 0, given by
for all £ > to > 0 and all g(ty) in a neighborhood ofx(ty) x = log(P(&) " P(Eexp(€))) =: Ne(C). (40)

such that]| log(g(to) ta(to))

| < 0.



Proposition 5.1: Given curves = («, 1) andn = (g,u) C. The first derivative of the projection operator
) =

with = P(¢), the map (ye,we) = xe = Ne(e The following proposition provides the explicit expresso
Ne(ef,ev) can be computed explicitly by using for computing the first derivative of the projection operafo
Its proof is based on perturbation theory and uses the same

Je = dlog,, [Adexp 5. Asc (9 expye, € exp(=0), 1) arguments as in the proof of Proposition 3.2.

= Ak (9,6, 1)] (41)  Proposition 5.3:The left-trivialized trajectory y. =
we(t) = ug(gexpye, Eexp(eC), t)— uk(g,&,t),  (42) Neg(e¢) can be expanded to first order gs(t) = ev(t) +
y=(0) = 0 (43) Rs(e,t) with R, of order higher than one ia. The curve

y(t) = (2(t),v(t)), t > 0, satisfies
7 =DN(0)- ¢ =P(§)'DP(¢) - & (49)

where Ad is the adjoint representation of the grain its
Lie algebra and thg denotes the trivialized tangent bfg as

defined in (10). and can be computed using
SinceProof: By definition, P(£ exp(e()) = P(&) exp(Ne(e()). S A0 2 + Bi(t). )0 (50)
v=v+ K(t)dlog,(g-14)(Adg-1a8 — 2), (51)
(P(&) exp(Ne(0))) () = (9(t) expye(t), ult) + we(t)), 2(0) =0,
with ¢ > 0, is a trajectory of the closed loop control systerhere A(n(t), t) and B(1(t),t) are given by (17) and (18).
(34)-(36), it satisfies No(tt;(that, \)/vherf = P(&), (51) is simply equal ta = v +
K(@)(8—z2).

d

—(gexpy:)(t) =gexpy:Ar (gexpye, {exp(eC), 1),  (44)

dt ; P P
D. The second covariant derivative of the projection oparat

Et: €9 7t_ 7at7 ..
we (D) =u (g expye, Eexp(eC), O)-ux (.8 )(45) Recall the definition of the (left-trivialized) local prajgon

B operatorNe given in (40). The proof of the following key
9(0) exp(y:(0))=go (46) result is developed in Appendix A.

It is now clear that (42) and (43) follow immediately from 'neorem 5.4:Given a trajectory) = (g, u), n =P(n), the
(45) and (46). One can also conclude that (44) implies (4§<5>cond derivative ofV;, about zero in the direction§ and
by mimicking what was done in the proof of Proposition 3,152 Namely

B (y,w) = D°Nigu)(0) - ((B1,1), (B2, 2))

Differentiating the local projection operatal;, defined ) . B C1m2 .
in (40), in the direction; and evaluating it at = 0, we = DN (0) - (G, o) = P ()~ D7) - (€1, 0Ga)

obtain is given by
DNe(0) - G = P(§)™'DP(€) - &G y= A, t)y + B, t)w
and, by differentiating it twice and evaluating it @t 0 + 172 (ack,DAufn) - -+, D (n) - 1m)

' ’ +D*Ae(n) - (171, 12) (52)
D’Ne(0) - (G1,¢) = w=—K(t)[y+1/2([21,Be] + [22, 81]) ] , (53)
P()~H (DP?(E) - (§61,€C2) + DP(S) - D% exp(0) - (G1:.C2))  with (0) = 0, 7; = (2:,0:) = DN,(0) - G, i = 1,2, and
+ D?log(e) - (DNg(0) - ¢1, DN (0) - Ca) - where);(n) := A\(n,t) and A(n, t) and B(n, t) are defined as

in (17) and (18), respectively.
As mentioned in Section IV-B, using th@®) connection we  Note that for brevity we have suppressed the argunment
have D? exp(0) - (¢1,¢2) = 0 andD?log(e) - (¢1,¢2) = 0. in the expressions (52) and (53). Equations (52) and (53)
Therefore, we obtain the following result. generalize to Lie groups the second derivative of the ptigjec
Proposition 5.2: The first and second covariant derivativegperator given in [30, subsection 1.3]. Also, wheh € T,T,
with respect to thg0) connection of the projection operatotthat is; = DN, (0)-¢; = G, i = {1,2}, equation (53) reduces
P satisfy tow = —K(t)y.

o —1
DNe(0) - G =P~ DP(§) - £G (47) V1. THE SEARCH DIRECTION SUBPROBLEM IN DETAIL

and The search direction subproblem (13) requires the mini-

mization of the functionaDh (¢)-£¢+ 4 D2h(€)- (£¢, €C) over
D*Ne(0) - (C1,¢2) = P(§)'D*P(€) - (£¢1,€C2) . (48)  the Banach spac&;T. Leveraging on the results obtained in

the previous sections, we detail how this functional can be
constructed and minimized.

Note that we WrithQJ\/'é- instead ofD2\; to highlight the fact ~ Proposition 6.1:Let e;, i = 1,...,n + m, be a basis for

that V; is an operator between two vector spaces. The ngxk R™, so that eacliz, v) € g x R™ can be uniquely written

two subsections detail how (47) and (48) can be computedas (z,v) = zle; + -+ + 2"e, + vie i1 + -+ + v"epim.



Given the trajectony(t) =

(g(t),u(t)) e GxR™, t €0,T],

of (11), the search direction step (13) is equivalent toisglv

the optimal control problem

i, /O YUY Tr) + () To(r) + & [jgﬂ W) {jgﬂ dr

+rTa(t) + 52t Pralty) (54)
subject to the dynamic constraint

2(t) = A1), t)z(t) + B(£(t), t)o(t),  2(0) =0, (55)

with z(t) € g andv(t)
problem, A(¢,t) and B(,t) are given, respectively,
and (18), whilea(t ) ), r1, and P, satisfy

b(t
(a(t), z) = D1l(g(t),u(t),t) - g(t)z, (56)
(b(t),v) = Da2l(g(t), u(t),?) - v, (57)
(r1,2) = Dm(g(ty)) - g(ts)z, (58)
(Przg,z1) = D*m(g(ts)) - (9(tp)z1, g(ts)za)- (59)

The matrix W (¢), appearing in (54), is the symmetria +
m) x (n +m) matrix with elements

wij () = L (§(1), 1) + (p(t), Aij (£(2))) (60)

wherep(t) € g*, the adjoint state satisfies (64) below, while

Lij(€,t) e Rand \;;(€)
lij (€, 1) == D?1,(€) - (€es, Eej) (61)
Aij (€) == DN (€) - (Ees, Eey) (62)
+1/2 (ads, (6,)DA:(€) - €e;j + ad,,, (6,)DA(€) - Ee;), (63)
wherew; : g x R — g, wi(2,v) = 2z, A(§) := A&, t), and
1I,(€) :==1(&,t). The adjoint state(t) € g* satisfies

—p(t) = Aa () p(t) +a(t) = K(©)Tb(t), p(T)=r1,
(64)

€ g are

Proof: Using the projection operatd? defined in (34)-
(38), the functionah over the space of curves i x R™ is
constructed as

(&) = h(P(©)), (65)

€ R™. In the above Iinear-quadratic

where the first covariant derivative afis

he) - & = / 7 Bile(r), 7) - £(r)C(r)

+ Dim(mé(ty)) - Dm(€(ty)) - ()
(£¢1,€¢2) equals

[ w0 €nam.enamar

+ D*m(mi&y) - (Dmi(&f) - EpCulty), Dma(€y) - ECalty))
here& = &(t7) andDry (€(t)) - €(£)C(E) = a(t)5(2).

The expressions for the first and second (covariant) deriva-

(68)
andD?h(¢) -

by (17) tives of the projection operat@t, appearing in (67), have been

presented previously in Proposition 5.3 and Theorem 5.4.
Recalling (67), assuming € 7 and¢é(¢ € 1,7, one gets

D?h(€) - (€€, £¢) = D*h(E) - (£¢,£C)
+Dh(¢) - D*P(E) - (£¢,£C) -

The result follows by mimicking the proof of Proposi-
tion 3.2 in [23], replacing the expressions for the second
derivative of the projection on vector spaces with thosemgiv
in (52)-(53) and noting thabh(¢) - &¢ = [17 a(r)T2(r) +
b(r)Tu(r) dr +rTz(ty). [ |

The linear quadratic optimal control problem appearing in
Proposition 6.1 can be solved by standard techniques (see,
e.g., [6]). The optimal control solution is given in form of
a time-varyingaffine state feedback obtained by solving a
linear and a Riccati differential equation backward in time

(69)

Indirect methods and the projection operator approach.
Let H(g,p,u,t) == I(g,u,t) + (p,\(g,u,t)) be the left-
trivialized pre-Hamiltonian which is naturally associhte
to the optimal control problem of interest. Recall that the
necessary conditions for optimality of the (left-trivizdid)
Pontryagin Maximum Principle are

OH

with h defined as in (12). To construct the projection operator

based optimization algorithm we need to find a quadratié¢’ “(9:p,1) = argnhinH*(g,p,u,t),

approximation off around a given curve&. To this end,
for a given curveé(t) € G x R™, ¢t > 0 and perturbation
¢(t) € g x R™, t > 0, we expand with respect te the
expression

ﬁ(f expe() = h(P(§ exp a()) (66)

Note that the above expression, as a function and for fixed
¢ and ¢, defines a real function oR. Using Leibnitz’s rule
and the identitieD exp(0) - ¢ = ¢ andD? exp(0) = 0, one
obtains

h(P(¢ exp(s@)) h(P(€)) + eDA(P(€)) - DP(E) - &
+(1/2)€* [D*h(P(&)) - (DP(E) - £¢,DP(E) - £¢)
+ Dh(P(£)) - D*P(€) - (£¢,£0)] + o(?)  (67)

—1. v *
979=3, (9,p,u*(g,p, 1), 1) (70)
, LOH .
p= a(§71gp— (DL (8)) a_g (gapvu (g,p,t),t)
(71)
(72)
with boundary conditiong;(0) = go and p(T') = r1 (see,

e.g., [14, Chapter 12, Corollary 1]). The following progasi
shows in which sense the projection operator based Newton
method is related to indirect methods for solving optimai-co
trol problems, by linking (64) with the adjoint equation §71

Proposition 6.2: Equation (64) is a stabilized version of
the adjoint equation (71). The two equations coincides when
&(t) = (g(t),u(t)) satisfies the first order optimality condi-
tions.

Proof: In (71), (DLy(e))* : T,G +~ g* is the dual

map of the linear operatoDL,(e) : g — T,G. Recall-
ing the definition of A(¢(¢),t) and a(¢), it is straightfor-
ward to verify that (71) equals-p = AT (£(t),t) p + a(t).
Note that (64), instead, is equal tep = AT(&(t),t)p +
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a(t) — KT (t)(b(t) + B(£(t),t)Tp). The necessary condi- The matricedV (¢) and P, can be computed once the second
tion (72) implies0H ~ (g, p,u*(g,p),t)/0u = 0, i.e.,bT(t) + covariant derivative of the function
pT(t)B(&(t),t) = 0. Therefore, approaching a (local) optimal 1 1
solution, p(t) in (64) converges to the solution of (71), F(g) = 5”6_91 9l (81)
. T T . R
sinceb’ (t) + p* (¢t)B(&(t), t) will converge to zero. Note the with g, € SO(3) and P = PT > 0, is known. Note how the

stabilization (backward in time) of equation (64) due to thﬁmction F(g) appears in the expressions of the incremental

presence of the feedbadk. and terminal costs. The first and second covariant derasitiv

VIl. A WORKED EXAMPLE of F(g) are given by

This section presents numerical results obtained by ukiag t DF(g)- gz = —tr(Pg{ g2) (82)
algorithm detailed in Section II-C to solve an optimal caohtr 5 _ o 2921+ 2122
problem on S@). The problem considered is one of the F(g) (921, 922) = —tr{ Pgr g 2 - (83)
simplest examples of an optimal control problem for a systemIn orinciple, one could obtain the vector and matrix rep-

evolving on _anon_abehanLle group anditis a ger]erahz"’monresentations of the above derivatives by using the idestiti
of the classical linear quadratic regulator (LQR) problem o

ST AN — o T( A AT\V ST AR — o T _
vector spaces to the group of rotation matrices(5046]. tr(a_: A)=2"(A-A4 )3 and t(z Aygx_g y (WA — Az,

. o : : - valid for eachz,y € R> and A € R (the vee operator
Its relative simplicity allows us to give details for the diar

Vo ) A . X
quacratic cpumal contl proem (o) (69, provinghst = 1% 1 [ o e operor Setnen  (09).
formulas for the matricesi, B, W, and P; and vectorsa, ’ P g P

for these derivatives can be obtained when parametrizing

b, and ry. Furthermore, the computations indicate that th . ) . : )
) . O(3) by unit quaternions. Define the matri® according
algorithm provides, as known for the flat case, second order .

0 the transformation

convergence to a (local SSC) minimum.
Let || M| p denote the weighteBrobeniusmatrix norm de- P = (trP)I - P, (84)
fined as\/tr(MTPM), with M, P € R**3 andP = PT >0, . .
Let (ga(t),ua(t)) € SOB) x R3, t € [0,T], be a desired with inverse
state-control curve (i.e., not necessarily a system trajgk P=trP(1/2)I - P, (85)
Let Q, R, and P; € R3*3 be symmetric positive define . ) .
matrices andj, andg; two elements o5O(3). We define the @nd letg € R be one of Fhe7t1W9 unit quaternions correspond-
hat operatorA : R? s R3%3 as the Lie algebra isomorphisming o the rotation matrixg; g in (81) above. Letg, < R
andg, € R? denote, respectively, the scalar and vector parts
5 rll A [ 0 -3 x2] of the unit quaternion; = (gs;q,), Where ; denotes row
R° > =x—I= €50(3).

x3 0 -z concatenation. Remarkably, the following identity holds
T3 —XT2 X O 1

(73) F(g) = 5 (QqU)TP(qu). (86)
The goal is to find a trajectoryg(t), u(t)) € SO(3) x R3,

- ’ / Note that the formula s, as it must be in order to be a function
t € [0,T], satisfying thedynamic constraint

defined on S@), invariant under the antipodal symmetry
g(t) = g(t)a(t), g(0) = go, (74)  (@s:qv) — (—4s, —q,). From (86), one may then obtain

that minimizes DF(g)- g2 =2q, P(qsI + 4v)z, (87)

b D?*F(g) - (921, 9%) =
I(g,u, 7)dT +m(g(ts)), 75 . .

/0 (9,2,7) (g(ts)) (79) 25 ((gsT + Go)" P(gsI + Gv) — (g4 Pqu)I)z1. (88)
with 1(g, u, 7) == (1/2) He—g;l(f)gllé+(1/2) |lu—ua(T)|% Due to limited space, we do not provide a proof of these
and m(g) := (1/2)]le — g;lgH%f being, respectively, the formulas. They can be easily checked numerically agairest th
incremental and terminal costs. equivalent expressions (82) and (83).

Since (74) is already in the left-trivialized form (16) with Equations (87) and (88) provide immediately the vector and
Mg, u,t) = u, given a trajectoryé(t) = (g(t),u(t)), t € matrix representations that we need to compute the matrices

[0, T, its left-trivialized linearization is W(t), t € [0,T], and P,. Define @ = QT > 0 from Q
according to (84). Using (60)) (¢) results in
A(E(1), 1) == DiA(g(1) u(t), 1) DLy () — Ay 10 (84 Using (607 (1) A
= — = —1 76 (QSI + qy) Q(QSI + qy) - (QW qu)I —1/217@)

ad,) = —a(t), (76) 1/2(t) R . (89)

B(¢(t),1) == DaA(g(t), u(t), t) = I. (77)
h = (gs,¢%)7 is th it terni tati f

The expression for the vectoust), b(t) andr, are \;\;(?)riqg(t)(q 4»)" 1S the unit quaternion representation o

a(t)Tz=D1l(g(t),u(t),t) - g(t)z = —tr(QgL (t)g(t)2), (78) E_q_u_ation (89) has be_en thained as follow. Rec_all the
b(t)To=Dal(g(t), u(t),t) - v = (u(t) — ua(t))T Rv, (79) definitions of/;; and \;; given in (61) and (63), respectively,

T’ A _ A and let(; x, (o € R, k=1,...,n+ m be the components
riz=Dim(g(T)) - 9(T)z = —tr(Prgs g(T)2).  (80) of ¢ = (21,11), 2 = (22,02) € g x R™ with respect
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Fig. 3. Graphical representation of the optimal state ¢tajg. The plot shows
the optimal attitude matriy(¢) € SQ(3), ¢ € [0, 20], using a rectangular box
that is centered att, 0,0) and rotated by (¢). Thirty snapshots are shown.

the basisey, ¥ = 1,...,n + m. The diagonal entries of
W(t) in (89) are derived from the matrix representation q

D2I(E(t), 1) - ()G, E(t)C) = 1i(E(t),t)C1,iCo,; Which is
obtained, concerning the state part, from (88). The off alied)
terms are obtained computing (£)\}; (£(t), t)¢1,i¢2,; Which,
sinceD?\(¢) = 0, is equal to(p(t), 1/2 (ad., v + ad,,v1)).
Finally, P = (QSI + QU)TPJ"(QSI + Ljv) - (QZPJ"QU)L with
(¢s, qv) the unit quaternion representationg);lg(T).

In Figure 2, we show the optimal solution obtained by a
plying the proposed descent algorithm detailed in Sectieh |
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0 1 2 3 4 5
k (iteration number)

Fig. 4. Quadratic convergence rate. The plot shbwgs, —Dh(&k) - £kCr
as a function of the number of iterations.

matrices, both equal to the identity) about the curren¢ttajry

iterate. The differential equations required at each finaof

e algorithm are solved numerically using thée45 solver

in Mathworks Matlab/Simulink, storing all the trajectwsie

with a sampling period 06.005s. The absolute and relative

tolerances of the ODE solver are set 16~!* and 107,

respectively. The termination condition isDh (&) - £k <

1078, The algorithm takes about 3 seconds to solve this
roblem on a laptop equipped with a Intel Core 2 Duo CPU
86002.40 GHz. The algorithm is coded as an m-file script

which calls a series of S-functions written @for integrating

to the problem (74)-(75). To provide a visual represenlatiothe differential equations.

the optimal solutiory(t), ¢ € [0, 20] is represented in Figure 3

using a rectangular box. The width and height of the box Figure 4 shows that the algorithm takes omliterations
(corresponding to thg and = body axes, respectively) are,to converge. In the first iteration, the backtracking linarsa

respectively, two and three times the depth (thieody axis).
For eacht, the box is centered at the poifit 0,0) and thirty
shapshots (three every two seconds) are shown.

reduced the step size tgy = 0.7* ~ 0.24 (usingc = 0.4
anda = 0.7 in the notation of Algorithm 3.1 in [47]) as the
local quadratic model of the functional does not approxemat

The following set of parameters was chosen. The inihe cost functional very well over long steps on tbisrved
tial condition gy is the rotation matrix corresponding tomanifold. However, beginning with the second iteratior| fu

the unit quaternior0.7986 ,0.2457 , —0.2457,0.4914]7. The
final time is t; = 20s. The desired trajectoryy(t) =

Newton steps are takeny( = 1) and Figure 4 provides
an indication of quadratic rate of convergence to the lgcall

(ga(t),ua(t)), t € [0,tf], appearing in the incrementalminimizing trajectory¢*. Indeed, since—Dh(&:) - &G =

cost (75), is the trivial trajectory identically equal te,0)
for eacht € [0,¢7]. The weighting matrix@ is equal

D2h(&x) - (ErCr, ExCr) is a scaledLy norm (squared) of, we
see that the Newton “step}, for this problem converges to

to @ = (1/2trQ)I — Q, the inverse of the transforma-zero inL, with a quadratic rate. While this does not ensure that

tion (84), with @ = diag2,5,3). The weighting matrix
R is equal to diagl,6,3). The rotation matrixg; in the
terminal cost (75) corresponds to the unit quaternjpn=
[0.2673,0.5345,0,0.8018]7, while the weighting matrixPs
is obtained fromP; = diag(20, 20, 20), in the same way}) is
obtained fromQ.

The initial trajectoryé(t) = (g(t),u(t)), t € [0,tf], is the

the errorlog(gk‘lg*) converges to zero i, with quadratic
rate, we know that if it does then so mugt (in L. and
hence inL.). An examination of—Dh() - £x(x versusk
may thus be used to rule out quadratic convergence. In finite
dimensions, the size of the Newton step provides a direct
indication of the size of the error [48] making a plot such as
that in Figure 4 especially useful. The Banach space piioject

constant trajectorygo, 0), t € [0,tf]. At each iteration, the operator is known to provide quadratic convergence to local
projection operator feedbadK (¢), t € [0, %], is designed by SSC minimizers [23, Section 5], providing further suppart f
solving a time-varying LQR problem (with diagonal weiglgtin such convergence in the Lie group case.
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VIIl. CONCLUSIONS connection. In those algorithms, however, using a conoecti

. o different than the(0) connection does not correspond to
In this paper, we have extended the projection operai@finimizing a truncated Taylor expansion of the originaltcos

based trajectory optimization approach to the class ofinonlsynction.
ear systems that evolve on Lie groups. This has required thg-,ither investigations are required to clarify all thesies

introduction of a covariant derivative notion for the refgeh 5,4 1o fully explore the strengths and weaknesses of the
differentiation of a map between two Lie groups, endowe&roposed Lie group method.

with affine connections. With this tool, chain rule like fantas As a final remark, we would like to emphasize that the tan-
have been used to develop the expressions for the basict:mbj@g_;mt bundle of a Lie groug is itself a Lie group. This means

needed for trajectory optimization. The resulting algunit 4t the method developed in this paper is directly applegab

requires one to solve, at each iteration, a time-varyingdin ¢ 4 {5 the optimal control of mechanical systems evoldng
quadratic optimal control problem associated with the entrr | ;o groups [10], either holonomic or nonholonomic.

trajectory.
A numerical example on the Lie group 80 has been
presented, highlighting implementation details. Comtoiteal ACKNOWLEDGEMENTS

results indicate a second order convergence rate for thisthe authors would like to express their heart-felt appre-
problem. Second order convergence to a local SSC minimizg4tion to the anonymous reviewers for the valuable com-
is well known for Newton’s method in finite dimensions anghents and suggestions on how to improve the quality and
has also been shown to hold for the Banach space projectig@sentation of the paper. The authors are also grateful to
operator approach [23]—we believe that this result comtinupans z. Munthe-Kaas for fruitful discussion on covariant
to hold in the Lie groups setting although a formal proof hagifferentiation of two-point tensors, and to Franco Cardin
not yet been worked out in detail. The numerical examplRyi |oja Fernandes, Mario Micheli, and Jochen Trumpf for

presented provides useful formulas that can also be used/#uable help on understanding some subtleties of parallel
solve trajectory optimization problems for mechanicateys jisplacement on Lie groups.

whose configuration manifold is $&), e.g., for trajectory

planning and parameter identification of unmanned aerial

vehicles or underwater autonomous vehicles [49]. Pretmyin APPENDIXA

tests have shown that, with respect to the standard projecti PROOF OFTHEOREMS. 4

operator approach, the Lie group version of the projection Optaining the expression fo2P (&) - (£¢i,&C) =
operator approach can have computational advantagesvin sgi ) D?N(0) - (¢1,¢2) given in Theorem 5.4 is not trivial
ing the same optimization problem (solved, with the staddagnd involves tedious computations. The proof of Theorem 5.4
approach, using a set of local coordinates). We suspect thagiven in this appendix, while Appendix B contains most of
this is related to the absence, in the Lie group version @fe technical details. The second derivatveV; (0) - (¢1, Ga)
the algorithm, of the double differentiation of the funct® can be computed by differentiatinig — DANg(¢o) - ¢ around
that describe the attitude matrix in terms of a set of locg) = ¢ in the direction¢,. We begin this task by computing
parameters (e.g., Euler angles). DN:(Co) - G-
For Lie groups for which a known closed formulas for the proposition A.1: The first derivative of\: at (, along¢;
exponential and logarithm maps are not available or hard to
compute, we expect that the use of approximations (such as(y1,w1) = DN, .) (8o, v0) - (B1, 1) = DNg(Co) - C1s
e.g., the Cayley map on §®@)) that agree with the first and
second covariant derivatives of those mappings at therori
of g and at the identity of, respectively, will be effective . 9 K
and will maintain the second order convergence rate of the /1 = log(exp(2(1.0))) (X(l’o)’ D exp(z(1,0)) yl)
algorithm. + Dlog(exp(2(1,0)) - D X {1 ) (90)
The_ ch0|ce_ of_the(())-connectlon for de_fmmg the second wy = DTU(}f,o)v (91)
covariant derivative of a map between Lie groups has been

motivated by the observation that the obtained formulas afgere (20,00 v0,0) = Ne(Go) and X(f,O)(t)’ DTXfO (t),

somehow simpler than the ones resulting by choosing dif,q DTUKO (t) are defined as in (100), (102), and7(103) in
ferent connections, mainly because in this c@seexp(0) Appendi>(<a"Bz, respectively.

and D?log(e) are zero. Infinite dimension optimization on Proof: We compute DAG(C) - ¢; taking the limit

Lie groups, it has been shown [19] that a Newton Iikialmsﬁo 1/e [N-&(CO+€<1)_N§'(<O>]. From Proposition 5.1,

algorithm defined using any of the Cartan-Schouten connecsqiows that (21,0, v(1.c)) = Ne(Co+2C1) can be computed
tions displays the local quadratic convergence charatieri o ' ’

of Newton algorithms. The rate of convergence is not affiécte

by _the ch(_)ice of the connection_as the geometri(_: Hessi?n at® o= dIOgZ(LE)(AdeXPZ(l,s)AK(geXp 21,9, Eexp(Co+eCi), t)
critical point (for a smooth function, the geometric Hessigt k(9. € t))

equivalent to the second covariant derivative discussexliin KA 0)
work) is always the same, independently of the choice of thit.9 =tk (9exP(Z(1,)), § exp(Co +€C1), 1) — uk(9,€,1) -

:an be computed as
gi
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Defining z(; o) (t) = exp (2(1,5)(0), the previous two equa- Definition B.1: Let the curvey, () € g x R™, ¢ > 0,

tions can be written as be defined as/, ) = (2(s,r), V(o,7)) == Ne(0Co + 7¢1) . and
. Tig(t) :=exp (25 (1)), t > 0.
f0(t) = Dloglean ) XK (), (92 "ol = @ Gen()
K
V(1,6 (t) = U(Ifg)(t), (93) Definition B.2: Define X6, )( ) € To, ., 1yG, t € R, as

the vector field along the cur\ze((, ) such that
with X(K) and U(K defined as in (98) and (99), respectively.

K .
For smalle, (2(1,¢), v(1,¢)) = (2,0):v@.,0)) + €(y1,w1) + o(e). X(om = Tem A (92(0.r), § exp(oCo + 7€), 1)
Thus, — Ak (ga 57 t) L(o,) > (98)
Dlog(z(1,) .X{ig) = Dlog(z,g)) - X(fo) (94) and U({;T)(t) € R™, t € R, the curve
+e|D?log(zq.0) - (X{ g, %,0) + Dlog(za,) DX Ulory = ux (9 2(o,r), § exp(0Co + 7C1), )
+0(€) _UK(g,g7t) (99)
Ul o =Ul o) +eD:US o) +0(e) (95) Note that
Where:z:(1 o)( ):=0/07 exp(za,n)(t)|r=0. The result follows. X(Ig,o) = Z(0,0) Ak (97 (0,0), § exp(00), 1)
|
. - A ,E6,1) Tio0), 100
Remark A.1:Recall thaDN; (0)¢; was computed in Propo- k(9,61 T(0,0) (100)
i — UKy =u (g ¢exp(0o)), t)
sition 5.3. For the casg, = 0, one can show that (90) and (,0) K\9%(0,0) pPloto)),
(91) simplify to —ug(g,¢,t), (101)

U= DTX(Il(,o) ., wp = DTU(I;O), y(0)=0, (96) Lemma B.1:Let (y,,w,) := DN¢(0¢p) - 1. Then, the

. - . following holds.
which coincide with (50) and (51).
Proposition A.2 (Left-trivialized second derivative 8j: DTX{;O) =
The second derivative ofV; at {(; = 0 evaluated in the iv(g,O)(DMK(g (.07, € exp(0G0), ) - gD exp(2(0.0)) - Yo

directions(y andcz, +DoA ke (9 700, € exp(0Co), ) - €D exp(Co0y) - C1)

(¥:0) = D"Neaso(©) - ((B1,11), (B, 12)) —1/2([Axc(9:6:1) , dexp. o]
=D’ N (0) - (C1,¢2) = PO 'D*P() - (€41, €¢) +[Ady, o Ak (gx(gyo),gexp(ogo),t),dexpz(g,o) Yo )T »
can be computed as (102)
K _
§=DsD:X{§, w=DDUf5y, y0)=0, (97) DU ) =

for D,D, X% | andD,D,UL , defined in (104) and (105). Prlosie S PG ) gD D0 Ue
or an efined in an
( D #,0)5 ,t)- €D s0)) - ¢, (103
Proof: Thgs is a straig tforward application of the dif- + Do (92(5,0), £ xp(960), 1) - ED exp((o0)) - 1, (103)
ferentiation rule for the covariant derivative to the resof _ ,
Proposition A.1. During the derivation the tefbr¥ log shows 2Lemma B.2:Let now (o = ¢ and define(y,w) :=
up but, since it is a linear operator and one of its argument[?st (G5 G2), (21,01) == DNe(0) - iy @and (22, 02) i=

X{§.0) =0, it does not appear in the final expression. m Ne(0) - (2. We have

.Fingl_ly,PTheorg_m 5A42cfan Ee provgrll u;ing )the reszlts coanDTX(I&O) = (Dl)\K(g,g,t) oDLg(e) — adAK(g757t))y
tained in Proposition A.2 for the special cageu) =n = ¢ = 9
P (&) = P(a, 1). Again, the computations are straightforward + DAk (9,6, 1) - (921, 922) + Dl’s)‘K(g’g’ t)(921,6C2)
but tedious. On the contrary, the resulting expressions arg D2,1Ak (9,€,t) - (§C1, 922) + D3 Ak (9, &, 1) - (€1, €C2)
elegant and closely related to the vector space ones. liepart + 1/2ad., (D1Ak (9., t) - gz1 + DaAk (g,&,t) - £G1)

ular, one finds that the first and second derivatives pfare

' +1/2a¢1 Dl/\K(gvgat)gz2+D2)\K(97§at)€<2 ;

]D)1UK(9 n,t) - (921,922) = 0, Di2uk(g,n,t) - (92,n¢) =

1/2K(t , D ,n,t) - , = 1/2K(t) |z, B,

[2K(0) 2 3 Daur(9m )« (1,92) = V2KW 00 b by ~ Druge(g,.0) - gy

and Dusc (9.1, ) - (nGs, 1G2) = 0.
s e +Diuk (g, &, 1) - (921, 922) + Digur(g,&,t) - (921,€C2)
1

APPENDIX B + Dauk (g, &,t) - (£¢1,922) + Diuk(g,€,t) - (€¢1,6¢2) -
TECHNICAL DETAILS: X7  AND U} (105)

This appendix contains a series of technical results whichRemark B.1:The proofs of the two previous lemmas are
are used for computing the second covariant derivative @f thbtained applying the classical differentiation rules bé t
projection operatofP. In the following, the Greek letters covariant derivative and the specific differentiation sulde-
and 7 are used to indicate “small” quantities, much as wscribed in Section IV-B for theg0) connection. Note that
have used thus far. 0/0T T(,7)|r=0 = Dexp(z(4,0)) - ¥o- AlSO, One uses that fact



that foro, ¢ € g, we haved/ds (D exp(es )o) exp(es) Y ezo =
1/2[c, 0], d/de exp(ec)~!(Dexp(ec) - 0)le=0 = 1/2[o,].
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D172/\(gv UK, t) ! (921, DQuK(gv é.a t) ' 5(2)
+ Dg/\(ga U‘Kvt) ' (DluK(gagvt) *g%1, DQUK(Q,g, t) : 5(2)

Given the curveg(s) € G and{(e) € g, € € R, one also has
d/de Ady()&(e) = Ady() (€'(e) + [9(e) 79/ (¢),€(e)]) with
&'(e) :==d/de&(e) and g’ (e) := d/de g(e).

First and second derivatives ofug (g, &, t).

+ DoA(g,uk,t) - Dipuk(g,&,t) - (921,6C2)

D271/\K(g,€,t) ' (5(13922) =

Proposition B.3: The first and second covariant derivatives D2,1A(g, ux) - (D2ux (g,&,t) - §C1, g22)
relative to the(0) Cartan-Schouten and Euclidean connections D2X(g, uk,t) - (Doug(g,&,t) - €C1, Diug (9,6, 1) - g2z2)

of the closed loop feedbacky, defined by (38), with respect
to the first and second argumentand ¢ are

Diuk(g,&,t) - gz = —K(t)Dlog(g~'a) - (297 '),  (106)
Dour(g,&,t) - £¢ = v+ K(t)Dlog(g ') - (¢~ 'ap), (107)

+ DQ/\(ga qut) ' D2-,1’U“K(97£a t) ' (5(179'22) .

Dg)\K(g7§a t) : (54176(2) =

D3N(g, ur, t) - (Dauk (g, €,t) - €C1, Douk (g, €, 1) - €Co)

and

Diur(g,&,t) - (921, 9%2) =
—K(t)D*log(g ') - (219 ', 22 )
Dl,zuK(gvfat) (92,6¢) =
—K(t) (D?1og(g™'a) - (297,97 a)
+1/2Dlog(g ta) - [Z,Adgflaﬂ}g*a), (109)
D21uk(g,&,t) - (£¢,92) =
K (1) (D% los(g " a) - (0,29 a)
+1/2Dlog(g ') - I:Z,Adg—laﬁ]g_la) ,  (110)

Diuk(g,&,t) - (£61,6C2) =
K(t)D*log(g 'a) - (g7 a1, g7 abs).

Proof: This is a straightforward application of the dif-
ferentiation rules. Note, in particular, that fof;(«)
zg7'a and fa(g) g taB we have Df;(a)
af 1/2 [2,Ady-1,8]g e, and Dfa(g) - gz
1/2 [Ady-1,8, 2]g . The functionsf; and f. derive from
the differentiation ofg — ¢ 'a anda +— ¢ 'a in the
directionsgz and af. |
First and second derivatives ofAk (g, &, t). The proof of the
following proposition follows from differentiation rules

Proposition B.4: The first derivative of the\i(g,&,t) =

Mg, uk(g,&,t),t) is

Dl/\K(g7§at) “gz = D1/\(g,uK(g,§,t),t) " gz
+ DQ)\(Q,UK(g,f,t),t) : D1UK(Q,€,t) "9z,

D2/\K(g,§,t) ’ gc = DQ/\(Q,UK(g,f,t),t) ’ DQuK(gvgat) fC 13
13
Proposition B.5: The second covariant derivative of the

(left trivialized) projection operator vector fiellx (g, &, t) =
Mg, uk(g,&:1),t) is
DIk (9,€,t) - (921, 922) = DIA(g, uk, t) - (921, 922)
+ D12A(g, uK, t) - (921, D1uk(g,&,t) - gz2)
+ D2,1A(g, uk, ) - (D1uk(g,€,t) - g21, gz2)
+ D3A(g,uk, t) - (Druk(g,&,t) - 921, Diur (g, €,t) - gz2)
+ DaA(g, uk, t) - Diuk(g,€,t) - (921, 922)

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(111)

(8]

El

[10]

[11]

[12]

[14]
[15]

[16]

[17]
[18]
[19]
D12k (9,6,t) - (921,6C) =

+ DQA(ga uKat) : D%”K(gaé-?t) : (§<11542) B

where it is understood thaty in the above expressions is
(108) evaluated atg, &, t).
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