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Optimal Control on Lie Groups:
The Projection Operator Approach
Alessandro Saccon, John Hauser and A. Pedro Aguiar

Abstract—Many nonlinear systems of practical interest evolve
on Lie groups or on manifolds acted upon by Lie groups. Ex-
amples range from aircraft and underwater vehicles to quantum
mechanical systems. In this paper, we develop an algorithm for
solving continuous time optimal control problems for systems
evolving on (noncompact) Lie groups. This algorithm generalizes
the projection operator approach for trajectory optimizat ion
originally developed for systems on vector spaces. Notionsfor
generalizing system theoretic tools such as Riccati equations and
linear and quadratic system approximations are developed.In
this development, the covariant derivative of a map betweentwo
manifolds plays a key role in providing a chain rule for the
required Lie group computations. An example optimal control
problem on SO(3) is provided to highlight implementation details
and to demonstrate the effectiveness of the method.

I. I NTRODUCTION

The optimal control of a continuous time process is among
the oldest and most extensively studied problems in con-
trol theory. The main pillars of optimal control theory are
Bellman’s principle of optimality [1] and Pontryagin’s max-
imum principle [2], both developed during the 60’s, and the
Hamilton-Jacobi-Bellman partial differential equation and its
uniqueviscosity solution [3], [4], studied deeply in the 80’s.
Many books have been written on the subject, a sampling
includes [5], [6], [7].

Various numerical methods have been proposed in the
literature for solving optimal control problems onRn. A
method is calledindirect if it seeks to solve the first order
necessary optimality conditions of the Pontryagin maximum
principle, requiring the solution of atwo-point boundary value
problem. On the other hand, a method is calleddirect if
the minimization problem is tackled directly, generating a
descending sequence of trajectories. In a direct method, the
continuous-time optimal control problem is typicallytran-
scribed into a finite dimensional constrained optimization
problem by discretizing the continuous time dynamics, integral
cost, and state-input constraints; the transcribed problem is
then solved by using a state-of-the-art nonlinear programming
solver.
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The purpose of this paper is to present an algorithm for
solving continuous time optimal control problems for systems
evolving on Lie groups. The proposed numerical algorithm
can be used for solvinggeneraloptimal control problems on
Lie groups, without restricting the attention to left (or right)
invariant optimal control problems. Part of this work has been
reported in preliminary form in [8], [9], [10].

Theoretical investigations on optimal control problems on
Lie groups has started in the ‘70, with the pioneering works
of Brockett [11] and Baillieul [12]. The literature on optimal
control problems on Lie groups has grown steadily since then
and the field is still an active area of research [13]. Quite
interesting sources are the excellent book of Jurdjevic [14,
Chapter 12] and the more recent book of Agrachev and
Sachkov [15, Chapter 18] and references therein.

Despite the large and growing literature on geometrical
integration [16], [17] and finite dimensional optimizationon
smooth manifolds [18], [19], there are not so many numeri-
cal algorithms available for solving continuous-time optimal
control problems on Lie groups. Exceptions to this general
statement include the recently-proposed numerical algorithms
to address optimal control problems formechanical systems
evolving on smooth manifolds (such as Lie groups) presented
in [20], [21], [22].

The algorithm proposed in this work is adirect method for
solving continuous time optimal control problems, generating
a descending sequence of system trajectories. In contrast to
many direct methods, the continuous-time optimal control
problem is not transcribed into a discrete optimization prob-
lem, but rather a continuous-time second-order approximation
is computed at each iteration. We borrow from and expand the
key results of the projection operator approach for optimization
of trajectory functionals developed in [23] to the class of
systems evolving on Lie groups. The projection operator based
optimization approach can handle optimal state transfer [24]
and state-control constraints using a barrier function approach
[25]. It has been used, in the context of virtual prototyping,
to obtain a dynamic inversion procedure for the dynamics of
a racing motorcycle [26]. Further applications include [27],
[28], and [29].

The algorithm can be viewed as a generalization of New-
ton’s method to the infinite dimensional setting and exhibits a
second order convergence rate to a local minimimzer at which
the second order sufficient condition (SSC) for optimality
holds. At each step, a quadratic model of the original cost
functional is constructed about the current trajectory iterate.
The quadratic model is obtained from first and second deriva-
tives of the incremental cost, terminal cost, and control system
vector field. An interesting property of the algorithm, which
connects it to indirect methods, is that it also generates a
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Fig. 1. The projection operator approach; (a) at each iteration, the lineariza-
tion of the control system about the trajectoryξi defines the tangent space
to the trajectory manifoldT at ξi; (b) the constrained minimization over
the tangent space of the second order approximation of the extended cost
functional h̃ = h ◦ P yields thesearch directionζi; (c) the optimalstep size
is computed through a line search alongζi; (d) the search directionζi and
step sizeγi are combined to obtain a newupdatetrajectoryξi+1.

sequence of adjoint state trajectories that converges, as we
approach a local minimum, to the adjoint state trajectory of
the first order necessary condition. These key properties are
maintained in the extension to Lie groups that we propose
in this work. We also provide a simple nontrivial optimization
example which is worked out in detail to illustrate the method.

The paper is organized as follows. The projection operator
approach for the optimization of trajectory functionals in
Banach space, originally proposed in [23], is reviewed in Sec-
tion II. In the same section, after introducing the notationon
differential geometry used throughout the paper, a high-level
description of the projection operator approach on Lie groups
is presented. The remaining sections of the paper provide
the low-level details of the method. In particular, SectionIII
introduces the definition of the left-trivialized linearization of
a control system on a Lie group and Section IV presents
the key concept ofcovariant derivative of a mapbetween
two manifolds. Section V defines the Lie group projection
operatorP together with its linearization and second covariant
derivative. Section VI details the search direction subproblem
which is at the heart of the projection operator optimization
strategy. A numerical example is presented in Section VII to
demonstrate the effectiveness of the method. Conclusions are
drawn in Section VIII. Further technical details are collected
in the Appendices A and B.

II. T HE PROJECTION OPERATOR APPROACH

This section reviews the projection operator approach on
a vector space [23], before presenting its extension to Lie
groups. The section also introduces the basic notation and
symbols that will used frequently throughout the paper.

A. A review of the projection operator approach on a vector
space

The projection operator approach to the optimization of
trajectory functionals is an iterative algorithm which, inits

easiest formulation, allows one to perform local Newton (or
quasi-Newton) optimization of the cost functional

h(x, u) :=

∫ tf

0

l(x(τ), u(τ), τ) dτ +m(x(tf )) (1)

over the set of trajectories of a nonlinear systemẋ = f(x, u),
x ∈ R

n, u ∈ R
m, subject to a fixed initial conditionx0. In

this paper, we use the wordtrajectory in an extended sense to
indicate the state-control pairη(t) = (x(t), u(t)), t ≥ 0, that
satisfiesẋ(t) = f(x(t), u(t)) for all t ≥ 0. As usual, “allt”
means “almost allt” in the sense that

x(t) = x(0) +

∫ t

0

f(x(τ), u(τ))dτ

where
∫

. . . dτ is the Lebesgue integral. The cost functional
h appearing in (1) — which is defined in terms of the
incremental and terminal costsl and m — as well as the
control vector fieldf are assumed to be sufficiently smooth
and regular [23].

As shown in [30], the setT of trajectories of the nonlinear
control systemẋ = f(x, u) has the structure of a (infinite
dimensional) Banach manifold, a fact that allows one to use
vector space operations [31] to effectively explore it. To work
on the trajectory manifoldT , oneprojectsstate-control curves
in the ambient Banach space ontoT by using a local linear
time-varying trajectory tracking controller. To this end,sup-
pose thatξ(t) = (α(t), µ(t)), t ≥ 0, is a bounded state-control
curve (an approximate trajectory) and letη(t) = (x(t), u(t)),
t ≥ 0, be the trajectory ofẋ = f(x, u) determined by the
nonlinear feedback system

ẋ(t) = f(x(t), u(t)),

u(t) = µ(t) +K(t)(α(t) − x(t)),

with x(0) = x0. Under the hypotheses that the control vector
field f is (at least) twice continuously differentiable and
the gainK is bounded [30], this feedback system defines a
continuous, nonlinear operator

P : ξ = (α, µ) 7→ η = (x, u) .

It is straightforward to see thatξ is a fixed point ofP ,
ξ = P(ξ), if and only if ξ is a trajectory of the control
system ẋ = f(x, u). This ensures thatP2 = P so that
P is a projection operator. With this projection operator at
hand, one can see [23] that the constrained and unconstrained
optimization problems

min
ξ∈T

h(ξ) and min
ξ

h(P(ξ))

are essentially equivalent in the sense that a solution to the first
constrainedproblem is a solution to the secondunconstrained
problem, while a solution to the second problem is, projected
by P , a solution to the first problem. Using these facts, one
may develop Newton and quasi-Newton descent methods for
trajectory optimization in an effectively unconstrained manner
by working with the cost functional̃h(ξ) := h(P(ξ)). The
algorithm proposed in [23] is the following:

Algorithm (Projection operator Newton method)
given initial trajectoryξ0 ∈ T
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for i = 0, 1, 2, . . .
redesign feedbackK if desired/needed

(search direction)

ζi = arg min
ζ∈Tξi

T
Dh̃(ξi) · ζ +

1
2 D2h̃(ξi) · (ζ, ζ) (2)

γi = arg min
γ∈(0,1]

h̃(ξi + γζi) (step size) (3)

ξi+1 = P(ξi + γiζi) (update) (4)

end
Note that the functional̃h and the projection operatorP
depend on the choice of the feedbackK. In (2), Dh̃(ξi) and
D2h̃(ξi) are the first and second Fréchet derivatives of the
Banach space functional̃h. When ξ ∈ T and ζ ∈ TξT , the
first derivativeDh̃(ξ) · ζ simply equalsDh(ξ) · ζ, i.e., it does
not depend onP (as in this caseDP(ξ) · ζ = ζ).

At each step, the minimization of a second order approx-
imation of the extended cost functionalh̃ provides asearch
direction. Then an optimalstep sizeis computed through a line
search (a pure Newton method would use a fixed step size of
γi = 1). Combining the search directionζi with step size
γi a newupdatetrajectoryξi+1 is computed by projecting the
curveξi+γiζi into the trajectory manifoldT and the algorithm
restarts (unless a termination condition is met). An illustration
of the approach is shown in Figure 1.

The optimal search directionζi computed in (2) is con-
strained to lie on the tangent space to the trajectory manifold at
the current iterate, i.e.,ζi ∈ TξiT . This is not restrictive since,
as established in [30, Proposition 3.2],P can be used to define
a bijection between the neighborhood of a trajectoryξ ∈ T and
the origin of its tangent spaceTξT . The conditionζi ∈ TξiT
simply means thatζi(t) := (zi(t), vi(t)) ∈ R

n × R
m, t ≥ 0,

is a trajectory of the linearization of the control system
ẋ = f(x, u) about the current trajectory iterateξi. The search
direction subproblem (2) is, in practice, a linear quadratic
(LQ) optimal control problem, where the functional to be
minimized,Dh̃(ξi)·ζ+

1
2D2h̃(ξi)·(ζ, ζ), is the quadratic model

functional given by the first two terms of the Taylor expansion
of the functionalh̃(ξi + ζ) with respect toζ [23, Section
3]. The LQ problem is defined using first and second order
derivatives of the nonlinear system and the incremental and
terminal costs about the current (nonlinear system) trajectory
iterate. It can be solved by computing the solution to a
suitable differential Riccati equation (and an associatedadjoint
system). In particular, in the vector space case, the usual chain
rule applies and one finds thatD2h̃(ξ) · (ζ, ζ) is a well defined
object given by

D2h̃(ξ)·(ζ, ζ) = D2h(ξ)·(ζ, ζ)+Dh(ξ)·D2P(ξ) · (ζ, ζ), (5)

for ξ ∈ T andζ ∈ TξT [30]. Note thatD2P(ξ) is the second
Fréchet derivative of the Banach spaceoperatorP .

When the system evolves on a Lie group, a number of
interesting questions arise. What is the linearization of the
system? How do we define and compute a second order
approximation of the system? What Riccati equation(s) can
we associate with a Lie group trajectory optimization problem?
One purpose of this paper is to develop appropriate notions to
address these questions.

B. Notation and definitions

We assume that the reader is familiar with the theory of
finite dimensional smooth manifolds, matrix Lie groups, and
covariant differentiation. We refer to the books [32], [33],
[34] for a review on differentiable manifolds and covariant
differentiation and to [35], [36], [37] for a review of the theory
of Lie groups and Lie Algebra. Many of these topics are also
covered in [38] and [39].
Notation

M , N Smooth manifolds
x Point on the manifold
TxM , T ∗xM Tangent and cotangent spaces ofM at x
v, w Tangent vectors
TM , T ∗M Tangent and cotangent bundles ofM
π : TM → M Natural bundle projection fromTM to M
X : M → TM Generic vector field onM
f : M → N A map fromM to N
Df : TM→TN Tangent map of f
Dh(ξ) · ζ Fréchet derivative of the functionalh at ξ

in the directionζ
D2h(ξ) · (ζ1, ζ2) Second Fréchet derivative ofh at ξ in the

directionsζ1 andζ2
ϕ : M → N Diffeomorphism betweenM andN
ϕ∗Y Pull-back of the vector fieldY on N

throughϕ,
i.e., ϕ∗Y (x) := Dϕ−1(ϕ(x)) · Y (ϕ(x))

ϕ∗X Push-forward of the vector fieldX on M
throughϕ, i.e.,ϕ∗X = (ϕ−1)∗X

∇ Affine connection
∇XY Covariant derivative of the vector fieldY

in the directionX
DY ·X Covariant derivative (alternative notation)
Dt Covariant differentiation with respect to

the parametert
γ(t), t ∈ I Curve (defined on the intervalI ⊂ R)
Pt1←t0

γ V0 Parallel displacement alongγ, from t = t0
to t = t1, of the vectorV0 ∈ Tγ(t0)M

D
2f(x) · (v,w) Second covariant derivative of the mapf

at x ∈ M evaluated in the directionsv,
w ∈ TxM

G Lie group
g Lie algebra ofG
e Group identity
Lgx, Rgx Left and right translations ofx ∈ G by

g ∈ G
gx, xg, Shorthand notation forLgx andRgx
gv, vg Shorthand notation for DLg(x) · v,

DRg(x) · v, with v ∈ TxM
[·, ·] Lie bracket operation
Adg Adjoint representation ofG on g

ad̺ Adjoint representation ofg onto itself
(ad̺ ς = [̺, ς ])

exp : g → G Exponential map
log : G → g Logarithm map (inverse of theexp in a

neighborhood ofe)
d Trivialized tangent of a local diffeormor-

phism betweeng andG
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The (0) connection on a Lie group. On a Lie group,
left-invariant connections are those for which(Lg)∗∇XY =
∇(Lg)∗X(Lg)∗Y , while right-invariantconnections are, simi-
larly, those which commute with the push-forward of the right
translation. There is a one-to-one correspondence betweenleft-
invariant (respectively, right-invariant) affine connections onG
and bilinear mapsω : g× g → g [40, Theorem 8.1] given by

ω(̺, ς) =
(

∇X̺
Xς

)

(e) , ̺, ς ∈ g (6)

for X̺(g) := DLg(e) · ̺ (respectively,:= DRg(e) · ̺).
The bilinear functionω appearing in (6) is termed theleft
(respectively,right) connection functionfor ∇. A connection
is bi-invariant if it is both right- and left-invariant. For bi-
invariant connections, the right and left-connection functions
coincide and satisfyω(Adg̺,Adgς) = Adgω(̺, ς), for all
g ∈ G and ̺, ς ∈ g. Given a Lie group of dimensionn, an
invariant connection is uniquely specified by then3 numbers
that characterize the bilinear connection function.

Amongst all possible bi-invariant affine connections, three
are particularly useful: they are the(−), (+) and (0) Cartan-
Schouten connections. These connections were studied and
generalized to homogeneous spaces by Nomizu in [40, Section
11], although in the context of Lie groups they were introduced
by E. Cartan and J. Schouten in [41] and further developed by
E. Cartan in [42]. For these connections, every 1-parameter
subgroupγ̺(t) := exp(t̺) is a geodesic, meaning that its
covariant derivative satisfiesDtγ̺̇(t) = 0. The (−) and
(+) connections are flat (i.e., the curvature tensor of the
connection is identically zero), implying that the associated
parallel displacement isindependentof the path, depending
only on its initial and final points.

In this paper, we only make use of the(0)-connection. Its
connection function and parallel displacement satisfy, respec-
tively,

ω(̺, ς)=
1

2
[̺, ς ]=

1

2
ad̺ ς, (7)

(0)P t1←t0
γ v0=

1

2

(

x1x
−1
0 v0 + v0x

−1
0 x1

)

+ o(t1 − t0) (8)

where ̺, ς ∈ g, γ : R 7→ G is a curve satisfying
γ(t0) = x0 and γ(t1) = x1, and v0 ∈ Tx0G. The parallel
displacement(0)P is path dependent as the(0)-connection is
not flat. The approximate expression given in the left hand
side of (8) is a handy and useful formula to compute covari-
ant differentiation. Note thatx1x

−1
0 v0 = (−)P t1←t0

γ v0 and
v0x
−1
0 x1 = (+)P t1←t0

γ v0 appearing in (8) are, respectively,
the (path independent) parallel displacements of the flat(−)
and (+) connections [40].

The trivialized tangent of a (local) diffeomorphism between
g and G. Let G be a Lie group with Lie algebrag. Consider
a (local) diffeomorphismF : g → G between a neighborhood
N0 of the origin ofg and a neighborhoodNe of the identity
of G. Given ξ ∈ N0 ⊆ g the (right) trivialized tangentof F
at ξ is the linear map dFξ : g → g defined by

dFξη := (DF (ξ) · η)F (ξ)−1 (9)

Similarly, given a local diffeomorphismH : G → g, the(right)
trivialized tangentof H at ξ is the linear map dHξ : g → g

defined by

dHξη := DH(g) · ηg , (10)

with g = H−1(ξ). More details on the trivialized tangent and
their use can be found in [17] and [43, section 4]. In this paper,
we make use of the trivialized tangents of the exponential and
logarithm maps, usingF (ξ) = exp(ξ) andH(g) = log(g).

C. The Lie group projection operator approach

A control vector field on a Lie groupG is a (sufficiently
smooth) mapf : G × R

m × R → TG, (g, u, t) 7→ f(g, u, t),
such thatπf(g, u, t) = g for each(g, u, t) ∈ G × R

m × R.
A trajectory of the control systeṁg = f(g, u, t) is a state-
control curveη(t) = (g(t), u(t)) ∈ G×R

m, t ∈ R, with g(t)
absolutely continuous andu(t) integrable, satisfying a.e. the
differential equation

ġ(t) = f(g(t), u(t), t). (11)

Similarly to what is done on a vector space, given a state-
control curveξ = (α(t), µ(t)) ∈ G × R

m, t ∈ R, we can
assign a cost to it by defining a cost functional

h(ξ) :=

∫ tf

0

l(ξ(τ), τ) dτ +m(π1ξ(tf )) (12)

whereπ1ξ(tf ) = α(tf ) and l : G × R
m × R → R andm :

G → R are given incremental and terminal cost functions. We
are interested in minimizing the functionalh over the set of
trajectories off starting from a given initial conditiong0 ∈ G.

The projection operator approach on vector spaces [23],
reviewed at the beginning of this section, is generalized to
Lie groups as follows.

Algorithm (Lie group Projection operator Newton method)
given initial trajectoryξ0 ∈ T
for i = 0, 1, 2, . . .
redesign feedbackK if desired/needed

(search direction)

ζi = arg min
ξiζ∈Tξi

T
Dh(ξi) · ξiζ +

1
2 D

2h̃(ξi) · (ξiζ, ξiζ) (13)

γi = arg min
γ∈(0,1]

h̃(ξi exp(γζi)) (step size) (14)

ξi+1 = P(ξi exp(γiζi)) (update) (15)

end
The algorithm is closely related to the one proposed for vector
spaces. In fact, whenG = R

n, it is actually equivalent to
it. Note that the perturbationζi(t) = (zi(t), vi(t)), t ∈ R,
is now a curve ing × R

m while the current iterateξi(t) =
(gi(t), ui(t)), t ∈ R, is a trajectory inG×R

m. Moreover, the
operationξi+γiζi, which does not make sense on a Lie group,
is replaced with the operationξi exp(γiζi), where the exponen-
tial acts pointwise in time. Specifically, from now on, we adopt
the following convention. Given a curve inG × R

m, ξ(t) =
(α(t), µ(t)), t ≥ 0, and a curve ing×R

m, ζ(t) = (β(t), ν(t)),
t ≥ 0, we writeexp(ζ) andlog(ξ) for the pointwise operators
defined byexp(ζ)(t) = (exp(β(t)), ν(t)) ∈ G × R

m and
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log(ξ)(t) = (log(α(t)), µ(t)) ∈ G×R
m, t ≥ 0. We also adopt

the notationξζ to mean the curve inT (G× R
m) defined as

ξ(t)ζ(t) = (g(t)z(t), v(t)), t ≥ 0.
In the following sections, we define the linearization of

a control system on a Lie group, the Lie group projection
operatorP and detail the search direction subproblem (13).
In particular, in Section VI we show that the search direction
subproblem (13) is in fact a linear-quadratic problem on the
Lie algebra ofG.

III. L INEARIZATION OF CONTROL SYSTEMS ONL IE

GROUPS

Given a control vector fieldf on a Lie group, itsleft
trivialization is the mapλ : G × R

m × R → g defined as
λ(g, u, t) := g−1f(g, u, t). The left trivializationλ allows one
to write equation (11) equivalently as

ġ(t) = g(t)λ(g(t), u(t), t) . (16)

As we show in the following, the use of an element on the
Lie algebra to uniquely represent a generic tangent vector on
the Lie group is key in developing the concept of linearization
along a trajectory of the control system. An equivalent theory
can be obtained using right translation, the choice betweenthe
two depending on the specific application in mind.
Left-trivialized linearization around a trajectory. Let
η(t) = (g(t), u(t)) ∈ G × R

m, t ≥ 0, be a trajectory of
the control system (16), withg(0) = g0.

Definition 3.1: The left trivialized linearization of (16)
about the state-input trajectoryη(t), t ≥ 0, is the linear system

ż(t) = A(η(t), t) z(t) +B(η(t), t) v(t) ,

with z(t) ∈ g andv(t) ∈ R
m and where

A(η, t) := D1λ(g, u, t) ◦ DLg(e)− adλ(g,u,t) , (17)

B(η, t) := D2λ(g, u, t). (18)

In the remaining of this section, we detail in which sense
(17) and (18) represent a linearization of (16). Given a
bounded curvev(t) ∈ R

m, t ≥ 0, andε ∈ R “small”, consider
the perturbation of the input defined asuε(t) := u(t)+ εv(t).
Indicating withgε the state trajectory associated withuε, we
have

ġε(t) = gε(t)λ(gε(t), uε(t), t), gε(0) = g0 .

In the (possibly small) interval[0, Tε), the solutiongε will
remain in a neighborhood of the unperturbed trajectoryg(t),
t ≥ 0, so that we can use the exponential coordinates to param-
eterize neighboring trajectories of the nominal state trajectory
g(t). To this end, we define theleft-trivialized perturbed
trajectoryzε(t), t ∈ [0, Tε), such thatgǫ(t) = g(t) exp(zε(t)),
t ∈ [0, Tε). The trajectoryzε satisfies the following differential
equation.

Proposition 3.1:Let xε(t) = exp(zε(t)), t ∈ [0, Tε). The
left trivialized perturbed trajectoryzε(t), t ∈ [0, Tε), satisfies

żε = d logzε

(

Adxε
λ
(

gxε, uε, t
)

−λ
(

g, u, t
)

)

, zε(0) = 0.

(19)

Proof: Sincegε(t) = g(t)xε(t) is a trajectory of (16) with
input signaluε(t), it satisfies

d

dt
[g(t)xε(t)] = g(t)xε(t)λ

(

g(t)xε(t), uε(t), t
)

. (20)

The left hand side of (20) is equal tȯg(t)xε(t) + g(t) ·
D exp(zε(t)) · żε(t). Substituting this expression into (20) and
multiplying both sides byg(t)−1, we get

D exp(zε) · żε =
(

Adxε
λ
(

gxε, uε, t
)

− λ
(

g, u, t
)

)

xε, (21)

where for brevity we have dropped the explicit dependence on
time. Since the inverse map ofD exp(·) at z is D log(exp(z))
and D log(exp(z1)) · (z2 exp(z1)) = d logz1 z2 for eachz1,
z2 ∈ g, the result follows.

Proposition 3.2:The left-trivialized perturbed trajectory
zε(t), t ≥ 0, can be expanded to first order aszε(t) =
εz(t) + R2(ε, t), with R2 of order higher than one inε and
z(t) satisfying

ż(t) = A(η(t), t) z(t) +B(η(t), t) v(t), z(0) = 0, (22)

whereA(η(t), t) and B(η(t), t) are given by (17) and (18),
respectively.

Proof: The result follows from standard perturbation
theory (see, e.g., [44, Chapter 8]) realizing that (19) defines
a differential equation in the forṁy = F (y, ε, t) with initial
conditiony(0) = 0, whereF (·, ·, ·) is smooth with respect toε.
Denoting byy0(t), t ≥ 0, the solution of (19) forε = 0, from
perturbation theory we getyε(t) = y0(t) + εz(t) + R2(ε, t),
wherey0(t) is the solution ofẏ0 = F (y0, 0, t) with y0(0) = 0
andz(t) satisfies

ż(t) = D1F (y0(t), 0, t) · z(t) + D2F (y0(t), 0, t) · 1, (23)

z(0) = 0.

Equation (19) is in the form ẏ = F (y, ε, t) =
M(y) cη(y, εv(t), t) with M(y) = [d logy] and

cη(y, v, t) :=

Adexp yλ(g(t) exp y, u(t) + v, t)− λ(g(t), u(t), t) .

Note thatM(0) = I andcη(0, 0, t) = 0, t ≥ 0. Sincey(0) =
0, it follows that y0(t) ≡ 0, t ≥ 0. Equation (23) can be
written as

ż = (D1M(0) · z) cη(0, 0, t)

+M(0)(D1cη(0, 0, t) · z + D2cη(0, 0, t) · v), (24)

z(0) = 0.

Sincecη(0, 0, t) ≡ 0, t ≥ 0, andM(0) = I, we only need to
compute the partial derivatives ofcη(·, ·, ·) with respect to the
first two arguments around(0, 0, t) to compute the right hand
side of (24). Sinced

dε
Adexp(εy)

∣

∣

ε=0
= ady , we obtain

D1cη(0, 0, t) · z = adzλ(g(t), u(t), t)

+ D1λ(g(t), u(t), t) · g(t)z ,

D2cη(0, 0, t) · v = D2λ(g(t), u(t), t) · v .

The result follows noting thatA(η, t) = D1cη(0, 0, t) and
B(η, t) = D2cη(0, 0, t). Recall that ad̺ς = −adς̺, for all
ς, ̺ ∈ g.
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IV. D IFFERENTIATION OF MAPS BETWEEN MANIFOLDS

In this section, we define thesecond covariant derivative
of a mapbetween two manifolds that will play a key role in
computing the second order approximation of the projection
operatorP on Lie groups. This covariant derivative is required
to obtain a formula analogous to (5) in the context of Lie
groups providing, in particular, an understanding of the second
derivative of a map between two manifolds, each endowed
with an affine connection. The symbolD is introduced to
indicate this particular notion of covariant differentiation.

A. The second covariant derivative of a map

Let M1 andM2 be smooth manifolds endowed with affine
connections1∇ and2∇, respectively, and letf : M1 → M2 be
a smooth map. The second covariant derivative is a tool that
extends the classical (Leibniz) product rule to the covariant
derivative of the “product”Df(γ1(t)) · V1(t), whereV1 is a
vector field along a curveγ1 in M1.

Givenx ∈ M1 and the tangent vectorsv andw ∈ TxM1, let
γ1 : I → M1 be a smooth curve inM1 such thatγ1(t0) = x
and γ̇1(t0) = w. Let V1 be a smooth vector field alongγ1
such thatV1(t0) = v. If follows that V2(t) := Df(γ1(t)) ·
V1(t) ∈ Tf(γ1(t))M2 is a smooth vector field along the curve
γ2(t) := f(γ1(t)) in M2.

Definition 4.1: The second covariant derivative of the map
f : M1 → M2 at x ∈ M1 in the directionsv, w ∈ TxM1 is
the bilinear mapD2f(x) : TxM1×TxM1 → Tf(x)M2 defined
by

D
2f(x) · (v,w)=DtV2(t0)−Df(γ1(t0)) ·DtV1(t0) (25)

where DtV1 and DtV2 denote covariant differentiation with
respect to1∇ and2∇, respectively.

Proposition 4.1:Denote by 1P and 2P the parallel dis-
placements associated with1∇ and 2∇, respectively. Then,
equation (25) is equivalent (fort = t0) to

lim
ε→0

1

ε

(

2Pt←t+ε
γ2

Df(γ1(t+ ε)) · 1Pt+ε←t
γ1

V1(t)

− Df(γ1(t)) · V1(t)
)

. (26)

Proof: The connection2∇ allows us to compute the
covariant derivative of the vector fieldV2 alongγ2 as

(

DtV2

)

(t) = lim
ε→0

1

ε

(

2Pt←t+ε
γ2

V2(t+ ε)− V2(t)

)

. (27)

The right hand side of equation (27) can be expanded into

lim
ε→0

1

ε

(

2Pt←t+ε
γ2

Df(γ1(t+ε))·V1(t+ε)−Df(γ1(t))·V1(t)
)

.

(28)

Adding and subtracting the term2Pt←t+ε
γ2

Df(γ1(t + ε)) ·
1Pt+ε←t

γ1
V1(t) inside the parenthesis of the previous expres-

sion, and noting that (inTM2)

lim
ε→0

1

ε
2Pt←t+ε

γ2
Df(γ1(t+ ε)) ·

(

V1(t+ ε)− 1Pt+ε←t
γ1

V1(t)
)

= Df(γ1(t)) · DtV1(t),

the result follows.
Remark 4.1:One can define higher order covariant deriva-

tives of a map (D3f , D
4f , and so on) by requiring that

Leibnitz’s rule holds. Moreover, the symbolD can be used,
e.g., to indicate the covariant derivative of a vector fieldY
in the directionX , i.e., DX · Y (whose standard notation is
∇XY ) as well as the covariant differentiation of the “product”
Df · X , with f : M → N a map andX a vector field over
M . Note that covariant differentiation is defined in such a way
that Liebnitz’s rule holds, so that one obtains, e.g., the identity

D(Df ·X) · Y = D
2f · (X,Y ) + Df · (DX · Y ),

whereX and Y are vector fields overM and D
2f is the

second covariant derivative of the mapf . The vector fieldX
and the tangent mapDf are, in fact, special cases oftwo-point
tensor fields, namely a

(

1 0
0 0

)

-tensor field and a
(

0 1
1 0

)

-tensor
field, respectively [45]. Two-point tensor fields (sometimes
also called double tensor fields) and their covariant derivatives
are not commonly encountered in standard differential and
Riemannian geometry textbooks and, to our understanding, are
mostly encountered in the context of continuum mechanics,
quantum physics, and advanced differential geometry applica-
tions. They are the natural generalization of vector fields and
one forms over maps. From now on, the operatorD will be
used to indicate covariant differentiation of a generic two-point
tensor field [45].

Remark 4.2:The key role played by covariant differentia-
tion in the context of this paper can be understood through
a finite dimensional analogy. LetM andN be differentiable
manifolds, each endowed with an affine connection, and let
r : Rm → M , q : M → N , p : N → R

n be three given
differentiable functions, withm and n ∈ N arbitrary. The
compositionp ◦ q ◦ r : Rn → R

m is a differentiable function
that can be expanded about a given point. In the context of
this work, p may be thought of as the cost functional,q as
the projection operator, andr as the pointwise exponential
operator. Covariant differentiation allows us to use Leibnitz’s
rule to express the second order term using intrinsically
defined derivatives ofp, q, andr. Indeed, one obtains

p(q(r(x + z))) = p(q(r(x))) + Dp · Dq · Dr · z

+ 1/2
(

D
2p · (Dq · Dr · z,Dq · Dr · z)

+ Dp · D2q · (Dr · z,Dr · z)

+ Dp · Dq · D2r · (z, z)
)

+ o(|z|2). (29)

It is this abstract and high level splitting of the second order
term into its “elementary” parts that allows us to analyze these
parts separately and obtain explicit and computable formulas
for use in the projection operator approach.

Due to limited space, we will not present explicit formulas
for the covariant derivative of a two-point tensor field. We refer
the reader to [45] and references therein for further reading.

In the next subsection, we provide some useful covariant
derivatives of maps and vector fields defined on Lie groups
that will be used in the derivation of the Lie group projection
operator approach. The subsection can be skipped on the first
reading of the paper.



7

B. The covariant derivative on Lie groups: Differentiation
rules for the(0) connection

The second and higher order covariant derivatives of a
map between two Lie groups can be computed as soon as
we specify affine connections on domain and codomain. In
this subsection, we restrict our attention to second covariant
derivatives with respect to the(0)-connection because this
connection is used for computing the second order approx-
imation of the projection operator in Section V-D. The Lie
algebrag, being a vector space, is endowed with the trivial
affine connection (the parallel displacement along any curve
is the identity map). The following results may be verified by
straightforward computations.

Proposition 4.2:Let X(g) := gξ(g) andY (g) = ξ(g)g be
vector fields onG, whereg 7→ ξ(g) is a differentiableg-valued
function. Then

DX(g) · gη = g
(

Dξ(g) · gη+1/2 [η, ξ(g)]
)

DY (g) · ηg =
(

Dξ(g) · ηg+1/2 [ξ(g), η]
)

g . (30)

Proposition 4.3:Let G ∋ g 7→ ξ(g) ∈ g be defined as
g−1X(g) = DLg−1(g) · X(g), whereX(g) is a vector field.
Then

Dξ(g) · gη= g−1
(

DX(g) · gη
)

+1/2
[

g−1X(g), η] .

Proposition 4.4:For each̺ , ς ∈ g, we have

D
2 exp(0) · (̺, ς) = 0, and D

2 log(e) · (̺, ς) = 0.

Proposition 4.5:Let t 7→ V (t) be a vector field along the
curveγ ⊂ G, g ∈ G a constant, andW (t) := g V (t) a vector
field along the curvegγ. Then,

DtW (t) = g DtV (t) .

V. THE PROJECTION OPERATOR ONL IE GROUPS

In this section we define the projection operator for a
dynamical system evolving on a Lie group. The standard
projection operator for a nonlinear system evolving on a vector
space, introduced in [30], was reviewed in Section II-A.

A. The projection operator

Let f : G×R
m ×R → TG be a control vector field onG.

A state-input trajectoryξ(t) = (α(t), µ(t)), t ≥ 0, is called
exponentially stabilizableif (and only if) there is a feedback
law u(t) = k(g(t), α(t), µ(t), t), with k(α(t), α(t), µ(t), t) =
µ(t) for all t ≥ 0, such thatα is an exponentially stable (state)
trajectory of the closed loop system

ġ(t) = f
(

g(t), k
(

g(t), α(t), µ(t), t
)

, t
)

, (31)

that is, there existM < ∞ , λ > 0, andδ > 0 such that

‖ log(g(t)−1α(t))‖ ≤ M e−λ(t−t0)‖ log(g(t0)
−1α(t0))‖

for all t ≥ t0 ≥ 0 and all g(t0) in a neighborhood ofα(t0)
such that‖ log(g(t0)−1α(t0))‖ < δ.

In the following, we would also impose some smoothness
and boundedness conditions onk and restrict, without loss of
generality, our attention to a feedback of the form

u(t) = k(g(t), α(t), µ(t), t)

= µ(t) +K(t) log(g(t)−1α(t)), (32)

since, as for any control system onRn, a trajectoryξ of
a C1 nonlinear system is exponentially stabilizable if and
only if there is a bounded gain matrixK that stabilizes the
linearization off about ξ. Note thatK(t) is a linear map
from g to R

m. It will be evident from next section that the
linearization of the closed loop system (31) with feedback (32)
around a state trajectoryα is given by the linear differential
equation

ż(t) = [A(ξ(t), t)−B(ξ(t), t)K(t)]z(t), (33)

with A andB defined by (17), (18).
Definition 5.1 (Projection operator P): Equation (31)

with the initial conditiong(0) = g0 and feedback (32) defines
a causal operator, called theprojection operator, which maps
a state-input curveξ(t) = (α(t), µ(t)) ∈ G × R

m, t ≥ 0,
into the state-input trajectoryη(t) = (g(t), u(t)) ∈ G × R

m,
t ≥ 0, that satisfies

ġ = gλK(g, ξ(t), t) , (34)

u(t) = uK(g, ξ(t), t) , (35)

g(0) = g0 , (36)

where

λK(g, ξ, t) := λ(g, uK(g, ξ, t), t) , (37)

uK(g, ξ, t) := µ+K(t) log(g−1α), (38)

and λ : G × R
m × R → g denotes the left trivialization of

the control systemġ = f(g, u, t). In short, we writeη =
Pg0
K (ξ) or, wheng0 andK are clear from the context, simply

η = P(ξ). As in the vector space case, the projection operator
satisfies the projection propertyP(ξ) = P(P(ξ)) =: P2(ξ).

B. The local projection operator and its properties

We are interested in studying the effect of a perturbation
of the curve ξ in the direction ζ, that is, we study the
mapP(ξ exp(εζ)), for ε ∈ R “small”. We can parameterize
P(ξ exp(εζ)) using the left-trivialized perturbed trajectory
χε(t) ∈ g× R

m, t ≥ 0, defined by

P(ξ exp(εζ)) = P(ξ) exp(χε) . (39)

Definition 5.2 (The local projection operator Nξ): The
left-trivialized local projection operatoraround the curveξ,
written asχ = Nξ(ζ), is the operator that takes the curve
ζ(t) = (β(t), ν(t)) ∈ g × R

m, t ≥ 0, to the left-trivialized
trajectoryχ(t) = (y(t), w(t)) ∈ g× R

m, t ≥ 0, given by

χ = log(P(ξ)−1P(ξ exp(ζ))) =: Nξ(ζ). (40)
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Proposition 5.1:Given curvesξ = (α, µ) and η = (g, u)
with η = P (ξ), the map (yε, wε) = χε = Nξ(εζ) =
Nξ(εβ, εν) can be computed explicitly by using

ẏε = d logyε

[

Adexp yε
λK(g exp yε, ξ exp(εζ), t)

− λK(g, ξ, t)
]

, (41)

wε(t) = uK(g exp yε, ξ exp(εζ), t)− uK(g, ξ, t) , (42)

yε(0) = 0 , (43)

where Ad is the adjoint representation of the groupG on its
Lie algebra and dlog denotes the trivialized tangent oflog as
defined in (10).

Proof: By definition,P(ξ exp(εζ)) = P(ξ) exp(Nξ(εζ)).
Since

(

P(ξ) exp(Nξ(εζ))
)

(t) = (g(t) exp yε(t), u(t) + wε(t)),

with t ≥ 0, is a trajectory of the closed loop control system
(34)-(36), it satisfies

d

dt
(g exp yε)(t)=g exp yελK(g exp yε, ξ exp(εζ), t) , (44)

wε(t)=uK(g exp yε, ξ exp(εζ), t)−uK(g, ξ, t) ,
(45)

g(0) exp(yε(0))=g0 . (46)

It is now clear that (42) and (43) follow immediately from
(45) and (46). One can also conclude that (44) implies (41)
by mimicking what was done in the proof of Proposition 3.1.

Differentiating the local projection operatorNξ, defined
in (40), in the directionζ1 and evaluating it atζ ≡ 0, we
obtain

DNξ(0) · ζ1 = P(ξ)−1DP(ξ) · ξζ1

and, by differentiating it twice and evaluating it atζ ≡ 0,

D2Nξ(0) · (ζ1, ζ2) =

P(ξ)−1
(

DP2(ξ) · (ξζ1, ξζ2) + DP(ξ) · ξD2 exp(0) · (ζ1, ζ2)
)

+ D
2 log(e) · (DNξ(0) · ζ1,DNξ(0) · ζ2) .

As mentioned in Section IV-B, using the(0) connection we
haveD

2 exp(0) · (ζ1, ζ2) = 0 and D
2 log(e) · (ζ1, ζ2) = 0.

Therefore, we obtain the following result.
Proposition 5.2:The first and second covariant derivatives

with respect to the(0) connection of the projection operator
P satisfy

DNξ(0) · ζ1 = P(ξ)−1DP(ξ) · ξζ1 (47)

and

D2Nξ(0) · (ζ1, ζ2) = P(ξ)−1D2P(ξ) · (ξζ1, ξζ2) . (48)

Note that we writeD2Nξ instead ofD2Nξ to highlight the fact
that Nξ is an operator between two vector spaces. The next
two subsections detail how (47) and (48) can be computed.

C. The first derivative of the projection operator

The following proposition provides the explicit expressions
for computing the first derivative of the projection operator P .
Its proof is based on perturbation theory and uses the same
arguments as in the proof of Proposition 3.2.

Proposition 5.3:The left-trivialized trajectory χε =
Nξ(εζ) can be expanded to first order asχε(t) = εγ(t) +
R2(ε, t) with R2 of order higher than one inε. The curve
γ(t) = (z(t), v(t)), t ≥ 0, satisfies

γ = DNξ(0) · ζ = P(ξ)−1DP(ξ) · ξζ (49)

and can be computed using

ż = A(η(t), t) z +B(η(t), t) v , (50)

v = ν +K(t)d loglog(g−1α)(Adg−1αβ − z) , (51)

z(0) = 0,

whereA(η(t), t) and B(η(t), t) are given by (17) and (18).
Note that, whenξ = P(ξ), (51) is simply equal tov = ν +
K(t)(β − z).

D. The second covariant derivative of the projection operator

Recall the definition of the (left-trivialized) local projection
operatorNξ given in (40). The proof of the following key
result is developed in Appendix A.

Theorem 5.4:Given a trajectoryη =(g, u), η =P(η), the
second derivative ofNη about zero in the directionsζ1 and
ζ2, namely

(y, w) = D2N(g,u)(0) · ((β1, ν1), (β2, ν2))

= D2Nη(0) · (ζ1, ζ2) = P(η)−1D2P(η) · (ηζ1, ηζ2) ,

is given by

ẏ = A(η, t)y +B(η, t)w

+ 1/2
(

adz1Dλt(η) · ηγ2 + adz2Dλt(η) · ηγ1
)

+ D
2λt(η) · (ηγ1, ηγ2) , (52)

w = −K(t)
[

y + 1/2
(

[z1, β2] + [z2, β1]
)]

, (53)

with y(0) = 0, γi = (zi, vi) = DNη(0) · ζi, i = 1, 2, and
whereλt(η) := λ(η, t) andA(η, t) andB(η, t) are defined as
in (17) and (18), respectively.

Note that for brevity we have suppressed the argumentt
in the expressions (52) and (53). Equations (52) and (53)
generalize to Lie groups the second derivative of the projection
operator given in [30, subsection 1.3]. Also, whenξζi ∈ TηT ,
that isγi = DNη(0)·ζi = ζi, i = {1, 2}, equation (53) reduces
to w = −K(t)y.

VI. T HE SEARCH DIRECTION SUBPROBLEM IN DETAIL

The search direction subproblem (13) requires the mini-
mization of the functionalDh(ξ)·ξζ+ 1

2 D
2h̃(ξ)·(ξζ, ξζ) over

the Banach spaceTξT . Leveraging on the results obtained in
the previous sections, we detail how this functional can be
constructed and minimized.

Proposition 6.1:Let ei, i = 1, . . . , n + m, be a basis for
g×R

m, so that each(z, v) ∈ g×R
m can be uniquely written

as (z, v) = z1e1 + · · · + znen + v1en+1 + · · · + vmen+m.
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Given the trajectoryξ(t) = (g(t), u(t)) ∈ G×R
m, t ∈ [0, T ],

of (11), the search direction step (13) is equivalent to solving
the optimal control problem

min
(z,v)(·)

∫ tf

0

a(τ)T z(τ) + b(τ)T v(τ) +
1

2





z(τ)
v(τ)





T

W (τ)





z(τ)
v(τ)



 dτ

+ rT1 z(tf) +
1

2
z(tf )

TP1z(tf ) , (54)

subject to the dynamic constraint

ż(t) = A(ξ(t), t)z(t) + B(ξ(t), t)v(t), z(0) = 0, (55)

with z(t) ∈ g and v(t) ∈ R
m. In the above linear-quadratic

problem,A(ξ, t) andB(ξ, t) are given, respectively, by (17)
and (18), whilea(t), b(t), r1, andP1 satisfy

〈a(t), z〉 = D1l(g(t), u(t), t) · g(t)z, (56)

〈b(t), v〉 = D2l(g(t), u(t), t) · v, (57)

〈r1, z〉 = Dm(g(tf )) · g(tf )z, (58)

〈P1z2, z1〉 = D
2m(g(tf )) · (g(tf )z1, g(tf)z2). (59)

The matrixW (t), appearing in (54), is the symmetric(n +
m)× (n+m) matrix with elements

wij(t) = lij(ξ(t), t) + 〈p(t), λij(ξ(t))〉 (60)

wherep(t) ∈ g
∗, the adjoint state, satisfies (64) below, while

lij(ξ, t) ∈ R andλij(ξ) ∈ g are

lij(ξ, t) := D
2lt(ξ) · (ξei, ξej) (61)

λij(ξ) := D
2λt(ξ) · (ξei, ξej) (62)

+ 1/2
(

ad̟
1(ei)Dλt(ξ) · ξej + ad̟

1(ej)Dλt(ξ) · ξei
)

, (63)

where̟1 : g×R
m → g, ̟1(z, v) = z, λt(ξ) := λ(ξ, t), and

lt(ξ) := l(ξ, t). The adjoint statep(t) ∈ g
∗ satisfies

−ṗ(t) = Acl(t)
T p(t) + a(t)−K(t)T b(t), p(T ) = r1,

(64)

with Acl(t) = A(ξ(t), t) −B(ξ(t), t)K(t).
Proof: Using the projection operatorP defined in (34)-

(38), the functional̃h over the space of curves inG× R
m is

constructed as

h̃(ξ) = h(P(ξ)), (65)

with h defined as in (12). To construct the projection operator
based optimization algorithm we need to find a quadratic
approximation of h̃ around a given curveξ. To this end,
for a given curveξ(t) ∈ G × R

m, t ≥ 0 and perturbation
ζ(t) ∈ g × R

m, t ≥ 0, we expand with respect toε the
expression

h̃(ξ exp εζ) = h
(

P(ξ exp εζ)
)

. (66)

Note that the above expression, as a function ofε and for fixed
ξ and ζ, defines a real function onR. Using Leibnitz’s rule
and the identitiesD exp(0) · ζ = ζ andD

2 exp(0) = 0, one
obtains

h(P(ξ exp(εζ))) = h(P(ξ)) + εDh(P(ξ)) · DP(ξ) · ξζ

+ (1/2) ε2
[

D
2h(P(ξ)) · (DP(ξ) · ξζ,DP(ξ) · ξζ)

+ Dh(P(ξ)) · D2P(ξ) · (ξζ, ξζ)
]

+ o(ε2) (67)

where the first covariant derivative ofh is

Dh(ξ) · ξζ =

∫ tf

0

Dl(ξ(τ), τ) · ξ(τ)ζ(τ) dτ

+ Dm(π1ξ(tf )) · Dπ1(ξ(tf )) · ξ(tf )ζ(tf ) (68)

andD2h(ξ) · (ξζ1, ξζ2) equals
∫ tf

0

D
2l(ξ(τ), τ) · (ξ(τ)ζ1(τ), ξ(τ)ζ2(τ)) dτ

+ D
2m(π1ξf ) ·

(

Dπ1(ξf ) · ξfζ1(tf ),Dπ1(ξf ) · ξfζ2(tf )
)

whereξf := ξ(tf ) andDπ1(ξ(t)) · ξ(t)ζ(t) = α(t)β(t).
The expressions for the first and second (covariant) deriva-

tives of the projection operatorP , appearing in (67), have been
presented previously in Proposition 5.3 and Theorem 5.4.

Recalling (67), assumingξ ∈ T andξζ ∈ TξT , one gets

D
2h̃(ξ) · (ξζ, ξζ) = D

2h(ξ) · (ξζ, ξζ)

+ Dh(ξ) · D2P(ξ) · (ξζ, ξζ) . (69)

The result follows by mimicking the proof of Proposi-
tion 3.2 in [23], replacing the expressions for the second
derivative of the projection on vector spaces with those given
in (52)-(53) and noting thatDh(ξ) · ξζ =

∫ tf
0 a(τ)T z(τ) +

b(τ)T v(τ) dτ + rT1 z(tf).
The linear quadratic optimal control problem appearing in

Proposition 6.1 can be solved by standard techniques (see,
e.g., [6]). The optimal control solution is given in form of
a time-varyingaffine state feedback obtained by solving a
linear and a Riccati differential equation backward in time.

Indirect methods and the projection operator approach.
Let Ĥ−(g, p, u, t) := l(g, u, t) + 〈p, λ(g, u, t)〉 be the left-
trivialized pre-Hamiltonian which is naturally associated
to the optimal control problem of interest. Recall that the
necessary conditions for optimality of the (left-trivialized)
Pontryagin Maximum Principle are

g−1ġ =
∂Ĥ

∂p

−

(g, p, u∗(g, p, t), t) (70)

ṗ = ad∗g−1ġp− (DLg(e))
∗ ∂Ĥ

∂g

−

(g, p, u∗(g, p, t), t)

(71)

u∗(g, p, t) = argmin
u

Ĥ−(g, p, u, t) , (72)

with boundary conditionsg(0) = g0 and p(T ) = r1 (see,
e.g., [14, Chapter 12, Corollary 1]). The following proposition
shows in which sense the projection operator based Newton
method is related to indirect methods for solving optimal con-
trol problems, by linking (64) with the adjoint equation (71).

Proposition 6.2:Equation (64) is a stabilized version of
the adjoint equation (71). The two equations coincides when
ξ(t) = (g(t), u(t)) satisfies the first order optimality condi-
tions.

Proof: In (71), (DLg(e))
∗ : T ∗gG 7→ g

∗ is the dual
map of the linear operatorDLg(e) : g 7→ TgG. Recall-
ing the definition ofA(ξ(t), t) and a(t), it is straightfor-
ward to verify that (71) equals−ṗ = AT (ξ(t), t) p + a(t).
Note that (64), instead, is equal to−ṗ = AT (ξ(t), t)p +
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a(t) − KT (t)(b(t) + B(ξ(t), t)T p). The necessary condi-
tion (72) implies∂Ĥ−(g, p, u∗(g, p), t)/∂u = 0, i.e., bT (t) +
pT (t)B(ξ(t), t) = 0. Therefore, approaching a (local) optimal
solution, p(t) in (64) converges to the solution of (71),
sincebT (t) + pT (t)B(ξ(t), t) will converge to zero. Note the
stabilization (backward in time) of equation (64) due to the
presence of the feedbackK.

VII. A WORKED EXAMPLE

This section presents numerical results obtained by using the
algorithm detailed in Section II-C to solve an optimal control
problem on SO(3). The problem considered is one of the
simplest examples of an optimal control problem for a system
evolving on anonabelianLie group and it is a generalization
of the classical linear quadratic regulator (LQR) problem on
vector spaces to the group of rotation matrices SO(3) [46].
Its relative simplicity allows us to give details for the linear
quadratic optimal control problem (54)-(55), providing explicit
formulas for the matricesA, B, W , andP1 and vectorsa,
b, and r1. Furthermore, the computations indicate that the
algorithm provides, as known for the flat case, second order
convergence to a (local SSC) minimum.

Let ‖M‖P denote the weightedFrobeniusmatrix norm de-
fined as

√

tr(MTPM), with M,P ∈ R
3×3 andP = PT > 0,

Let
(

gd(t), ud(t)
)

∈ SO(3) × R
3, t ∈ [0, T ], be a desired

state-control curve (i.e., not necessarily a system trajectory).
Let Q̄, R̄, and P̄f ∈ R

3×3 be symmetric positive define
matrices andg0 andgf two elements ofSO(3). We define the
hat operator∧ : R3 7→ R

3×3 as the Lie algebra isomorphism

R
3 ∋





x1

x2

x3



 = x 7→ x̂ =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 ∈ so(3) .

(73)

The goal is to find a trajectory(g(t), u(t)) ∈ SO(3) × R
3,

t ∈ [0, T ], satisfying thedynamic constraint

ġ(t) = g(t)û(t), g(0) = g0, (74)

that minimizes
∫ tf

0

l(g, u, τ) dτ +m(g(tf )) , (75)

with l(g, u, τ) := (1/2) ‖e−g−1d (τ) g‖2
Q̄
+(1/2) ‖u−ud(τ)‖2R̄

and m(g) := (1/2) ‖e − g−1f g‖2
P̄f

being, respectively, the
incremental and terminal costs.

Since (74) is already in the left-trivialized form (16) with
λ(g, u, t) = u, given a trajectoryξ(t) = (g(t), u(t)), t ∈
[0, T ], its left-trivialized linearization is

A(ξ(t), t) := D1λ(g(t), u(t), t) ◦ DLg(t)(e)− adλ(g(t),u(t),t)
= −adu(t) = −û(t) , (76)

B(ξ(t), t) := D2λ(g(t), u(t), t) = I . (77)

The expression for the vectorsa(t), b(t) andr1 are

a(t)Tz=D1l(g(t), u(t), t) · g(t)ẑ = −tr(Q̄gTd (t)g(t)ẑ) , (78)

b(t)Tv=D2l(g(t), u(t), t) · v = (u(t)− ud(t))
T R̄v , (79)

rT1z=D1m(g(T )) · g(T )ẑ = −tr(P̄fgf
T g(T )ẑ) . (80)

The matricesW (t) andP1 can be computed once the second
covariant derivative of the function

F (g) :=
1

2
‖e− g−11 g‖2

P̄
, (81)

with g1 ∈ SO(3) and P̄ = P̄T > 0, is known. Note how the
function F (g) appears in the expressions of the incremental
and terminal costs. The first and second covariant derivatives
of F (g) are given by

DF (g) · gz = −tr(P̄ gT1 gẑ) , (82)

D
2F (g) · (gz1, gz2) = −tr

(

P̄ gT1 g
ẑ2ẑ1 + ẑ1ẑ2

2

)

. (83)

In principle, one could obtain the vector and matrix rep-
resentations of the above derivatives by using the identities
tr(x̂TA) = xT (A−AT )∨ and tr(x̂TAŷ) = yT ((trA)I −A)x,
valid for eachx, y ∈ R

3 and A ∈ R
3×3 (the vee operator

∨ is just the inverse of thehat operator∧ defined in (73)).
However, we found that simpler and more elegant expressions
for these derivatives can be obtained when parametrizing
SO(3) by unit quaternions. Define the matrixP according
to the transformation

P = (trP̄ )I − P̄ , (84)

with inverse

P̄ = trP (1/2) I − P , (85)

and letq ∈ R
4 be one of the two unit quaternions correspond-

ing to the rotation matrixg−11 g in (81) above. Letqs ∈ R

and qv ∈ R
3 denote, respectively, the scalar and vector parts

of the unit quaternionq = (qs; qv), where ; denotes row
concatenation. Remarkably, the following identity holds

F (g) =
1

2
(2qv)

TP (2qv) . (86)

Note that the formula is, as it must be in order to be a function
defined on SO(3), invariant under the antipodal symmetry
(qs, qv) 7→ (−qs,−qv). From (86), one may then obtain

DF (g) · gẑ = 2 qTv P (qsI + q̂v)z , (87)

D
2F (g) · (gẑ1, gẑ2) =

zT2 ((qsI + q̂v)
TP (qsI + q̂v)− (qTv Pqv)I)z1 . (88)

Due to limited space, we do not provide a proof of these
formulas. They can be easily checked numerically against the
equivalent expressions (82) and (83).

Equations (87) and (88) provide immediately the vector and
matrix representations that we need to compute the matrices
W (t), t ∈ [0, T ], and P1. Define Q = QT > 0 from Q̄
according to (84). Using (60),W (t) results in
[

(qsI + q̂v)
TQ(qsI + q̂v)− (qTv Qqv)I −1/2p̂(t)

1/2p̂(t) R̄

]

, (89)

whereq = (qs, q
T
v )

T is the unit quaternion representation of
gd(t)

−1g(t).
Equation (89) has been obtained as follow. Recall the

definitions oflij andλij given in (61) and (63), respectively,
and letζ1,k, ζ2,k ∈ R, k = 1, . . . , n +m be the components
of ζ1 = (z1, v1), ζ2 = (z2, v2) ∈ g × R

m with respect
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Fig. 2. Optimal state-control trajectory. Parts (a) and (b)show the optimal
state and control trajectories versus time. The state is represented using unit
quaternions.

0 2 4 6 8 10 12 14 16 18 20

Fig. 3. Graphical representation of the optimal state trajectory. The plot shows
the optimal attitude matrixg(t) ∈ SO(3), t ∈ [0, 20], using a rectangular box
that is centered at(t, 0, 0) and rotated byg(t). Thirty snapshots are shown.

the basisek, k = 1, . . . , n + m. The diagonal entries of
W (t) in (89) are derived from the matrix representation of
D

2l(ξ(t), t) · (ξ(t)ζ1, ξ(t)ζ2) = lij(ξ(t), t)ζ1,iζ2,j which is
obtained, concerning the state part, from (88). The off diagonal
terms are obtained computingpk(t)λk

ij(ξ(t), t)ζ1,iζ2,j which,
sinceD2λ(ξ) ≡ 0, is equal to

〈

p(t), 1/2
(

adz1v2 + adz2v1
)〉

.
Finally, P1 = (qsI + q̂v)

TPf (qsI + q̂v) − (qTv Pf qv)I, with
(qs, qv) the unit quaternion representation ofg−1f g(T ).

In Figure 2, we show the optimal solution obtained by ap-
plying the proposed descent algorithm detailed in Section II-C
to the problem (74)-(75). To provide a visual representation,
the optimal solutiong(t), t ∈ [0, 20] is represented in Figure 3
using a rectangular box. The width and height of the box
(corresponding to they and z body axes, respectively) are,
respectively, two and three times the depth (thex body axis).
For eacht, the box is centered at the point(t, 0, 0) and thirty
snapshots (three every two seconds) are shown.

The following set of parameters was chosen. The ini-
tial condition g0 is the rotation matrix corresponding to
the unit quaternion[0.7986 , 0.2457 ,−0.2457 , 0.4914]T . The
final time is tf = 20s. The desired trajectoryξd(t) =
(gd(t), ud(t)), t ∈ [0, tf ], appearing in the incremental
cost (75), is the trivial trajectory identically equal to(e, 0)
for each t ∈ [0, tf ]. The weighting matrixQ̄ is equal
to Q̄ = (1/2 trQ)I − Q, the inverse of the transforma-
tion (84), with Q = diag(2 , 5 , 3). The weighting matrix
R̄ is equal to diag(1 , 6 , 3). The rotation matrixgf in the
terminal cost (75) corresponds to the unit quaternionqf =
[0.2673 , 0.5345 , 0 , 0.8018]T, while the weighting matrixP̄f

is obtained fromPf = diag(20, 20, 20), in the same waȳQ is
obtained fromQ.

The initial trajectoryξ(t) = (g(t), u(t)), t ∈ [0, tf ], is the
constant trajectory(g0, 0), t ∈ [0, tf ]. At each iteration, the
projection operator feedbackK(t), t ∈ [0, tf ], is designed by
solving a time-varying LQR problem (with diagonal weighting

k (iteration number)

lo
g
1
0
−

D
h
(ξ

k
)
·ξ

k
ζ k

0 1 2 3 4 5
-14

-12

-10

-8

-6

-4

-2

0

2

4

Fig. 4. Quadratic convergence rate. The plot showslog10 −Dh(ξk) · ξkζk
as a function of the number of iterations.

matrices, both equal to the identity) about the current trajectory
iterate. The differential equations required at each iteration of
the algorithm are solved numerically using theode45 solver
in Mathworks Matlab/Simulink, storing all the trajectories
with a sampling period of0.005s. The absolute and relative
tolerances of the ODE solver are set to10−14 and 10−7,
respectively. The termination condition is−Dh(ξk) · ξkζk ≤
10−8. The algorithm takes about 3 seconds to solve this
problem on a laptop equipped with a Intel Core 2 Duo CPU
P86002.40 GHz. The algorithm is coded as an m-file script
which calls a series of S-functions written inC for integrating
the differential equations.

Figure 4 shows that the algorithm takes only5 iterations
to converge. In the first iteration, the backtracking line search
reduced the step size toγ0 = 0.74 ≈ 0.24 (using c = 0.4
andα = 0.7 in the notation of Algorithm 3.1 in [47]) as the
local quadratic model of the functional does not approximate
the cost functional very well over long steps on thiscurved
manifold. However, beginning with the second iteration, full
Newton steps are taken (γk = 1) and Figure 4 provides
an indication of quadratic rate of convergence to the locally
minimizing trajectoryξ∗. Indeed, since−Dh(ξk) · ξkζk =
D

2h̃(ξk) ·(ξkζk, ξkζk) is a scaledL2 norm (squared) ofζk, we
see that the Newton “step”ζk for this problem converges to
zero inL2 with a quadratic rate. While this does not ensure that
the errorlog(ξ−1k ξ∗) converges to zero inL∞ with quadratic
rate, we know that if it does then so mustζk (in L∞ and
hence inL2). An examination of−Dh(ξk) · ξkζk versusk
may thus be used to rule out quadratic convergence. In finite
dimensions, the size of the Newton step provides a direct
indication of the size of the error [48] making a plot such as
that in Figure 4 especially useful. The Banach space projection
operator is known to provide quadratic convergence to local
SSC minimizers [23, Section 5], providing further support for
such convergence in the Lie group case.
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VIII. C ONCLUSIONS

In this paper, we have extended the projection operator
based trajectory optimization approach to the class of nonlin-
ear systems that evolve on Lie groups. This has required the
introduction of a covariant derivative notion for the repeated
differentiation of a map between two Lie groups, endowed
with affine connections. With this tool, chain rule like formulas
have been used to develop the expressions for the basic objects
needed for trajectory optimization. The resulting algorithm
requires one to solve, at each iteration, a time-varying linear
quadratic optimal control problem associated with the current
trajectory.

A numerical example on the Lie group SO(3) has been
presented, highlighting implementation details. Computational
results indicate a second order convergence rate for this
problem. Second order convergence to a local SSC minimizer
is well known for Newton’s method in finite dimensions and
has also been shown to hold for the Banach space projection
operator approach [23]—we believe that this result continues
to hold in the Lie groups setting although a formal proof has
not yet been worked out in detail. The numerical example
presented provides useful formulas that can also be used to
solve trajectory optimization problems for mechanical systems
whose configuration manifold is SE(3), e.g., for trajectory
planning and parameter identification of unmanned aerial
vehicles or underwater autonomous vehicles [49]. Preliminary
tests have shown that, with respect to the standard projection
operator approach, the Lie group version of the projection
operator approach can have computational advantages in solv-
ing the same optimization problem (solved, with the standard
approach, using a set of local coordinates). We suspect that
this is related to the absence, in the Lie group version of
the algorithm, of the double differentiation of the functions
that describe the attitude matrix in terms of a set of local
parameters (e.g., Euler angles).

For Lie groups for which a known closed formulas for the
exponential and logarithm maps are not available or hard to
compute, we expect that the use of approximations (such as,
e.g., the Cayley map on SO(n)) that agree with the first and
second covariant derivatives of those mappings at the origin
of g and at the identity ofG, respectively, will be effective
and will maintain the second order convergence rate of the
algorithm.

The choice of the(0)-connection for defining the second
covariant derivative of a map between Lie groups has been
motivated by the observation that the obtained formulas are
somehow simpler than the ones resulting by choosing dif-
ferent connections, mainly because in this caseD

2 exp(0)
and D

2 log(e) are zero. Infinite dimension optimization on
Lie groups, it has been shown [19] that a Newton like
algorithm defined using any of the Cartan-Schouten connec-
tions displays the local quadratic convergence characteristic
of Newton algorithms. The rate of convergence is not affected
by the choice of the connection as the geometric Hessian at a
critical point (for a smooth function, the geometric Hessian is
equivalent to the second covariant derivative discussed inour
work) is always the same, independently of the choice of the

connection. In those algorithms, however, using a connection
different than the(0) connection does not correspond to
minimizing a truncated Taylor expansion of the original cost
function.

Further investigations are required to clarify all these issues
and to fully explore the strengths and weaknesses of the
proposed Lie group method.

As a final remark, we would like to emphasize that the tan-
gent bundle of a Lie groupG is itself a Lie group. This means
that the method developed in this paper is directly applicable,
e.g., to the optimal control of mechanical systems evolvingon
Lie groups [10], either holonomic or nonholonomic.
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APPENDIX A
PROOF OFTHEOREM 5.4

Obtaining the expression forD2P(ξ) · (ξζ1, ξζ2) =
P(ξ)D2Nξ(0) · (ζ1, ζ2) given in Theorem 5.4 is not trivial
and involves tedious computations. The proof of Theorem 5.4
is given in this appendix, while Appendix B contains most of
the technical details. The second derivativeD2Nξ(0) · (ζ1, ζ2)
can be computed by differentiatingζ0 7→ DNξ(ζ0) · ζ1 around
ζ0 ≡ 0 in the directionζ2. We begin this task by computing
DNξ(ζ0) · ζ1.

Proposition A.1:The first derivative ofNξ at ζ0 alongζ1

(y1, w1) = DN(α,µ)(β0, ν0) · (β1, ν1) = DNξ(ζ0) · ζ1,

can be computed as

ẏ1 = D
2 log(exp(z(1,0))) ·

(

XK
(1,0),D exp(z(1,0)) · y1

)

+ D log(exp(z(1,0))) · DτX
K
(1,0) , (90)

w1 = DτU
K
(1,0) , (91)

where (z(1,0), v(1,0)) = Nξ(ζ0) and XK
(σ,0)(t), DτX

K
(σ,0)(t),

and DτU
K
(σ,0)(t) are defined as in (100), (102), and (103) in

Appendix B, respectively.
Proof: We compute DNξ(ζ0) · ζ1 taking the limit

limε→0 1/ε
[

Nξ(ζ0 + εζ1) −Nξ(ζ0)
]

. From Proposition 5.1,
it follows that (z(1,ε), v(1,ε)) = Nξ(ζ0+εζ1) can be computed
as

ż(1,ε)= d logz(1,ε)
(

Adexp z(1,ε)λK(gexp z(1,ε), ξexp(ζ0+εζ1), t)

− λK(g, ξ, t)
)

,

v(1,ε) = uK(g exp(z(1,ε)), ξ exp(ζ0 + εζ1), t)− uK(g, ξ, t) .
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Defining x(1,ε)(t) = exp
(

z(1,ε)(t)
)

, the previous two equa-
tions can be written as

ż(1,ε)(t) = D log(x(1,ε)(t)) ·X
K
(1,ε)(t), (92)

v(1,ε)(t) = UK
(1,ε)(t), (93)

with XK
(·,·) andUK

(·,·) defined as in (98) and (99), respectively.
For smallε, (z(1,ε), v(1,ε)) = (z(1,0),v(1,0)) + ε(y1,w1) + o(ε).
Thus,

D log(x(1,ε)) ·X
K
(1,ε) = D log(x(1,0)) ·X

K
(1,0) (94)

+ε
[

D
2 log(x(1,0)) ·

(

XK
(1,0), x

′
(1,0)

)

+ D log(x(1,0))·DτX
K
(1,0)

]

+o(ε)

UK
(1,ε) = UK

(1,0) + εDτU
K
(1,0) + o(ε) (95)

wherex′(1,0)(t) :=∂/∂τ exp(z(1,τ))(t)|τ=0. The result follows.

Remark A.1:Recall thatDNξ(0)·ζ1 was computed in Propo-
sition 5.3. For the caseζ0 ≡ 0, one can show that (90) and
(91) simplify to

ẏ1 = DτX
K
(1,0) , w1 = DτU

K
(1,0) , y(0) = 0 , (96)

which coincide with (50) and (51).
Proposition A.2 (Left-trivialized second derivative ofP):

The second derivative ofNξ at ζ0 ≡ 0 evaluated in the
directionsζ1 andζ2,

(y, w) = D2N(α,µ)(0) · ((β1, ν1), (β2, ν2))

= D2Nξ(0) · (ζ1, ζ2) = P(ξ)−1D2P(ξ) · (ξζ1, ξζ2) ,

can be computed as

ẏ = DσDτX
K
(0,0) , w = DσDτU

K
(0,0) , y(0) = 0 , (97)

for DσDτX
K
(0,0) andDσDτU

K
(0,0) defined in (104) and (105).

Proof: This is a straightforward application of the dif-
ferentiation rule for the covariant derivative to the result of
Proposition A.1. During the derivation the termD3 log shows
up but, since it is a linear operator and one of its argument is
XK

(0,0) ≡ 0, it does not appear in the final expression.

Finally, Theorem 5.4 can be proven using the results con-
tained in Proposition A.2 for the special case(g, u) = η = ξ =
P(ξ) = P(α, µ). Again, the computations are straightforward
but tedious. On the contrary, the resulting expressions are
elegant and closely related to the vector space ones. In partic-
ular, one finds that the first and second derivatives ofuK are
D1uK(g, η, t) ·gz = −K(t)z, D2uK(g, η, t) ·ηζ = ν+K(t)β,
D

2
1uK(g, η, t) · (gz1, gz2) = 0, D1,2uK(g, η, t) · (gz, ηζ) =

1/2K(t) [z, β], D2,1uK(g, η, t) · (ηζ, gz) = 1/2K(t) [z, β],
andD2

2uK(g, η, t) · (ηζ1, ηζ2) = 0.

APPENDIX B
TECHNICAL DETAILS: XK

(σ,τ) AND UK
(σ,τ)

This appendix contains a series of technical results which
are used for computing the second covariant derivative of the
projection operatorP . In the following, the Greek lettersσ
and τ are used to indicate “small” quantities, much as we
have usedε thus far.

Definition B.1: Let the curveγ(σ,τ)(t) ∈ g × R
m, t ≥ 0,

be defined asγ(σ,τ) =
(

z(σ,τ), v(σ,τ)
)

:= Nξ(σζ0 + τζ1) . and
x(σ,τ)(t) := exp

(

z(σ,τ)(t)
)

, t ≥ 0.

Definition B.2: Define XK
(σ,τ)(t) ∈ Tx(σ,τ)(t)G, t ∈ R, as

the vector field along the curvex(σ,τ) such that

XK
(σ,τ) := x(σ,τ)λK

(

gx(σ,τ), ξ exp(σζ0 + τζ1), t
)

− λK(g, ξ, t)x(σ,τ) , (98)

andUK
(σ,τ)(t) ∈ R

m, t ∈ R, the curve

UK
(σ,τ) := uK

(

g x(σ,τ), ξ exp(σζ0 + τζ1), t
)

− uK

(

g, ξ, t
)

. (99)

Note that

XK
(σ,0) = x(σ,0)λK(gx(σ,0), ξ exp(σζ0), t)

− λK(g, ξ, t)x(σ,0), (100)

UK
(σ,0) = uK

(

g x(σ,0), ξ exp(σζ0)), t
)

− uK

(

g, ξ, t
)

, (101)

Lemma B.1:Let (yσ, wσ) := DNξ(σζ0) · ζ1. Then, the
following holds.

DτX
K
(σ,0) =

x(σ,0)

(

D1λK(g x(σ,0), ξ exp(σζ0), t) · gD exp(z(σ,0)) · yσ

+D2λK(g x(σ,0), ξ exp(σζ0), t) · ξD exp(ζ(σ,0)) · ζ1
)

− 1/2
([

λK

(

g, ξ, t
)

, dexpz(σ,0)
yσ

]

+
[

Adx(σ,0)
λK

(

gx(σ,0), ξ exp(σζ0), t
)

, dexpz(σ,0)
yσ

])

x(σ,0) ,

(102)

DτU
K
(σ,0) =

D1uK(gx(σ,0), ξ exp(σζ0), t) · gD exp(z(σ,0)) · yσ

+ D2uK(gx(σ,0), ξ exp(σζ0), t) · ξD exp(ζ(σ,0)) · ζ1 , (103)

Lemma B.2:Let now ζ0 = ζ2 and define (y, w) :=
D2Nξ(0) · (ζ1, ζ2), (z1, v1) := DNξ(0) · ζ1, and (z2, v2) :=
DNξ(0) · ζ2. We have

DσDτX
K
(0,0) =

(

D1λK(g, ξ, t) ◦ DLg(e)− adλK(g,ξ,t)

)

y

+ D
2
1λK(g, ξ, t) · (gz1, gz2) + D1,2λK(g, ξ, t) · (gz1, ξζ2)

+ D2,1λK(g, ξ, t) · (ξζ1, gz2) + D
2
2,2λK(g, ξ, t) · (ξζ1, ξζ2)

+ 1/2 adz2
(

D1λK(g, ξ, t) · gz1 + D2λK(g, ξ, t) · ξζ1
)

+ 1/2 adz1
(

D1λK(g, ξ, t) · gz2 + D2λK(g, ξ, t) · ξζ2
)

,
(104)

DσDτU
K
(0,0) = D1uK(g, ξ, t) · gy

+ D
2
1uK(g, ξ, t) · (gz1, gz2) + D1,2uK(g, ξ, t) · (gz1, ξζ2)

+ D2,1uK(g, ξ, t) · (ξζ1, gz2) + D
2
2uK(g, ξ, t) · (ξζ1, ξζ2) .

(105)

Remark B.1:The proofs of the two previous lemmas are
obtained applying the classical differentiation rules of the
covariant derivative and the specific differentiation rules de-
scribed in Section IV-B for the(0) connection. Note that
∂/∂τ x(σ,τ)|τ=0 = D exp(z(σ,0)) · yσ. Also, one uses that fact
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that for̺, ς ∈ g, we haved/dε (D exp(ες)·̺ ) exp(ες)−1|ε=0 =
1/2 [ς, ̺], d/dε exp(ες)−1(D exp(ες) · ̺)|ε=0 = 1/2 [̺, ς ].
Given the curvesg(ε) ∈ G andξ(ε) ∈ g, ε ∈ R, one also has
d/dεAdg(ε)ξ(ε) = Adg(ε)

(

ξ′(ε) + [g(ε)−1g′(ε), ξ(ε)]
)

with
ξ′(ε) := d/dε ξ(ε) andg′(ε) := d/dε g(ε).

First and second derivatives ofuK(g, ξ, t).
Proposition B.3:The first and second covariant derivatives

relative to the(0) Cartan-Schouten and Euclidean connections
of the closed loop feedbackuK , defined by (38), with respect
to the first and second argumentsg andξ are
D1uK(g, ξ, t) · gz = −K(t)D log(g−1α) · (zg−1α) , (106)

D2uK(g, ξ, t) · ξζ = ν +K(t)D log(g−1α) · (g−1αβ) , (107)

and

D
2
1uK(g, ξ, t) · (gz1, gz2) =

−K(t)D2 log(g−1α) · (z1 g
−1α, z2 g

−1α) (108)

D1,2uK(g, ξ, t) · (gz, ξζ) =

−K(t)
(

D
2 log(g−1α) · (z g−1α, g−1αβ )

+ 1/2D log(g−1α) ·
[

z,Adg−1αβ
]

g−1α
)

, (109)

D2,1uK(g, ξ, t) · (ξζ, gz) =

−K(t)
(

D
2 log(g−1α) · (g−1αβ, z g−1α)

+ 1/2D log(g−1α) ·
[

z,Adg−1αβ
]

g−1α
)

, (110)

D
2
2uK(g, ξ, t) · (ξζ1, ξζ2) =

K(t)D2 log(g−1α) · (g−1αβ1, g
−1αβ2) . (111)

Proof: This is a straightforward application of the dif-
ferentiation rules. Note, in particular, that forf1(α) :=
zg−1α and f2(g) := g−1αβ we have Df1(α) ·
αβ = 1/2

[

z,Adg−1αβ
]

g−1α , and Df2(g) · gz =
1/2

[

Adg−1αβ, z
]

g−1α . The functionsf1 andf2 derive from
the differentiation ofg 7→ g−1α and α 7→ g−1α in the
directionsgz andαβ.
First and second derivatives ofλK(g, ξ, t). The proof of the
following proposition follows from differentiation rules.

Proposition B.4:The first derivative of theλK(g, ξ, t) =
λ(g, uK(g, ξ, t), t) is

D1λK(g, ξ, t) · gz = D1λ(g, uK(g, ξ, t), t) · gz

+ D2λ(g, uK(g, ξ, t), t) · D1uK(g, ξ, t) · gz ,

D2λK(g, ξ, t) · ξζ = D2λ(g, uK(g, ξ, t), t) · D2uK(g, ξ, t) · ξζ .

Proposition B.5:The second covariant derivative of the
(left trivialized) projection operator vector fieldλK(g, ξ, t) =
λ(g, uK(g, ξ, t), t) is

D
2
1λK(g, ξ, t) · (gz1, gz2) = D

2
1λ(g, uK , t) · (gz1, gz2)

+ D1,2λ(g, uK , t) · (gz1,D1uK(g, ξ, t) · gz2)

+ D2,1λ(g, uK , t) · (D1uK(g, ξ, t) · gz1, gz2)

+ D2
2λ(g, uK , t) · (D1uK(g, ξ, t) · gz1,D1uK(g, ξ, t) · gz2)

+ D2λ(g, uK , t) · D2
1uK(g, ξ, t) · (gz1, gz2)

D1,2λK(g, ξ, t) · (gz1, ξζ2) =

D1,2λ(g, uK , t) · (gz1,D2uK(g, ξ, t) · ξζ2)

+ D2
2λ(g, uK , t) · (D1uK(g, ξ, t) · gz1,D2uK(g, ξ, t) · ξζ2)

+ D2λ(g, uK , t) · D1,2uK(g, ξ, t) · (gz1, ξζ2)

D2,1λK(g, ξ, t) · (ξζ1, gz2) =

D2,1λ(g, uK) · (D2uK(g, ξ, t) · ξζ1, gz2)

+ D2
2λ(g, uK , t) · (D2uK(g, ξ, t) · ξζ1,D1uK(g, ξ, t) · gz2)

+ D2λ(g, uK , t) · D2,1uK(g, ξ, t) · (ξζ1, gz2) .

D
2
2λK(g, ξ, t) · (ξζ1, ξζ2) =

D2
2λ(g, uK , t) · (D2uK(g, ξ, t) · ξζ1,D2uK(g, ξ, t) · ξζ2)

+ D2λ(g, uK , t) · D2
2uK(g, ξ, t) · (ξζ1, ξζ2) ,

where it is understood thatuK in the above expressions is
evaluated at(g, ξ, t).
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