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We analyze the observability properties of the kinematic model of an autonomous underwater vehicle (AUV)

moving in 3D, under the influence of ocean currents, using range and depth measurements. The results ob-

tained shed light into the types of trajectories that an AUV may be requested to undergo in order to ensure

observability, which is a crucial step in the design of single or multiple beacon positioning systems. We as-

sume that the AUV is equipped with two sensor suites: the first computes the distance (range) of the AUV to

single or multiple fixed transponders, while the second measures the vehicle’s depth. In both situations, the

vehicle has access to its heading angle. We further assume that the AUV undergoes maneuvers commonly

known as trimming trajectories, that are naturally obtained when the inputs (thruster rpms and control sur-

face deflections) are held constant. This is done for two main reasons: (i) the class of trajectories thus gen-

erated is sufficiently rich for a vast number of applications and (ii) from an observability-analysis standpoint

they lead to mathematical tractability and allow for an intuitive physical interpretation. These facts stand in

sharp contrast to common approaches adopted in the literature, where the characterization of trajectories

that yield observability is only implicit and defies a simple interpretation.

In the set-up adopted, the trimming trajectories are completely characterized by three variables: (a) linear

body speed ‖v‖; (b) flight-path angle γ ; and (c) yaw rate ψ̇ . We assume that ‖v‖ > 0, γ , and ψ̇ are constant

but otherwise arbitrary (within the constraints of the vehicle capabilities) and examine the observability of

the resulting system with the two above mentioned sensor suites. We adopt definitions of observability and

weak observability that seek inspiration from those proposed by Herman and Krener (1977) but reflect the

fact that we consider specific kinds of maneuvers in 3D.

We start with the single transponder case. For range measurements only, we show that in the absence of

ocean currents the 3D kinematic model of an AUV undergoing trimming trajectories with nonzero flight-

path angle and yaw rate is observable. In the case of non-zero but known ocean currents, identical results

apply subject to the condition that the flight-path angle satisfies a current-related constraint. However, if the

current is non-zero and unknown, the model is only weakly observable. The situation changes completely

when both range and depth measurements are available. In this case, under the assumption that the yaw rate

is different from zero, observability is obtained even when the flight-path angle is zero (vehicle moving in a

horizontal plane) and there are non-zero unknown currents. These obvious advantages are lost if yaw rate is

equal to zero, for in this case the model is only weakly observable. In all situations where the model is weakly

observable we give a complete characterization of the sets of states that are indistinguishable from a given

initial state. Finally, we show that the extended model that is obtained by considering multiple (at least two)

transponders is observable in all situations if the yaw rate is different from zero.
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1. Introduction

There is currently widespread interest in the development and op-

eration of autonomous underwater vehicles for challenging scientific

and commercial applications at sea. One of the key requisites for the

execution of such missions is that the vehicles be capable of comput-

ing their positions in 3D space. To this effect, a wide range of sen-

sor suites and methods can be used. See for example Kinsey, Eustice,

and Whitcomb (2006) and the references therein for a fast paced in-

troduction to this challenging area of research and some of the key

technological solutions adopted.

In recent years, motivated by the need to substantially reduce the

cost of underwater positioning systems, there has been a flurry of ac-

tivity on the study of single beacon positioning systems. These have

the potential to drastically reduce the complexity of position sys-

tems, for they enable a vehicle to find its position in space by us-

ing measurements of the successive ranges between the vehicle and

a transponder located at a fixed, known position. In spite of signifi-

cant advances in this area, however much work remains to be done

to clarify basic issues related to the observability properties of sin-

gle or multiple beacon positioning systems. Namely, to characterize

the types of vehicle trajectories that render a range-based positioning

design model observable. Clearly, this is an important first step in the

design of reliable position estimators.

The literature on single beacon positioning, oftentimes referred

to as single beacon navigation, is by now quite extensive and de-

fies a simple summary. For this reason, in what follows we give

only a brief description of representative work in the area. Differ-

ent types of models for 2D and 3D single beacon navigation systems

have been proposed and the corresponding observability issues have

been addressed by resorting to a number of methods that include

linearization techniques (Gadre & Stilwell, 2004, 2005) and state-

augmentation techniques (Krener & Isidori, 1983), together with dif-

ferential geometry-based (Arrichiello, Antonelli, Aguiar, & Pascoal,

2011) and algebraic methods (Jouffroy & Reger, 2006).

In Gadre and Stilwell (2004) the authors study the observability

of single beacon navigation systems for underwater vehicles evolving

in 2D. To this effect, a nonlinear model is adopted where the state

vector consists of the vehicle’s position and heading, the input vec-

tor includes the body’s linear and rotational speeds, and the output

vector consists of ranges to a fixed beacon and heading. The vehicle’s

sideslip angle is assumed to be negligible. The nonlinear system is lin-

earized about nominal trajectories and standard linear time-varying

(LTV) observability tools are used to analyze the observability proper-

ties of the resulting linear model (Rugh, 1996). In Gadre and Stilwell

(2005), unknown constant ocean currents are augmented to the state

vector and a procedure identical to that in Gadre and Stilwell (2004)

is used to study the observability of the ensuing model. Because of

the tools used, all results are local in nature.

The work in Arrichiello et al. (2011) addresses observability is-

sues in the context of relative AUV positioning using inter-vehicle

range measurements. This is done by exploiting nonlinear observabil-

ity concepts and resorting to Herman–Krener observability rank con-

ditions of local weak observability (Hermann & Krener, 1977). Two

observability metrics, given by the inverse of the minimum singular

value and the ratio between the maximum and minimum singular

values of an appropriately defined observability matrix are derived

for the system under study. The results obtained are validated exper-

imentally in an equivalent single beacon navigation scenario.

The problem of single-beacon navigation is also studied in

Jouffroy and Reger (2006). The proposed estimator structure and re-

lated observability conditions are derived using nonlinear differen-

tial algebraic methods. In Parlangeli and Indiveri (2014), the authors

discuss the observability properties of a kinematic model for cooper-

ative underwater vehicles using range measurements. Using a state

augmentation technique that seeks inspiration from that in Batista,
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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ilvestre, and Oliveira (2011), the trajectories of the nonlinear systems

volving on R
3 × S

2 are lifted into an equivalent linear time varying

LTV) system on R
25 and the observability analysis is done in a LTV

etting.

Recently, the work reported in Bayat, Crasta, Aguiar, and Pascoal

2015) addresses the problem of range-based Autonomous Under-

ater Vehicle (AUV) localization in the presence of unknown ocean

urrents. In the set-up adopted, the AUV is equipped with an Atti-

ude and Heading Reference System (AHRS), a depth sensor, and an

coustic device that provides measurements of its distance to a set

f stationary beacons. The number of active beacons is not known in

dvance and may vary with time. The objective is to simultaneously

ocalize the AUV and the beacons. In the design model the states

volve continuously with time but the range measurements are only

vailable at discrete instants of time, possibly in a non-uniform man-

er. For trimming or steady-state maneuvers (that correspond to AUV

rajectories with constant linear and angular velocities expressed in

he body-frame) it is shown that if either the position of one of the

eacons or the initial position of the AUV are known, then even with-

ut depth information the system is weakly observable (i.e., the set

f states that are indistinguishable from a given initial configuration

ontains only a set of finite isolated points). If depth measurements

re also available, then the system is observable even in the presence

f unknown constant ocean currents. The theoretical setting adopted

orrows also from state augmentation techniques.

In spite of the progress done towards understanding observabil-

ty issues related to range-based AUV positioning, work is still re-

uired to characterize explicitly the types of AUV trajectories that

ield global observability. This is a direct consequence of the non-

inear characteristics of the problem at hand, which mandate the use

f analysis tools that go beyond those afforded by the theory of ob-

ervability for linear time invariant (LTI) systems (Rugh, 1996).

The theory of nonlinear observability has received considerable

mpetus due to the pioneering work of Hermann and Krener (1977).

n this seminal work the authors presented the celebrated Herman–

rener algebraic rank condition for weak observability. The drawback

f it is that it is only a sufficient condition and, most importantly,

t fails to provide any additional insight into the unobservable space

hen the rank condition fails. We recall that if a nonlinear system

s weakly observable at a given initial state in the sense of Herman–

rener, then there exists, for every state in an open neighborhood of

he given initial state, a corresponding input that will distinguish it

rom that initial state. Notice, however that this does not imply the

xistence of a single admissible input that will be able to so for every

tate in the neighborhood. Hence, in practice, there is a need to iden-

ify a class of admissible inputs (if its exists) with the property that

very input has the ability to distinguish every pair of initial configu-

ations through observation of the outputs.

Motivated by the above considerations, in this paper we use the

eaker notion of observability introduced in Crasta, Bayat, Aguiar,

nd Pascoal (2014) to study the observability properties of a 3D un-

erwater vehicle model in the presence of ocean currents, under the

ssumption that the vehicle can only measure the distances to one

r more fixed transponders located at known inertial positions. As in

rasta et al. (2014) we consider the case where the vehicle moves

long trimming trajectories characterized by constant linear body

peed, flight-path angle, and yaw rate. For a single transponder case,

ith range measurements only, we show that in the absence of ocean

urrents the 3D kinematic model of an AUV undergoing trimming tra-

ectories with nonzero flight-path angle and yaw rate is observable.

n the case of non-zero but known ocean currents, identical results

pply subject to the condition that the flight-path angle satisfies a

urrent-related constraint. However, if the current is non-zero and

nknown, the model is only weakly observable. The situation changes

ompletely when both range and depth measurements are available.

n this case, under the assumption that the yaw rate is different from
trimming trajectories in the presence of ocean currents using range

i.org/10.1016/j.arcontrol.2015.09.009
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ero, observability is obtained even when the flight-path angle is zero

vehicle moving in a horizontal plane) and there are non-zero un-

nown currents. These obvious advantages are lost if the yaw rate is

qual to zero, for in this case the model is only weakly observable. In

ll situations where the model is weakly observable we give a com-

lete characterization of the sets of states that are indistinguishable

rom a given initial state. Finally, we show that the extended model

hat is obtained by considering multiple (at least two) transponders is

bservable in all situations if the yaw rate is different from zero. The

nvisioned impact of the results obtained is twofold: (i) they afford

ractitioners rules for the choice of general types of trajectories that

vehicle should perform in order to enhance single/multiple beacon

bservability properties, and (ii) by providing a complete characteri-

ation of the sets of indistinguishable states, they are extremely help-

ul during the phase of positioning system design by clarifying the

umber of models to adopt in a multiple model adaptive estimation

MMAE) set-up, along the lines proposed in Bayat and Aguiar (2012)

nd Bayat et al. (2015).

At this point, it is relevant to point out that some of the observ-

bility results derived in the present paper bear resemblance to the

esults derived by the authors in Bayat et al. (2015) using a different

athematical setting. However, the observability analysis done in the

resent work (for a larger number of single beacon navigation design

odels) builds on conceptually simple geometric arguments and as

uch it departs from other approaches proposed in the literature, in-

luding that in Bayat et al. (2015). It is this simplicity that allows us to

ully characterize and give intuitive geometric interpretations of the

ets of indistinguishable states that are obtained when an AUV under-

oes trimming trajectories under a number of conditions that involve

he presence of ocean currents and the availability of complementary

ensor packages.

The paper is organized as follows. Section 2 introduces some ba-

ic notation and mathematical results that will be used in later sec-

ions. Section 3 summarizes key definitions of observability in the

ontext of nonlinear systems. Section 4 describes the model adopted

or the study of the observability properties of a 3D autonomous un-

erwater vehicle (AUV) model when the vehicle undergoes motions

long trimming trajectories, using range and depth measurements.

ections 5, 6, and 7 address the observability properties of the 3D

ingle beacon system model for the trimming trajectories and differ-

nt sensor suites. Finally, Section 8 discusses the results obtained and

ntroduces some topics that warrant further research effort.

. Mathematical preliminaries

Given a smooth real-valued function f : R → R, we define f (k) :=
dk f

dtk
with f (0) = f . Given a, b ∈ R such that a2 + b2 �= 0, we let atan2(b,

) be the unique angle θ ∈ [0, 2 π ) satisfying sin θ = a/
√

a2 + b2 and

os θ = b/
√

a2 + b2. Given a, b ∈ R, we write a = b mod 2π if there

xists k ∈ Z such that a = b + 2 k π. We denote the Euclidean norm

n R
3 by ‖ · ‖ and the unit sphere in R

3 by S2 := {x ∈ R
3 : ‖x‖ = 1}.

urther, we denote the 3 × 3 identity matrix by I3 and the zero vector

r matrix by 0. We further denote the elements of the standard bases

or R
3 by e1, e2, and e3.

We define the orthonormal vectors w(θ ) and w⊥(θ ) by

(θ) :=
[

cos (θ)
sin (θ)

0

]
and w⊥(θ) :=

[− sin (θ)
cos (θ)

0

]
. (2.1)

he group of special orthogonal matrices in 3-dimensions is repre-

ented by SO(3). For every a ∈ R
3, (a × ) is the matrix representation

f the linear map b �→ a × b, b ∈ R
3. Given a ∈ R

3 and θ ∈ [0, 2π ),

(a, θ) ∈ SO(3) denotes the rotation matrix about the axis a by an

ngle θ , given by (Murray, Li, and Sastry, 1994, Prop. 2.4)

(a, θ) = I3 + sin θ (a × ) + (1 − cos θ) (a × )2. (2.2)
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV

and depth measurements, Annual Reviews in Control (2015), http://dx.do
e parametrize points in S2 by the map s: [0, 2π ] × [0, π ] → S2

escribed by

(α) :=
[

cos (α1) sin (α2)
sin (α1) sin (α2)

cos (α2)

]
, α = (α1, α2). (2.3)

. Observability of nonlinear systems

Consider the general nonlinear system

ẋ = f(x, u),
y = h(x),

}
(3.1)

here x ∈ R
n is the state, u is the input vector taking values in a com-

act subset � of R
p containing zero in its interior, f is a complete

nd smooth vector field on R
n, and the output function h : R

n → R
q

as smooth components. We recall the following definitions from

ermann and Krener (1977). To capture the physical constraints of

he underlying system, we assume that u belongs to a (possibly large)

et Uad of admissible inputs.

efinition 1 (Indistinguishability). Two initial states z, z′ ∈ R
n of

3.1) are indistinguishable in [t0, tf) if, for every input u in the set of

dmissible inputs Uad the solutions of (3.1) satisfying the initial con-

itions x(t0) = z and x(t0) = z′ produce identical output-time histo-

ies in [t0, tf).

or every z ∈ R
n, let I(z) ⊆ R

n denote the set of all states that are

ndistinguishable from z. Note that indistinguishability is an equiva-

ence relation.

efinition 2 (Observability). The system (3.1) is observable at z ∈ R
n

f I(z) = {z}, and is observable if I(z) = {z} for every z ∈ R
n.

efinition 3 (Weak observability). The system (3.1) is weakly observ-

ble at z ∈ R
n if z is an isolated point of I(z) and is weakly observable

f it is weakly observable at every z ∈ R
n.

It is important to remark that the above definitions, though ele-

ant, may prove to be quite restrictive in a number of applications.

o show this, notice that if a system is weakly observable at a point

∈ R
n, then there is an open neighborhood Nz of z such that every

nitial condition z’ ∈ Nz different from z is distinguishable from z it-

elf. However, the computation of a particular input that will distin-

uish z and z′ may, for a fixed z, depend on the initial condition z′.
t is therefore natural to ask whether, for a given system, there is a

pecific class of admissible inputs that are simple to characterize and

et can be used to distinguish the state z from any other state z′ ∈ Nz

y forcing the system with a particular, fixed input in that class. Here,

e are strongly motivated by the concept of uniform universal inputs

ntroduced by Sontag in Sontag and Wang (2008).

As we will show later, the answer to the above question may be

ffirmative in the context of systems that describe the motions of

large class of autonomous vehicles if the outputs (measurements)

re chosen appropriately. In the latter case, there is a reduced class

c ⊆ Uad of admissible inputs, with elements denoted u∗, that can

e parameterized in terms of a small number of parameters but

re sufficiently general to generate maneuvers of interest in a wide

ange of applications. One such example consists of AUV trimming

rajectories that are obtained by holding the physical inputs to the

ehicle constant. As we will show later, such trajectories are fully

arametrized by total speed, yaw rate, and flight path angle and cor-

espond to helices in 3D space that may degenerate into circumfer-

nces and straight lines (Elgersma, 1988). In the context of this pa-

er, such parameters play the role of inputs to the model adopted for

UV trajectory generation. Interestingly enough, each element in this

educed class of inputs (that generate helicoidal trajectories) is suffi-

iently rich to yield, under well defined conditions, useful observabil-

ty properties for the models whose outputs consist of range or range
trimming trajectories in the presence of ocean currents using range

i.org/10.1016/j.arcontrol.2015.09.009
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Fig. 1. 3D AUV model for single-beacon navigation.
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and depth measurements. This result affords system designers an ef-

fective way of selecting simple and yet effective manoeuvres from

an observability standpoint. With this motivational background, we

recall a weaker notion of observability originally proposed in Crasta

et al. (2014) that, as we shall see, will allow for the derivation of ob-

servability conditions for the localization system studied in this paper

that are easy to interpret physically.

Definition 4 (u∗-Indistinguishability). Let u∗ be an admissible input

in a given set Uc. We say that two initial states z, z′ ∈ R
n of (3.1) are

u∗-indistinguishable in [t0, tf), if the solutions of (3.1) satisfying the

initial conditions x(t0) = z and x(t0) = z′ produce identical output-

time histories in [t0, tf) for u∗.

For every z ∈ R
n, let Iu∗

(z) ⊆ R
n denote the set of all states that

are u∗-indistinguishable from z.

Definition 5 (u∗-Observability). The system (3.1) is u∗-observable at

z ∈ R
n if Iu∗

(z) = {z}, and is observable if Iu∗
(z) = {z} for every z ∈

R
n.

Definition 6 (u∗-Weak observability). The system (3.1) is u∗-weakly

observable at z ∈ R
n if z is an isolated point of Iu∗

(z) and is u∗-weakly

observable if it is u∗-weakly observable at every z ∈ R
n.

Remark 7. Note that observability (O) implies weak observability

(WO), while u∗-observability (u∗-O) implies u∗-weak observability

(u∗-WO).

4. 3D single-beacon model and trimming trajectories

In what follows, {I} and {B} denote a inertial and a body-fixed

frame with unit vectors {xI, yI, zI} and {xB, yB, zB}, respectively. See

Fig. 1. We describe the attitude of an AUV using a matrix R ∈ SO(3)
such that the multiplication of R by a body-fixed vector expresses

that vector in the inertial frame. We use the Euler angles of roll (φ),

pitch (θ ), and yaw (ψ) (in this order) to parametrize the matrix R lo-

cally. The kinematic equations that describe the motion of an AUV in

{I} are given by

ṗ = Rz(ψ)Ry(θ)Rx(φ) v,

η̇ = J(η)ω,

}
(4.1)

where p ∈ R
3 is the inertial position of the AUV, v := (u, v, w) ∈ R

3

is the body-fixed linear velocity vector relative to {I} expressed in

{B}, ω := (p, q, r) ∈ R
3 is the body-fixed angular velocity vector rela-

tive to {I} expressed in {B}, η := (φ, θ,ψ) ∈ [0, 2π) × (−π/2, π/2) ×
[0, 2π) is the Euler angle vector (roll, pitch, and yaw), Rz(ψ) :=
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV

and depth measurements, Annual Reviews in Control (2015), http://dx.do
(e3,ψ), Ry(θ) := R(e2, θ), Rx(φ) := R(e1, φ), and

(η) :=
[

1 sin (φ) tan (θ) cos (φ) tan (θ)
0 cos (φ) − sin (φ)
0 sin (φ)/ cos (θ) cos (φ)/ cos (θ)

]
. (4.2)

ollowing standard nomenclature (Fossen, 1994), the AUV dynamic

quations admit the general representation[
v̇
ω̇

]
+ C(v,ω)

[
v
ω

]
+ D(v,ω)

[
v
ω

]
+ g(η) = τ, (4.3)

here M := MRB + MA is the generalized mass matrix of the AUV with

RB and MA denoting the rigid-body mass matrix and added mass

atrix, respectively, C(v,ω) := CRB(v,ω) + CA(v,ω) is the matrix of

oriolis and centripetal terms (including those arising from added

ass effects), D(v, ω) is the hydrodynamic damping matrix, g(η) is

he vector of gravitational/buoyancy forces and moments, and τ is

he vector of control inputs (force and torque due to thrusters and/or

ontrol planes).

We now recall the concept of trimming trajectories for a vehicle

ith motion described by (4.1)–(4.3), see Elgersma (1988). This type

f trajectories play an important role in the analysis of flight dynam-

cs (namely in aircraft control) because they correspond to situations

here there is a force-moment equilibrium in the body-fixed frame,

or a fixed input control configuration. Mathematically, they corre-

pond to the equilibrium points of the dynamic Eq. (4.3) with con-

tant inputs, that is, v̇ ≡ 0 and ω̇ ≡ 0 for all t ≥ 0, yielding v = ve

nd ω = ωe, where ve and ωe (values at equilibrium) are constant.

From the dynamic Eq. (4.3), it follows that all the forces and mo-

ents that depend on the linear and rotational velocity vectors are

onstant, with the exception of the static forces and moments g(η)

hat depend on φ and θ . Hence, for a given constant input configu-

ation, in order to satisfy Eq. (4.3) it is necessary that g(η) must be

constant vector, as the linear and angular velocity vectors are con-

tant along trimming trajectories. Now notice that stationarity of g(η)

mplies that φ and θ are constant, that is, φ = φe and θ = θe, where

e and θ e (values at equilibrium) are constant.

At equilibrium φ̇ = φ̇e = 0 and θ̇ = θ̇e = 0, thus implying that η̇ =
˙ e3. From Eq. (4.1) ω = J(η)−1 η̇, from which we may conclude that

e = ψ̇

[ − sin (θe)
sin (φe) cos (θe)
cos (φe) cos (θe)

]
. (4.4)

otice that the body-fixed trimming angular velocity vector depends

n the roll, pitch, and yaw rates. Further, since ωe is a constant vector,

q. (4.4) implies that ψ̇ is a constant. In other words, the trimming

aw angle ψe is given by

e(t) = r t + ψ0, (4.5)

here r ∈ R is the constant yaw rate and ψ0 ∈ [0, 2π ) is the initial

aw angle.

Define ξ := [ξ1 ξ2 ξ3]
T = Ry(θe)Rx(φe) ve and note that ξ ∈ R

3 is

constant vector because θe, φe, ve are constant. Then, from the lin-

ar velocity kinematics transformation (4.1) it follows that

˙ e = [w(r t + ψ0) − w⊥(r t + ψ0) e3 ξ (4.6)

here pe describes the position of the AUV along a trimming trajec-

ory and w(·), w⊥(·) are given by (2.1). Define β , γ ∈ [0, 2π ) as

β := atan2(ξ2, ξ1),
γ := atan2(−ξ3,‖ξ × e3‖).

}
(4.7)

t can be shown that β is the angle between the vehicle’s heading

nd the velocity vector heading (that is, the side-slip angle) and γ is

he angle between the horizontal and the velocity vector (that is, the

rimming flight path angle). By definition of the atan2 function, note

hat atan2(b, a) = tan−1 (b/a) ∈ (−π/2, π/2) whenever a > 0. Since
trimming trajectories in the presence of ocean currents using range
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Fig. 2. An AUV trimming trajectory.

Fig. 3. Trimming trajectory shown in the xB − zI plane. (γ – flight path angle; θ – pitch

angle; α – angle of attack).
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ξ × e3‖ ≥ 0, from (4.7) we conclude that γ ∈ [−π/2, π/2]. We make

he following assumption.

ssumption 8. We assume that ‖ξ × e3‖ > 0, that is, γ ∈
−π/2, π/2).

q. (4.6) is usually written in the equivalent form

˙ e = ‖ve‖ cos (γ ) w(r t + ψ0 − β) − ‖ve‖ sin (γ ) e3, (4.8)

here ‖ve‖ is the linear body speed at trimming. The solution of (4.8)

or the initial condition p0 ∈ R
3 is given by

e(t) − p0 = ‖ve‖ r−1 (− cos (γ )w⊥(r t + ψ0 − β)

+ cos (γ )w⊥(ψ0 − β) − sin (γ ) e3 t),

rom which it can be easily concluded that the only trim-

ing trajectories of the underwater vehicle are helices with radii

ve‖ r−1 cos (γ ) that may degenerate into straight lines or circum-

erences. Thus, all trimming trajectories can be parametrized by total

ehicle speed, flight path angle, and yaw rate. See Figs. 2 and 3.

In the presence of a constant ocean current vc ∈ R
3, it can be

hown that Eq. (4.8) can be rewritten as

˙ e = ‖ve‖ cos (γ ) w(r t + ψ0 − β) − ‖ve‖ sin (γ ) e3 + vc (4.9)

here ve is now the steady state velocity of the vehicle with respect

o the fluid and the sideslip β angle is defined accordingly. We re-

ark that in the analysis that follows the dynamics of the AUV don’t

lay any role. They were only introduced to simply show what kind

f trimming trajectories an AUV admits in 3D.
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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Consider now a set of m ( ≥ 1) transponders located at fixed in-

rtial positions b1, . . . , bm ∈ R
3 with bi �= bj, 1 ≤ i, j ≤ m, i �= j. We

ssume that the AUV is equipped with a range sensor that measures

ts distance to these transponders and also a depth sensor. Then, the

utput (measurement) function is given by

=
[

yT
r

yd

]T

here

yr =

⎡
⎣‖pe − b1‖

...
‖pe − bm‖

⎤
⎦

T

,

d = eT
3pe.

e consider two cases (i) m = 1 and (ii) m ≥ 2. First we begin with

= 1 and characterize the sets of indistinguishable states. Later

e extend the characterization in the m ≥ 2 case using that ob-

ained for the m = 1 case. With these characterizations we derive

onclusions about the observability/weak observability properties

f the single/multiple beacon system for different sensor–actuator

onfigurations.

. Observability analysis with single beacon

From the results in the previous section, the 3D kinematic model

ssociated with the trimming trajectories of an AUV that measures its

istance to a single transponder located at a known position vector

∈ R
3 is given by

ṗe(t) = g(ve, γ , r t + ψ0, β) + vc(t),
v̇c(t) = 0,

y(t) = ‖pe(t) − b‖,

}
(5.1)

here

g(ve, γ , rt + ψ0, β) := ‖ve‖ (cos (γ )w(r t + ψd) − sin (γ )e3),
(5.2)

e(t) ∈ R
3 is the inertial position vector, vc(t) ∈ R

3 a constant ocean

urrent disturbance, ‖ve‖ > 0 is the linear trimming body speed, γ ∈
−π/2, π/2) is the trimming flight path angle, ψ0 is the initial yaw

ngle, r is the yaw rate , β is the side-slip angle , and ψd := ψ0 − β
s the initial heading of the velocity vector. We make the following

ssumption.

ssumption 9. Without loss of generality, we assume that the bea-

on is at the origin.

q. (5.1) defines a nonlinear input-affine system with state x :=
pe, vc) ∈ R

3 × R
3, drift vector field F(x) := (vc, 0), control vector

eld G(x) := (g, 0), and output function h(x) ∈ R with h1(x) = ‖pe‖.

he solution of (5.1) for the initial condition x0 := (p0, vc0
) ∈ R

3 × R
3

t time t ∈ [0, tf] is denoted by �t(x0) and is given by

t(x0) =
[

p0

vc0

]
+
[

vc0
t + ∫ t

0 g(ve, γ , r τ + ψ0, β) dτ
0

]
,

here the integration in the above equation is the component-wise

ntegration, while the output is given by

1(�t(x0)) =
∥∥∥∥p0 + vc0

t +
∫ t

0

g(ve, γ , r τ + ψ0, β) dτ

∥∥∥∥.

or a given ‖ve‖ > 0, γ ∈ (−π/2, π/2), and ψ0, β ∈ [0, 2π ) we

enote

0 := ‖ve‖ cos (γ ) w(ψd) − ‖ve‖ sin (γ ) e3, (5.3)
trimming trajectories in the presence of ocean currents using range
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Fig. 4. Geometric visualization of the set I z
r,kc

(p0).
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where w(·) is given by (2.1) and ψd = ψ0 − β. Given γ ∈
(−π/2, π/2), ψ0, β ∈ [0, 2π ), define t �→ κ(t) by

κ(t) := κ0 + κ1(t), (5.4)

where κ0 ∈ R
3 and t�→κ1(t) are given by

κ0 := cos (γ ) w⊥(ψd), (5.5)

κ1(t) := − cos (γ ) w⊥(r t + ψd) − r sin (γ ) e3 t. (5.6)

It can be shown that

κ( j)(t)
∣∣

t=0
= r j ζ j, 1 ≤ j ≤ 3, (5.7)

and κ(4)(t) = −r2 κ(2)(t), where

ζ1 := cos (γ ) w(ψd) − sin (γ ) e3, (5.8)

ζ2 := cos (γ ) w⊥(ψd), (5.9)

ζ3 := cos (γ ) w(ψd). (5.10)

At this point, we will make use of a result in Crasta, Bayat, Aguiar, and

Pascoal (2013) in order to simplify the observability analysis. The re-

sult essentially states that the observability properties of the system

(5.1) with range squared measurement and range measurement are

equivalent.

In this paper we study the observability properties of model

(5.1) for two distinct cases with two different sensor suites, namely,

(i) known ocean current and (ii) unknown ocean current. In the fol-

lowing sections, we characterize the set of indistinguishable states for

cases (i) and (ii). Notice that the observability properties depend on

the type of trimming trajectory adopted, that is, we first fix a type of

trajectory and then examine the observability of the resulting model

in (5.1).

5.1. Known ocean currents

Consider the system in the presence of a known current vc ∈ R
3,

that is,

ṗe = g(ve, γ , r t + ψ0, β) + vc,

y = ‖pe‖2,

}
(5.11)

where g(·) is given by (5.2). Given p0 ∈ R
3, we let I z

r,kc
(p0) and

I nz
r,kc

(p0) denote the sets of states that are indistinguishable from

the given initial state p0 under the conditions of zero yaw rate and

nonzero constant yaw rate, respectively, for system (5.11). In the

above, the subscript ‘r’ means that only range measurements are

available, the subscript ‘kc’ is the abbreviation of known current, and

the superscripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate, re-

spectively. We next characterize the above sets.

5.1.1. Zero yaw rate

Let r = 0. In this case, for a given vc ∈ R
3, γ ∈ (−π/2, π/2), ψ0, β

∈ [0, 2 π ) and initial state p0 ∈ R
3,

�t(p0) = p0 + vtot t,

h1(�t(p0)) = ‖p0 + vtot t‖2,

where vtot := v0 + vc, v0 = ‖ve‖ cos (γ ) w(ψd) − ‖ve‖ sin (γ ) e3

and ψd = ψ0 − β. We have the following characterization.

Proposition 10. Consider vc ∈ R
3 , ‖ve‖ > 0 , γ ∈ (−π/2, π/2), and

ψ0, β ∈ [0, 2 π ). Then, for every p0 ∈ R
3,

I z
r,kc(p0) =

{
R(vtot, θ) p0 : θ ∈ R

}
.

Proof. Consider p0 ∈ R
3, γ ∈ (−π/2, π/2), and ψ0, β ∈ [0, 2 π ). Let

z ∈ R
3 be such that z ∈ I z

r,kc
(p0). Then h1(�t(z)) = h1(�t(p0)) for

all t ∈ [0, tf], which implies ‖z‖2 = ‖p0‖2 and zTvtot = pT
0
vtot. These
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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wo equations (intersection of a sphere and a plane) represent the

ircumference given by the loci of points z = R(vtot, θ) p0, θ ∈ R.

To show the reverse inclusion, consider q := R(vtot, θ) p0, θ ∈ R.

sing the properties of rotation matrices, note that ‖q‖2 = ‖p0‖2 and
Tvtot = pT

0
vtot. Using the two previous facts, it can be shown that

1(�t(q)) = h1(�t(p0)) for all t ∈ [0, tf]. Hence the result follows. �

he following corollary follows immediately from the above

roposition.

orollary 11. Suppose the beacon is not at the origin, that is, b �= 0.

hen,

z
r,kc(p0) =

{
b + R(vtot, θ) (p0 − b) : θ ∈ R

}
.

emark 12. Proposition 10 shows that for a given p0 ∈ R
3 the set

f all the points that are obtained by rotating p0 about the axis vtot

hrough an arbitrary angle θ ∈ R are indistinguishable.

emark 13. Note that for a given p0 ∈ R
3 there exist γ , ψ0, β such

hat vtot × p0 = 0, that is, p0 is the eigenvector of R(vtot, θ) corre-

ponding the eigenvalue of +1. Consequently, I z
r,kc

(p0) = {p0}.
Fig. 4 gives a geometrical characterization of the set of states that

re indistinguishable from a given initial state p0.

.1.2. Nonzero, constant yaw rate

Let r > 0. Then for a given γ ∈ (−π/2, π/2) and ψ0, β ∈ [0, 2 π ),

t(p0) = p0 + ‖ve‖ r−1 κ(t) + vc t,

1(�t(p0)) =
∥∥p0 + ‖ve‖ r−1 κ(t) + vc t

∥∥2
,

here κ is given by (5.4). We have the following result.

roposition 14. Consider vc ∈ R
3, ‖ve‖, r > 0, γ ∈ (−π/2, π/2), and

0, β ∈ [0, 2 π ). Then, for every p0 ∈ R
3,

nz
r,kc(p0) =

{{
p0,−R(e3, π) p0

}
if sin (γ ) = ‖ve‖−1

eT
3vc,

{p0} otherwise.

roof. Consider p0 ∈ R
3, γ ∈ (−π/2, π/2), ψ0, β ∈ [0, 2 π ) and

ve‖, r > 0. Let z ∈ R
3 be such that z ∈ I nz

r,kc
(p0). Then, from

1(�t(z)) = h1(�t(p0)) for all t ∈ [0, tf] it follows that

‖z‖2 − ‖p0‖2) + 2 (z − p0)
T
{‖ve‖ r−1κ(t) + vct

}
= 0, (5.12)
trimming trajectories in the presence of ocean currents using range
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Fig. 5. Geometric visualization of the set I nz
r,kc

(p0). Left: zero current; Right: known current.
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or every t ∈ [0, tf]. At t = 0, the above equation implies that

z‖2 = ‖p0‖2. (5.13)

onsequently, (5.12) yields

z − p0)
T
{‖ve‖ r−1κ(t) + vc t

}
= 0 (5.14)

or every t ∈ [0, tf]. Since ‖ve‖, γ , r, ψv are fixed constants, Eq. (5.14)

s only a function of time. Differentiating (5.14) with respect to time

nd evaluating at t = 0 gives

(z − p0)
T
{
‖ve‖ r−1 κ(1)

1
(t) + vc

}∣∣∣
t=0

= 0, (5.15)

(z − p0)
Tκ(2)

1
(t)
∣∣∣

t=0
= 0, (5.16)

(z − p0)
Tκ(3)

1
(t)
∣∣∣

t=0
= 0. (5.17)

urthermore, using (5.7) in (5.15)–(5.17) yields

{‖ve‖ ζ1 + vc}T

ζT
2

ζT
3

⎤
⎥⎦(z − p0) = 0 (5.18)

here the ζi’s are given by (5.8)–(5.10). It can be easily verified

hat ζ2 × ζ3 = − cos2 (γ ) e3, so that ζT
1(ζ2 × ζ3) = cos2 (γ ) sin (γ )

nd vT
c(ζ2 × ζ3) = − cos2 (γ ) eT

3
vc, and, consequently, {‖ve‖ ζ1 +

c}T(ζ2 × ζ3) = ‖ve‖ cos 2(γ )
[
sin (γ ) − δ

]
, where δ := ‖ve‖−1eT

3
vc.

ince γ ∈ (−π/2, π/2), it follows that cos (γ ) �= 0. Consequently,

‖ve‖ ζ1 + vc}T(ζ2 × ζ3) = 0 if and only if sin (γ ) = δ.

(a) First suppose that sin (γ ) �= δ, that is, {‖ve‖ ζ1 + vc}T(ζ2 ×
ζ3) �= 0. Then, Eq. (5.18) implies that z = p0. The reverse in-

clusion is trivial. Hence I nz
r,kc

(p0) = {p0}.
(b) Next suppose that sin (γ ) = δ. Note that ζ1 = ζ3 −

‖ve‖−1 (eT
3
vc) e3, and consequently, {‖ve‖ ζ1 + vc}T(ζ2 ×

ζ3) = 0. Now (5.18) implies that z − p0 = α (ζ2 × ζ3), α ∈ R,

that is, z = p0 − α cos2 (γ ) e3. Consequently, (5.13) im-

plies that either α = 0 or α = 2eT
3
p0/ cos2 (γ ). Hence,

z ∈ {p0, −R(e3, π)p0} and I nz
r,kc

(p0) ⊆ {p0,−R(e3, π)p0}.
To show the reverse inclusion, consider q := −R(e3, π) p0 and

note that eT
1q = eT

1p0, eT
2q = eT

2p0, R(e3, π)Tκ0 = −κ0, and

R(e3, π)Tκ1(t) = −κ1(t) + 2 eTκ1(t) e3, and consequently,

3

Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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R(e3, π)Tκ(t) = −κ(t) + 2 eT
3κ1(t) e3. With some algebraic

manipulations, it can be verified that

h1(�t(q)) =
∥∥−R(e3, π)

{
p0 + ‖ve‖ r−1κ(t) + vct

}∥∥2
.

Using the properties of rotation matrices it now follows

that h1(�t(q)) = h1(�t(p0)) for all t ∈ [0, tf]. Consequently,

{p0, −R(e3, π)p0} ⊆ I nz
r,kc

(p0) and the result follows. �

he following corollary follows immediately from the above proposi-

ion.

orollary 15. Suppose the beacon is not at the origin, that is, b �= 0.

hen,

nz
r,kc(p0) =

⎧⎨
⎩
{

p0, b − R(e3, π)

× (p0 − b)
}

if sin (γ ) = ‖ve‖−1
eT

3vc,

{p0} otherwise.

emark 16. Note that for the system (5.11) in the presence of known

urrents, a flight path angle satisfying sin (γ ) �= ‖ve‖−1eT
3vc yields

bservability for every nonzero constant yaw rate. In particular, in

he absence of currents with nonzero flight path angle system (5.11)

s observable for every nonzero constant yaw rate.

Fig. 5 gives a geometrical characterization of the set of states that

re indistinguishable from a given initial state p0.

.2. Unknown ocean currents

Consider the model of a single-beacon navigation system in the

resence of an unknown constant ocean current vc ∈ R
3 described by

ṗe = g(ve, γ , r t + ψ0, β) + vc,

v̇c = 0,

y = ‖pe‖2,

}
(5.19)

here g(·) is given by (5.2). Given (p0, vc0
) ∈ R

3 × R
3, we let

z
r,uc(p0, vc0

) and I nz
r,uc(p0, vc0

) denote the sets of states that are in-

istinguishable from the given initial state (p0, vc0
) for zero yaw rate

nd nonzero constant yaw rate, respectively, for the system (5.19). In

he above, the subscript ‘r’ means that only range measurements are

vailable, the subscript ‘uc’ is the abbreviation of unknown current,

nd the superscripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate,

espectively. We next characterize I z
r,uc(p0, vc ) and I nz

r,uc(p0, vc ).

0 0

trimming trajectories in the presence of ocean currents using range
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5.2.1. Zero yaw rate

In this case r = 0. Consider ‖ve‖ > 0, γ ∈ (−π/2, π/2), ψ0, β ∈
[0, 2π ). Then, given an initial condition (p0, vc0

) ∈ R
3 × R

3,

�t(p0, vc0
) =

[
p0

vc0

]
+
[
(v0 + vc0

) t
0

]
,

h1(�t(p0, vc0
)) = ‖p0 + (v0 + vc0

) t‖2,

where v0 ∈ R
3 is given by (5.3). We have the following characteriza-

tion.

Proposition 17. Consider ‖ve‖ > 0, γ ∈ (−π/2, π/2), and ψ0, β ∈ [0,

2π ). Let A := [0, 2π ] × [0, π ]. Then, given (p0, vc0
) ∈ R

3 × R
3,

I z
r,uc(p0, vc0

) =
{
(‖p0‖ s(μ),−v0 + ‖vtot‖ s(σ)) : (μ,σ) ∈ Q

}
,

where v0 ∈ R
3 is given by (5.3), s(·) is given by (2.3) and

vtot := v0 + vc0
,

cos (λ∗) :=
(

p0

‖p0‖
)T( vtot

‖vtot‖
)
,

Q :=
{
(μ,σ) ∈ A × A : s(μ)Ts(σ) = cos (λ∗)

}
.

Proof. Consider x0 = (p0, vc0
) ∈ R

3 × R
3, ‖ve‖ > 0, γ ∈

(−π/2, π/2), and ψ0, β ∈ [0, 2π ). Let x1 = (z, wc) ∈ R
3 × R

3

be such that x1 ∈ I z
r,uc(x0). Define wtot := v0 + wc. Then,

h1(�t(x1)) = h1(�t(x0)) for all t ∈ [0, tf] implies that

‖z‖2 = ‖p0‖2, (5.20)

‖wtot‖2 = ‖vtot‖2, (5.21)

zTwtot = pT
0vtot. (5.22)

Eqs. (5.20) –(5.22) yield

z = ‖p0‖ s(μ), (5.23)

wc = −v0 + ‖vtot‖ s(σ), (5.24)

with (μ,σ) ∈ A × A. Using (5.23) and (5.24) in (5.22), we have

s(μ)Ts(σ) = cos (λ∗). In other words, (μ,σ) ∈ Q and hence

I z
r,uc(x0) ⊆

{
(‖p0‖ s(μ),−v0 + ‖vtot‖ s(σ)) : (μ,σ) ∈ Q

}
.

Conversely, consider q = (q1, q2) where q1 = ‖p0‖ s(μ) and q2 =
−v0 + ‖vtot‖ s(σ) for some (μ,σ) ∈ Q. Note that ‖q1‖ = ‖p0‖ and

v0 + q2 = ‖vtot‖ s(σ). Using these facts, it can be shown that

h1(�t(q)) = h1(�t(x0)) for all t ∈ [0, tf]. Consequently,{
(‖p0‖ s(μ), −v0 + ‖vtot‖ s(σ)) : (μ,σ) ∈ Q

}
⊆ I z

r,uc(x0).

Hence the result follows. �

The following corollary of the above proposition is easily obtained.

Corollary 18. Suppose the beacon is not at the origin, that is, b �= 0.

Then,

I z
r,uc(x0) =

{
(b + ‖p0 − b‖ s(μ),−v0 + ‖vtot‖ s(σ)) : (μ,σ) ∈ Q

}
where x0 = (p0, vc0

) , v0 ∈ R
3 is given by (5.3), s(·) is given by (2.3),

and

vtot := v0 + vc0
,

cos (λ∗) :=
(

p0 − b

‖p0 − b‖
)T(

vtot

‖vtot‖
)
,

Q :=
{
(μ,σ) ∈ A × A : s(μ)Ts(σ) = cos (λ∗)

}
.

Remark 19. The result above shows that for a given (p0, vc0
) ∈ R

3 ×
R

3 the set of all the points that are indistinguishable from (p0, vc0
) is

a lower dimensional surface in R
3 × R

3. Consequently, the system is

not weakly observable.
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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.2.2. Nonzero, constant yaw rate

In this case r > 0. Consider ‖ve‖, r > 0, γ ∈ (−π/2, π/2), ψ0, β ∈
0, 2π ). Then, given an initial state (p0, vc0

) ∈ R
3 × R

3,

�t(p0, vc0
) =

[
p0

vc0

]
+
[‖ve‖ r−1 κ(t) + vc0

t
0

]
,

1(�t(p0, vc0
)) =

∥∥p0 + ‖ve‖ r−1 κ(t) + vc0
t
∥∥2

,

here κ is given by (5.4). We have the following result.

roposition 20. Consider r, ‖ve‖ > 0, γ ∈ (−π/2, π/2), and ψ0, β ∈
0, 2 π ). Then, for a given x0 = (p0, vc0

) ∈ R
3 × R

3,

nz
r,uc(x0) =

{
x0, (−R(e3, π) p0, 2 ‖ve‖ sin (γ ) e3 − R(e3, π) vc0

)
}
.

roof. Consider x0 := (p0, vc0
) ∈ R

3 × R
3, ‖ve‖, r > 0, γ ∈

−π/2, π/2), and ψ0, β ∈ [0, 2π ). Let (z, wc) ∈ R
3 × R

3 be such

hat (z, wc) ∈ I nz
r,uc(p0, vc0

). Then, h1(�t(z, wc)) = h1(�t(p0, vc0
))

t t = 0 implies

z‖2 = ‖p0‖2. (5.25)

efine

1(t) := ‖ve‖ r−1 κ(t) + wc t, (5.26)

2(t) := ‖ve‖ r−1 κ(t) + vc0
t, (5.27)

here κ is given by (5.4) and note that

(1)
1

(t) = ‖ve‖ r−1 κ(1)(t) + wc, (5.28)

(1)
2

(t) = ‖ve‖ r−1 κ(1)(t) + vc0
. (5.29)

onsequently, ν(2)
1

(t) = ν(2)
2

(t) := ‖ve‖ r−1 κ(1)(t). Using (5.25) in

1(�t(z, wc)) = h1(�t(p0, vc0
)) for all t ≥ 0, we have

ν2(t)‖2 + 2 zTν2(t) = ‖ν1(t)‖2 + 2 pT
0ν1(t), (5.30)

or all t ∈ [0, tf]. The successive time derivatives of (5.30) evaluated at

= 0 are given by

Tν(1)
2

(0) = pT
0ν

(1)
1

(0) (5.31)

ν(1)
2

(0)‖2 + zTν(2)
1

(0) = ‖ν(1)
1

(0)‖2 + pT
0ν

(2)
1

(0) (5.32)

ν(1)
2

(0)Tν(2)
2

(0)+zTν(3)
1

(0)=3 ν(1)
1

(0)Tν(2)
1

(0)+pT
0ν

(3)
1

(0) (5.33)

ν(1)
2

(0)Tν(3)
2

(0)+zTν(2)
1

(0)=4 ν(1)
1

(0)Tν(3)
1

(0)+pT
0ν

(2)
1

(0) (5.34)

ν(1)
2

(0)Tν(2)
2

(0)+zTν(3)
1

(0)=5 ν(1)
1

(0)Tν(2)
1

(0)+pT
0ν

(3)
1

(0) (5.35)

ν(1)
2

(0)Tν(3)
2

(0)+zTν(2)
1

(0)=6 ν(1)
1

(0)Tν(3)
1

(0)+pT
0ν

(2)
1

(0). (5.36)

qs. (5.33) and (5.35) imply that

(1)
2

(0)Tν(2)
2

(0) = ν(1)
1

(0)Tν(2)
1

(0), (5.37)

hile (5.34) and (5.36) yield

(1)
2

(0)Tν(3)
2

(0) = ν(1)
1

(0)Tν(3)
1

(0). (5.38)

ince ν(2)
2

(0) = ν(2)
1

(0) and ν(3)
2

(0) = ν(3)
1

(0), it follows from Eqs.

5.37) and (5.38) that

(1)
2

(0) − ν(1)
1

(0) = α (ν(2)
2

(0) × ν(3)
2

(0)), α ∈ R. (5.39)

urther note that

(2)
2

(0) = ‖ve‖ r cos (γ )w⊥(ψ0 − β),

(3)
2

(0) = −‖ve‖ r2 cos (γ )w(ψ0 − β),

nd therefore

(2)(0) × ν(3)(0) = (‖ve‖ cos (γ ))
2

r3 e3 �= 0 (5.40)

2 2
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Table 1

Observability analysis for zero/nonzero (but constant) yaw rate with range-only measurements in the

weaker sense.

System Zero yaw rate Nonzero, constant yaw rate

vtot × p0 = 0 vtot × p0 �= 0 sin (γ ) = ‖vc‖−1eT
3vc sin (γ ) �= ‖vc‖−1eT

3vc

Known current u∗-O Not u∗-WO u∗-WO u∗-O

Unknown current Not u∗-WO u∗- WO

u∗-O: u∗-Observable and u∗-WO: u∗-Weakly observable.

b

t

e

T

ν

F

ν

ν

a[

t

z

I

‖
−
w

t

(

Fig. 6. Geometric visualization of the set I nz
r,uc(p0, vc0

).

Table 2

Observability analysis for zero and nonzero (but constant) yaw rate with

range-only measurements in the Hermann–Krener sense.

System Zero yaw rate Nonzero, constant yaw rate

Known current O O

Unknown current Not WO WO

O: Observable and WO: Weakly observable.

I

I

T

p

h

I{
T

C

T

I

R

w

F

i

p

ecause γ ∈ (−π/2, π/2) and ‖ve‖, r > 0. It can be easily verified

hat

T
3ν

(2)
2

(0) = eT
3ν

(3)
2

(0) = 0. (5.41)

herefore, using (5.40) in (5.39) yields

(1)
2

(0) = ν(1)
1

(0) + α (‖ve‖ cos (γ ))
2

r3 e3, α ∈ R. (5.42)

rom (5.41) and (5.42), it follows that

(1)
2

(0)Tν(2)
2

(0) = ν(1)
1

(0)Tν(2)
2

(0),

(1)
2

(0)Tν(3)
2

(0) = ν(1)
1

(0)Tν(3)
2

(0),

nd consequently, Eqs. (5.33) and (5.34) imply that

ν(2)
1

(0)T

ν(3)
1

(0)T

]
(z − p0) = 0, (5.43)

hat is,

− p0 = α (ν(2)
1

(0) × ν(3)
1

(0)) = α [‖ve‖ cos (γ )]2 r3 e3, α ∈ R.

n other words, z = p0 + α (‖ve‖2 r3 cos2 (γ )) e3. Further,

z‖2 = ‖p0‖2 implies that either α = 0 or α =
2 [‖ve‖2 r3 cos2 (γ )]−1 eT

3p0. Note that α = 0 implies z = p0,

hile α = −2 [‖ve‖2 r3 cos2 (γ )]−1eT
3
p0 implies z = −R(e3, π)p0,

hat is, z ∈ {p0, −R(e3, π)p0}.
(i) Suppose first that z = p0. Recall that ν(1)

2
(0) = ν(1)

1
(0) +

α [‖ve‖ cos (γ )]2 r3 e3, α ∈ R. Then, Eq. (5.32) implies

that ‖ν(1)
2

(0)‖2 = ‖ν(1)
1

(0)‖2, that is, either α = 0 or

α = −2 [‖ve‖2 r3 cos2 (γ )]−1 eT
3
ν(1)

1
(0).

Further, α = 0 implies ν(1)
2

(0) = ν(1)
1

(0), which in turn im-

plies wc = vc0
. On the other hand, α = −2 [‖ve‖2 r3 cos2 (γ )]−1

eT
3ν

(1)
1

(0) implies ν(1)
2

(0) = −R(e3, π)ν(1)
1

(0), which further im-

plies that wc = 2 ‖ve‖ sin (γ ) e3 − R(e3, π) vc0
, that is, zc ∈

{vc0
, 2‖ve‖ sin (γ ) e3 − R(e3, π) vc0

}.
Now consider (z, zc) = (p0, 2 ‖ve‖ sin (γ ) e3 − R(e3, π) vc0

).
Then,

h1(�t(z, zc)) =
∥∥z + ‖ve‖ r−1 κ(t) + zc t

∥∥ �= h1(�t(p0, vc0
)).

Consequently, (z, zc) /∈ I nz
r,uc(p0, vc0

).

ii) Suppose next that z = −R(e3, π) p0. Recall that ν(1)
2

(0) =
ν(1)

1
(0) + α [‖ve‖ cos (γ )]2 r3 e3, α ∈ R. Then, Eq. (5.32) implies

that ‖ν(1)
2

(0)‖2 = ‖ν(1)
1

(0)‖2, that is, either α = 0 or α =
−2 [‖ve‖2 r3 cos2 (γ )]−1 eT

3ν
(1)
1

(0).

Further, α = 0 implies that ν(1)
2

(0) = ν(1)
1

(0), which in turn im-

plies wc = vc0
. On the other hand, α = −2 [‖ve‖2 r3 cos2 (γ )]−1

eT
3
ν(1)

1
(0) implies ν(1)

2
(0) = −R(e3, π) ν(1)

1
(0), which further

implies that wc = 2‖ve‖ sin (γ ) e3 − R(e3, π) vc0
, that is, zc ∈

{vc0
, 2‖ve‖ sin (γ ) e3 − R(e3, π) vc0

}.
Consider (z, zc0

) = (−R(e3, π)p0, vc0
). Then, one may easily ver-

ify that

h1(�t(z, zc0
)) =

∥∥z + ‖ve‖ r−1 κ(t) + zc0
t
∥∥ �= h1(�t(p0, vc0

)),

and consequently, (z, zc ) /∈ I nz
r,uc(p0, vc ).
0 0 a

Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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n other words,

nz
r,uc(x0) ⊆

{
x0, (−R(e3, π)p0, 2‖ve‖ sin (γ )e3 − R(e3, π)vc0

)
}
.

o show the reverse inclusion, consider (z, zc) = (−R(e3, π)

0, 2 ‖ve‖ sin (γ ) e3 − R(e3, π) vc0
). Then, it can be shown that

1(�t(z, zc)) = h1(�t(p0, vc0
)) for all t ≥ 0. Consequently, (z, zc) ∈

nz
r,uc(p0, vc0

). In other words,

x0, (−R(e3, π) p0, 2 ‖ve‖ sin (γ ) e3 − R(e3, π) vc0
)
}

⊆ I nz
r,uc(x0).

his completes the proof. �

orollary 21. Suppose the beacon is not at the origin, that is, b �= 0.

hen,

nz
r,uc(x0) = {x0, (b − R(e3, π)(p0 − b), 2‖ve‖ sin (γ )e3

−R(e3, π)vc0
)}.

emark 22. The system (5.19) with nonzero constant yaw rate is

eakly observable.

ig. 6 depicts the set of states that are indistinguishable from a given

nitial state (p0, vc0
).

Tables 1 and 2 summarize our findings about the observability

roperties with the range-only output function in the weak notion

nd the Herman–Krener sense, respectively.
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6. Observability analysis with single range

and depth measurements

We now address the case where depth measurements are avail-

able. Consider the system in the presence of a known current vc ∈ R
3

given by

ṗe(t) = g(ve, γ , r t + ψ0, β) + vc(t), (6.1)

v̇c(t) = 0, (6.2)

y(t) =
[‖pe(t)‖2

eT
3pe(t)

]
, (6.3)

where pe(t) ∈ R
3 is the inertial position vector, vc(t) ∈ R

3 a constant

ocean current disturbance, ‖ve‖ > 0 is the linear trimming body

speed, γ ∈ (−π/2, π/2) is the trimming flight path angle, ψ0 is the

initial yaw angle, r is the yaw rate, and β is the side-slip angle.

6.1. Known ocean currents

Consider the system in the presence of a known current vc ∈ R
3,

that is,

ṗe = g(ve, γ , r t + ψ0, β) + vc,

y =
[‖pe‖2

eT
3pe

]
,

⎫⎪⎬
⎪⎭ (6.4)

where g( · ) is given by (5.2). Given p0 ∈ R
3, we let I z

rd,kc
(p0) and

I nz
rd,kc

(p0) denote the sets of states that are indistinguishable from

the given initial state p0 for zero yaw rate, and nonzero constant yaw

rate, respectively, for the system (6.4). In the above, the subscript ‘rd’

means that both range and depth measurements are available, the

subscript ‘kc’ is the abbreviation of known current, and the super-

scripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate, respectively.

We next characterize I z
rd,kc

(p0) and I nz
rd,kc

(p0) for the system (6.4).

6.1.1. Zero yaw rate

In this case r = 0. Consider γ ∈ (−π/2, π/2), ψ0, β ∈ [0, 2 π ) and

‖ve‖ > 0. Then, for a given p0 ∈ R
3, we have

�t(p0) = p0 + vtot t,

h(�t(p0)) =
[‖p0 + vtot t‖2

eT
3[p0 + vtot t]

]
,

where vtot := v0 + vc and v0 ∈ R
3 is given by (5.3).

Proposition 23. Consider vc ∈ R
3, ‖ve‖ > 0, γ ∈ (−π/2, π/2), and

ψ0, β ∈ [0, 2 π ). Then, for every p0 ∈ R
3,

I z
rd,kc(p0) =

{{p0} if vtot × p0 = 0,{
p0,R(vtot, θ ∗)p0

}
otherwise,

where vtot := v0 + vc with v0 ∈ R
3 is given by (5.3) and

tan

(
θ ∗

2

)
:= − eT

3(vtot × p0)

(e3 × vtot)T(vtot × p0)
.

Proof. Clearly, Iz
rd,kc

(p0) ⊆ Iz
r,kc

(p0). From Proposition 10 recall that

I z
r,kc(p0) =

{
R(vtot, θ) p0 : θ ∈ R

}
.

Let z := R(vtot, θ) p0 ∈ I z
r,kc

(p0) be such that z ∈ I z
rd,kc

(p0). Then

h2(�t(z)) = h2(�t(p0)) for all t ≥ 0, implies

eT
3z = eT

3p0. (6.5)

First suppose vtot × p0 = 0. Then z = R(vtot, θ) p0 = p0 and conse-

quently, I z
rd,kc

(p0) = {p0}. Next suppose vtot × p0 �= 0. Using (2.2),

(6.5) can be written as

sin (θ)eT
3(vtot×p0)+(1−cos (θ))(e3×vtot)

T(vtot × p0)=0. (6.6)
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV
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learly, θ = 2nπ is a trivial solution of this equation. Hence we

ssume θ �= 2nπ . Using the trigonometric identities sin (θ) =
sin (θ/2) cos (θ/2) and 1 − cos (θ) = 2 sin2 (θ/2) along with the

act that θ �= 2nπ , Eq. (6.6) yields

an

(
θ ∗

2

)
= − eT

3(vtot × p0)

(e3 × vtot)T(vtot × p0)
.

e claim that either eT
3
(vtot × p0) �= 0 or (e3 × vtot)

T(vtot × p0) �= 0.

o prove the claim suppose eT
3(vtot × p0) = 0 and (e3 × vtot)T(vtot ×

0) = 0. This implies

3 = k ‖vtot × p0‖2 vtot, k ∈ R,

hich is not possible because vtot × p0 �= 0 and γ ∈ (−π/2, π/2).
hus, tan (θ /2) is well defined.

Further, θ = 2nπ implies z = R(vtot, 2nπ) p0 = p0. Suppose q :=
(vtot, θ ∗) p0. We have to show that depth information correspond-

ng the trajectories starting from the distinct initial conditions q and

0 are identical. By using the trigonometric identities

in (θ ∗) = 2 tan (θ ∗/2)

1 + tan2 (θ ∗/2)
, (6.7)

os (θ ∗) = 1 − tan2 (θ ∗/2)

1 + tan2 (θ ∗/2)
, (6.8)

long with Eq. (2.2) one can easily show that

T
3[z + vtot t] = eT

3[R(vtot, θ
∗) p0 + vtot t]

= eT
3[p0 + sin (θ ∗) (vtot × p0)

+ (1 − cos (θ ∗)) (vtot × (vtot × p0)) + vtot t]

= eT
3[p0 + vtot t].

ence the result follows. �

orollary 24. Suppose the beacon is not at the origin, that is, b �= 0.

hen,

z
rd,kc(p0) =

⎧⎨
⎩

{p0} if vtot × (p0 − b) = 0,

{p0, b + R(vtot, θ ∗)
×(p0 − b)} otherwise,

here

an

(
θ ∗

2

)
= − eT

3(vtot × (p0 − b))

(e3 × vtot)T(vtot × (p0 − b))
.

emark 25. Note that for a given p0 ∈ R
3 the system is weakly

bservable.

.1.2. Nonzero, constant yaw rate

In this case r > 0. Consider γ ∈ (−π/2, π/2), ψ0, β ∈ [0, 2 π ) and

ve‖, r > 0. Then, for a given p0 ∈ R
3,

�t(p0) = p0 + ‖ve‖ r−1 κ(t) + vc t,

(�t(p0)) =
[∥∥p0 + ‖ve‖ r−1 κ(t) + vc t

∥∥2

eT
3[p0 + ‖ve‖ r−1 κ(t) + vc t]

]
,

here κ(t) is given by (5.4).

roposition 26. Consider vc ∈ R
3, ‖ve‖, r > 0, γ ∈ (−π/2, π/2) and

0, β ∈ [0, 2 π ). Then, for every p0 ∈ R
3,

nz
rd,kc(p0) = {p0}.
roof. Consider vc ∈ R

3, ‖ve‖, r > 0, γ ∈ (−π/2, π/2) and ψ0, β ∈
0, 2 π ). From Proposition 14, recall that
trimming trajectories in the presence of ocean currents using range
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nz
rd,kc(p0) =

{{
p0, −R(e3, π) p0

}
if sin (γ ) = ‖ve‖−1

eT
3vc,

{p0} otherwise.

nd note that I nz
rd,kc

(p0) ⊆ I nz
r,kc

(p0). Let z ∈ I nz
r,kc

(p0) be such that z ∈
nz

rd,kc
(p0). Then h(�t(z)) = h(�t(p0)) for all t ∈ [0, tf].

Consider z = −R(e3, π) p0 ∈ I nz
r,kc

(p0) and suppose that sin (γ ) =
ve‖−1

eT
3
vc. Notice that eT

3
p0 = 0 implies that z = p0. Hence we as-

ume eT
3p0 �= 0. Now h2(�t(z)) = h2(�t(p0)) for all t ∈ [0, tf] implies

hat eT
3
p0 = 0, which is a contradiction. Hence I nz

rd,kc
(p0) = {p0} and

he result follows. �

he following corollary follows immediately from the above proposi-

ion.

orollary 27. Suppose the beacon is not at the origin, that is, b �= 0.

hen,

nz
rd,kc(p0) = {p0}.
.2. Unknown ocean currents

Consider the system in the presence of an unknown constant

cean current vc ∈ R
3 described by

ṗe = g(ve, γ , r t + ψ0, β) + vc,

v̇c = 0,

y =
[‖pe‖2

eT
3pe

]
,

⎫⎪⎬
⎪⎭ (6.9)

here g(·) is given by (5.2). Given x0 := (p0, vc0
) ∈ R

3 × R
3, we let

z
rd,uc

(x0) and I nz
rd,uc

(x0) denote the set of states that are indistin-

uishable from the given initial state x0 for zero yaw rate and nonzero

onstant yaw rate, respectively, for the system (6.9). In the above, the

ubscript ‘rd’ means that both range and depth measurements are

vailable, the subscript ‘uc’ is the abbreviation of unknown current,

nd the superscripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate,

espectively. We next characterize I z
rd,uc

(x0) and I nz
rd,uc

(x0).

.2.1. Zero yaw rate

Let r = 0. For a given γ ∈ (−π/2, π/2), ψ0, β ∈ [0, 2π ) and initial

ondition (p0, vc0
) ∈ R

3 × R
3, we have

�t(p0, vc0
) = p0 + (v0 + vc0

) t,

(�t(p0, vc0
)) =

[‖p0 + (v0 + vc0
) t‖2

eT
3[p0 + (v0 + vc0

) t]

]
,

here v0 ∈ R
3 is given by (5.3).

roposition 28. Consider ‖ve‖ > 0, γ ∈ (−π/2, π/2), and ψ0, β ∈ [0,

π ). Then, for a given x0 := (p0, vc0
) ∈ R

3 × R
3,

z
rd,3(x0) =

{
(‖p0‖ s(μ+),−v0 + ‖vtot‖ s(σ)) : σ ∈ [0, 2π ]

}
⋃{

(‖p0‖ s(μ−),−v0 + ‖vtot‖ s(σ)) : σ ∈ [0, 2π ]
}
,

here μ+ := (μ∗,μ+), μ− := (μ∗,μ−), σ := (σ ∗, σ ), v0 ∈ R
3 is given

y (5.3), s(·) is given by (2.3) and

vtot := v0 + vc0
,

cos (λ∗) :=
(‖p0‖−1p0

)T(‖vtot‖−1vtot

)
,

os (μ∗) := ‖p0‖−1eT
3p0,

cos (σ ∗) := ‖vtot‖−1eT
3vtot,

μ+ := (σ + �) mod 2π,

μ− := (σ − �) mod 2π,

� := cos−1

(
cos (λ∗) − cos (μ∗) cos (σ ∗)

sin (μ∗) sin (σ ∗)

)
.
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roof. Consider x0 := (p0, vc0
) ∈ R

3 × R
3, ‖ve‖, r > 0, γ ∈

−π/2, π/2), and ψ0, β ∈ [0, 2 π ). Recall I z
rd,uc

(x0) ⊆ I z
r,uc(x0).

et x1 := (z, wc) ∈ I z
rd,uc

(x0) be such that x1 ∈ I z
r,uc(x0). Then, for

very t ∈ [0, tf],

1(�t(x1)) = h1(�t(x0)),

2(�t(x1)) = h2(�t(x0)).

learly h1(�t(x1)) = h1(�t(x0)) for every t ∈ [0, tf]. From

roposition 17, recall that

z
r,uc(x0) =

{
(‖p0‖ s(μ),−v0 + ‖vtot‖ s(σ)) : (μ,σ) ∈ Q

}
,

here

:=
{
(μ,σ) ∈ A × A : s(μ)Ts(σ) = cos (λ∗)

}
.

onsider (z, wc) = (‖p0‖ s(μ), −v0 + ‖vtot‖ s(σ)) for some (μ,σ) ∈
. Then, h2(�t(z, wc)) = h2(�t(x0)) for all t ∈ [0, tf] implies that

T
3z = eT

3p0, (6.10)

T
3wtot = eT

3vtot, (6.11)

here wtot = v0 + wc and vtot = v0 + vc0
. From Eqs. (6.10) and (6.11)

t follows that

os (μ∗
1) = ‖p0‖−1eT

3p0, (6.12)

os (σ ∗
1 ) = ‖vtot‖−1eT

3vtot. (6.13)

n the other hand, s(μ)Ts(σ) = cos (λ∗) implies

os (μ2 − σ2) = cos (λ∗) − cos (μ∗
1) cos (σ ∗

1 )

sin (μ∗
1
) sin (σ ∗

1
)

.

nvoking a standard result in elementary trigonometry, we conclude

hat μ1
2 = (σ2 + �) mod 2π and μ2

2 = (σ2 − �) mod 2π, where

:= cos−1

(
cos (λ∗) − cos (μ∗

1) cos (σ ∗
1 )

sin (μ∗
1
) sin (σ ∗

1
)

)
.

n other words,

z
rd,uc(x0)⊆

{(‖p0‖s(μ∗
1,μ1

2),−v0 + ‖vtot‖s(σ ∗
1 , σ2)

)
: σ2

∈ [0, 2π ]
}

⋃{(‖p0‖s(μ∗
1,μ2

2),−v0 + ‖vtot‖s(σ ∗
1 , σ2)

)
: σ2 ∈ [0, 2π ]

}
.

o show the converse, first consider q = (q1, q2) where q1 =
p0‖s(μ∗

1
,μ1

2
), and q2 = −v0 + ‖v0 + vc0

‖s(σ ∗
1
, σ2) for some σ 2 ∈

0, 2π ]. Note that ‖q1‖ = ‖p0‖ and v0 + q2 = ‖v0 + vc0
‖ s(σ ∗

1
, σ2).

sing these results, it can be shown that h(�t(q)) = h(�t(x0)) for

ll t ∈ [0, tf].

Next consider q̄ = (q̄1, q̄2) where q̄1 = ‖p0‖s(μ∗
1
,μ2

2
) and q̄2 =

v0 + ‖(v0 + vc0
)‖s(σ ∗

1 , σ2) for some σ 2 ∈ [0, 2π ]. Note that ‖q̄1‖ =
p0‖ and v0 + q̄2 = ‖v0 + vc0

‖ s(σ ∗
1 , σ2). Using these facts, it can be

hown that h(�t(q̄)) = h(�t(x0)) for all t ∈ [0, tf]. �

he following corollary follows immediately from the above proposi-

ion.

orollary 29. Suppose the beacon is not at the origin, that is, b �= 0.

hen,

z
rd,uc(x0) =

{
(‖p0‖ s(μ+),−v0 + ‖vtot‖ s(σ)) : σ ∈ [0, 2π ]

}
⋃{

(‖p0‖ s(μ−),−v0 + ‖vtot‖ s(σ)) : σ ∈ [0, 2π ]
}
,

here μ+ := (μ∗,μ+), μ− := (μ∗,μ−), σ := (σ ∗, σ ), v0 ∈ R
3 is given

y (5.3), s(·) is given by (2.3) and

vtot := v0 + vc0
,

cos (λ∗) :=
(‖p0 − b‖−1(p0 − b)

)T(‖vtot‖−1vtot

)
,
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Table 3

Observability analysis for zero and nonzero (but constant) yaw rate with range-only

measurements in the weaker sense.

System Zero yaw rate Nonzero, constant yaw rate

vtot × p0 = 0 vtot × p0 �= 0

Known current u∗-O Not u∗-WO u∗- O

Unknown current Not u∗-WO u∗-O

u∗-O: u∗-Observable and u∗-WO: u∗-Weakly observable.

Table 4

Observability analysis for zero and nonzero (but constant) yaw rate with

range and depth measurements, in the Hermann–Krener sense.

System Zero yaw rate Nonzero, constant yaw rate

Known current O O

Unknown current Not WO O

O: Observable and WO: Weakly observable.

p
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[

(
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‖

cos (μ∗) := ‖p0 − b‖−1eT
3(p0 − b),

cos (σ ∗) := ‖vtot‖−1eT
3vtot,

μ+ := (σ + �) mod 2π,

μ− := (σ − �) mod 2π,

� := cos−1

(
cos (λ∗) − cos (μ∗) cos (σ ∗)

sin (μ∗) sin (σ ∗)

)
.

6.2.2. Nonzero, constant yaw rate

Let r > 0. Consider γ ∈ (−π/2, π/2), ψ0, β ∈ [0, 2 π ) and

‖ve‖ > 0. Then, for a given initial condition x0 := (p0, vc0
) ∈ R

3 × R
3,

we have

�t(x0) = p0 + ‖ve‖ r−1 κ(t) + vc0
t,

h(�t(x0)) =
[∥∥p0 + ‖ve‖ r−1 κ(t) + vc0

t
∥∥2

eT
3[p0 + ‖ve‖ r−1 κ(t) + vc0

t]

]
,

where κ(t) is given by (5.4).

Proposition 30. Consider ‖ve‖, r > 0, γ ∈ (−π/2, π/2), and ψ0,

β ∈ [0, 2 π ). Then, for every (p0, vc0
) ∈ R

3 × R
3, I nz

rd,uc
(p0, vc0

) =
{(p0, vc0

)}.
Proof. Consider x0 := (p0, vc0

) ∈ R
3 × R

3, ‖ve‖, r > 0, γ ∈
(−π/2, π/2), and ψ0, β ∈ [0, 2 π ). Recall I nz

rd,uc
(x0) ⊆ I nz

r,uc(x0).

Let x1 := (z, wc) ∈ I nz
r,uc(x0) be such that x1 ∈ I nz

rd,uc
(x0). Then, for

every t ∈ [0, tf],

h1(�t(x1)) = h1(�t(x0)),

h2(�t(x1)) = h2(�t(x0)).

Clearly h1(�t(x1)) = h1(�t(x0)) for every t ∈ [0, tf]. From

Proposition 20, recall that

I nz
r,uc(x0) = {(p0, vc0

), (−R(e3, π) p0, 2 ‖ve‖ sin (γ ) e3

−R(e3, π) vc0
)}.

Suppose (z, wc) := (−R(e3, π) p0, 2 ‖ve‖ sin (γ ) e3 − R(e3, π) vc0
)

∈ I nz
r,uc(x0). Then,

h2(�t(z, wc)) = eT
3[z + ‖ve‖ r−1 κ(t) + wc t]

= eT
3[−R(e3, π)p0 + ‖ve‖ r−1 κ(t)

+‖ve‖ sin (γ )e3 t − R(e3, π)vc0
t]

= eT
3[−p0 + ‖ve‖ r−1 κ(t) + ‖ve‖ sin (γ )e3 t − vc0

t]

= −h2(�t(x0)) + ‖ve‖ sin (γ ) t + ‖ve‖ r−1 eT
3κ(t)

�= h2(�t(x0)).

Consequently, (z, wc) /∈ Inz
rd,uc

(x0). This completes the proof. �

The following corollary follows immediately from the above proposi-

tion.

Corollary 31. Suppose the beacon is not at the origin, that is, b �= 0.

Then,

I nz
rd,uc(p0, vc0

) = {(p0, vc0
)}.

Table 3 summarizes our findings with range and depth as output

functions, whereas Table 4 provides a summary of observability prop-

erties in the Herman–Krener sense.

7. Observability analysis with multiple beacons

In this section we extend the observability analysis of Section 5 to

multiple transponders. We make use of the characterization of indis-

tinguishable states in Section 5 to draw stronger conclusions in this

section.
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Consider a set of m ( ≥ 2) transponders located at fixed inertial

ositions B = {b1, . . . , bm} ⊂ R
3 with bk �= bl, 1 ≤ k, l ≤ m. In this case,

he corresponding output function is given by

=

⎡
⎣‖pe − b1‖2

...

‖pe − bm‖2

⎤
⎦. (7.1)

or the sake of clarity, we denote the set of indistinguishable states

ith respect to the ith beacon bi by bi
I ∗∗,∗∗(p0), whereas BI ∗∗,∗∗(p0)

enotes the sets of indistinguishable states with respect to all the

eacons. In the above the superscript refers to the situation of

ero/nonzero yaw rate, the subscript ‘∗’ refers to the availability of

ange/range and depth measurements, and the subscript ‘∗∗’ denotes

he case of known/unknown current. Clearly,

I ∗
r,∗(p0) =

⋂
1≤i≤m

bi
I ∗

r,∗(p0). (7.2)

n general, with more than four transponders it is possible to achieve

bservability. However our next results show that with less than four

ransponders it is possible to achieve observability with the aid of

epth information.

.1. Knownocean currents

In this section, under some mild conditions, we show that ob-

ervability can be achieved with at least two transponders for any

onstant yaw rate. However, the zero yaw rate case requires depth

nformation.

.1.1. Zero yaw rate

In this case, one can clearly obtain observability with four

ransponders using trilateration. However, with depth measure-

ents, it is possible to achieve observability with two distinct

ransponders.

roposition 32. Let m ≥ 2 and assume that the depth information is

ccessible. Consider vc ∈ R
3, ‖ve‖ > 0, γ ∈ (−π/2, π/2), and ψ0, β ∈

0, 2 π ). Suppose there exist distinct i, j ∈ {1, . . . , m} such that

b j − bi)
T(vtot × e3) �= 0.

hen, for every p0 ∈ R
3,

I z
rd,kc(p0) = {p0}.

roof. Let p̄ ∈ R
3, p̄ �= p0, be such that p̄ ∈ BI z

rd,kc
(p0). Then, for each

, 1 ≤ s ≤ m,

p̄ + vtot t − bs‖2 = ‖p0 + vtot t − bs‖2, (7.3)
trimming trajectories in the presence of ocean currents using range
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(

E⎡
⎢⎣
T
3(p̄ + vtot t − bs) = eT

3(p0 + vtot t − bs), (7.4)

hich implies that

p̄ − bs‖2 = ‖p0 − bs‖2, (7.5)

T
tot(p̄ − bs) = vT

tot(p0 − bs), (7.6)

T
3(p̄ − bs) = eT

3(p0 − bs), (7.7)

here vtot = v0 + vc and v0 is given by (5.3). Let i, j ∈ {1, . . . , m} be

uch that bi �= bj and (b j − bi)
T(vtot × e3) �= 0. Then, Eq. (7.5) yields

p̄ − bi‖2 = ‖p0 − bi‖2, (7.8)

p̄ − b j‖2 = ‖p0 − b j‖2. (7.9)

aking the difference of the above two equations we obtain

b j − bi)
Tp̄ = (b j − bi)

Tp0. (7.10)

qs. (7.6), (7.7) and (7.10) yield

(b j − bi)
T

vT
tot

eT
3

⎤
⎥⎦p̄ =

⎡
⎢⎣

(b j − bi)
T

vT
tot

eT
3

⎤
⎥⎦p0. (7.11)

y hypothesis the coefficient matrix is invertible and consequently

¯ = p0. �

.1.2. Nonzero, constant yaw rate

The following result shows that with at least two distinct

ransponders at different depths, observability can be achieved for

onzero yaw rate in the presence of a known current.

roposition 33. Consider m ≥ 2, vc ∈ R
3, ‖ve‖, r > 0, γ ∈

−π/2, π/2), and ψ0, β ∈ [0, 2 π ). Suppose there exists k, l ∈
1, . . . , m} such that eT

3
(bk − bl) �= 0. Then, for every p0 ∈ R

3

I nz
r,kc(p0) = {p0}.

roof. For every i ∈ {1, . . . , m}, Corollary 15 implies that

i
I nz

r,kc(p0) =

⎧⎪⎨
⎪⎩

{p0, bi − R(e3, π)

×(p0 − bi)} if sin (γ ) = eT
3vc

‖ve‖ ,

{p0} otherwise.

ote that if sin (γ ) �= ‖ve‖−1
eT

3
vc, then bi

I nz
r,kc

(p0) = {p0} and con-

equently BI z
r,kc

(p0) = {p0}. Hence we assume sin (γ ) �= ‖ve‖−1
eT

3vc.

hen, bi
I nz

r,kc
(p0) =

{
p0, bi − R(e3, π) (p0 − bi)

}
. Further, it can be

asily verified that p0 = bk − R(e3, π) (p0 − bk) for all k implies bk −
l = 0, ∀ k �= l, while bk − R(e3, π) (p0 − bk) = bl − R(e3, π) (p0 −
l) implies eT

3(bk − bl) = 0, for all k �= l, which is a contradiction.

ence

I nz
r,kc(p0) =

⋂
1≤i≤m

bi
I nz

r,kc(p0) = {p0}.

�

.2. Unknown ocean currents

In this section we show, under some mild conditions, that observ-

bility can be achieved with at least two transponders for nonzero

onstant yaw rate. However, the zero yaw rate case requires at least

hree transponders as well as depth information.
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.2.1. Zero yaw rate

roposition 34. Let m ≥ 3 and assume that the depth information

s available. Consider (p0, vc0
) ∈ R

3 × R
3. Suppose there exist distinct

, j, k ∈ {1, . . . , m} such that

T
3((bi − b j) × (b j − bk)) �= 0, (7.12)

T
3((p0 − b j) × (p0 − b j)) �= 0. (7.13)

onsider vc ∈ R
3, ‖ve‖ > 0, γ ∈ (−π/2, π/2), and ψ0, β ∈ [0, 2 π ).

hen,

I z
rd,uc(p0, vc0

) =
{
(p0, vc0

)
}
. (7.14)

roof. Let (p̄, v̄c) ∈ R
3 × R

3, (p̄, v̄c) �= (p0, vc0
), be such that

p̄, v̄c) ∈ BI z
rd,uc

(p0, vc0
). Then, for each s, 1 ≤ s ≤ m,

p̄ + v̄tot t − bs‖2 = ‖p0 + vtot t − bs‖2

nd

T
3(p̄ + v̄tot t − bs) = eT

3(p0 + vtot t − bs)

or all t ∈ [0, tf], where vtot = v0 + vc0
, v̄tot = v0 + v̄c and v0 ∈ R

3 is

iven by (5.3). This implies that

p̄ − bs‖2 = ‖p0 − bs‖2, (7.15)

v̄tot‖2 = ‖vtot‖2, (7.16)

¯ T
tot(p̄ − bs) = vT

tot(p0 − bs) (7.17)

nd

T
3p̄ = eT

3p0, (7.18)

T
3v̄tot = eT

3vtot. (7.19)

et i, j, k ∈ {1, . . . , m} be such that

T
3((bi − b j) × (b j − bk)) �= 0, (7.20)

T
3((p0 − b j) × (p0 − b j)) �= 0. (7.21)

hen Eq. (7.15) implies that

‖p̄ − bi‖2 = ‖p0 − bi‖2,

‖p̄ − b j‖2 = ‖p0 − b j‖2,

‖p̄ − bk‖2 = ‖p0 − bk‖2.

⎫⎪⎬
⎪⎭ (7.22)

aking the differences of ‖p̄ − bi‖2 = ‖p0 − bi‖2 and ‖p̄ − b j‖2 =
p0 − b j‖2 yields

b j − bi)
Tp̄ = (b j − bi)

Tp0 (7.23)

hile taking the differences of ‖p̄ − b j‖2 = ‖p0 − b j‖2 and ‖p̄ −
k‖2 = ‖p0 − bk‖2 yields

bk − b j)
Tp̄ = (bk − b j)

Tp0. (7.24)

qs. (7.15), (7.23) and (7.24) imply that

(b j − bi)
T

(bk − b j)
T

eT
3

⎤
⎥⎦p̄ =

⎡
⎢⎣

(b j − bi)
T

(bk − b j)
T

eT
3

⎤
⎥⎦p0. (7.25)
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Table 5

Observability analysis for zero and nonzero (but constant) yaw rate with

multiple range measurements in the weaker sense.

System Zero yaw rate Nonzero, constant yaw rate

Known current u∗- O u∗- O

Unknown current u∗- O u∗- O

u∗-O: u∗-Observable.

Table 6

Observability analysis for zero and nonzero (but constant) yaw rate with

multiple range measurements in the Hermann–Krener sense.

System Zero yaw rate Nonzero, constant yaw rate

Known current O O

Unknown current O O

O: Observable.
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By assumption the coefficient matrix is invertible and consequently

p̄ = p0. Since p̄ = p0, Eq. (7.17) with (7.19) yield⎡
⎢⎣

(p0 − bi)
T

(p0 − b j)
T

eT
3

⎤
⎥⎦v̄tot =

⎡
⎢⎣

(p0 − bi)
T

(p0 − b j)
T

eT
3

⎤
⎥⎦vtot. (7.26)

Now the assumption implies that v̄c = vc0
. �

7.2.2. Nonzero, constant yaw rate

Our next result shows that the with at least two distinct transpon-

ders, observability can be achieved for nonzero yaw rate in the

presence of unknown currents. The proof is similar to that of

Proposition 33.

Proposition 35. Suppose m ≥ 2. Consider ‖ve‖, r > 0, γ ∈
(−π/2, π/2), and ψ0, β ∈ [0, 2 π ). Suppose there exist distinct k, l ∈
{1, . . . , m} such that eT

3
(bk − bl) �= 0. Then, for every (p0, vc0

) ∈ R
3 ×

R
3,

BI nz
r,uc(p0, vc0

) = {(p0, vc0
)}. (7.27)

Tables 5 and 6 summarizes our findings with multiple range

and/or depth as output functions in the weaker and Herman–Krener,

sense under suitable assumptions, as shown in the results of this

section.

8. Conclusions

This paper provided an analysis of the observability properties of

the kinematic model of an autonomous underwater vehicle (AUV)

moving in 3D, under the influence of ocean currents, using measure-

ments of its depth and the range to one or more fixed transpon-

ders. We exploited the situation where the vehicle undergoes

maneuvers commonly known as trimming trajectories, that are nat-

urally obtained when the inputs (thruster rpms and control surface

deflections) are held constant. In the case of a single transponder,

we showed that for nonzero yaw rate, in the presence of non-zero

but known ocean currents, the 3D kinematic model of an AUV under-

going trimming trajectories subject to the condition that the flight-

path angle satisfies a current-related constraint is observable. In

particular, in the absence of currents the current-related constraint

results in a nonzero flight-path angle. However, in the presence of

unknown currents, we proved that the model is only weakly observ-

able for nonzero yaw rate. Further, when the latter condition fails, we

concluded that the model also fails to be weakly observable. By fus-

ing depth and single range information together, under the assump-

tion that the yaw rate is different from zero, we showed that the 3D

kinematic model of an AUV undergoing trimming trajectories subject
Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV

and depth measurements, Annual Reviews in Control (2015), http://dx.do
on-zero unknown currents is observable even when the flight-path

ngle is zero (vehicle moving in a horizontal plane). These obvious

dvantages are lost if yaw rate is equal to zero, for in this case the

odel is only weakly observable. For all situations where the model

s weakly observable we gave a complete characterization of the sets

f states that are indistinguishable from a given initial state. Finally,

e showed that the 3D kinematic model of an AUV undergoing trim-

ing trajectories with multiple (at least two) transponders is observ-

ble in all situations if the yaw rate is different from zero. However,

ero yaw rate case requires depth information to achieve observabil-

ty. Future work will aim at exploiting the use of trimming trajecto-

ies to estimate the position of an underwater vehicle in 3D using

ultiple-range localization systems.
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