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We analyze the observability properties of the kinematic model of an autonomous underwater vehicle (AUV)
moving in 3D, under the influence of ocean currents, using range and depth measurements. The results ob-
tained shed light into the types of trajectories that an AUV may be requested to undergo in order to ensure
observability, which is a crucial step in the design of single or multiple beacon positioning systems. We as-
sume that the AUV is equipped with two sensor suites: the first computes the distance (range) of the AUV to
single or multiple fixed transponders, while the second measures the vehicle’s depth. In both situations, the
vehicle has access to its heading angle. We further assume that the AUV undergoes maneuvers commonly
known as trimming trajectories, that are naturally obtained when the inputs (thruster rpms and control sur-
face deflections) are held constant. This is done for two main reasons: (i) the class of trajectories thus gen-
erated is sufficiently rich for a vast number of applications and (ii) from an observability-analysis standpoint
they lead to mathematical tractability and allow for an intuitive physical interpretation. These facts stand in
sharp contrast to common approaches adopted in the literature, where the characterization of trajectories
that yield observability is only implicit and defies a simple interpretation.

In the set-up adopted, the trimming trajectories are completely characterized by three variables: (a) linear
body speed ||v]|; (b) flight-path angle y; and (c) yaw rate w We assume that ||v|| > 0, y, and gb are constant
but otherwise arbitrary (within the constraints of the vehicle capabilities) and examine the observability of
the resulting system with the two above mentioned sensor suites. We adopt definitions of observability and
weak observability that seek inspiration from those proposed by Herman and Krener (1977) but reflect the
fact that we consider specific kinds of maneuvers in 3D.

We start with the single transponder case. For range measurements only, we show that in the absence of
ocean currents the 3D kinematic model of an AUV undergoing trimming trajectories with nonzero flight-
path angle and yaw rate is observable. In the case of non-zero but known ocean currents, identical results
apply subject to the condition that the flight-path angle satisfies a current-related constraint. However, if the
current is non-zero and unknown, the model is only weakly observable. The situation changes completely
when both range and depth measurements are available. In this case, under the assumption that the yaw rate
is different from zero, observability is obtained even when the flight-path angle is zero (vehicle moving in a
horizontal plane) and there are non-zero unknown currents. These obvious advantages are lost if yaw rate is
equal to zero, for in this case the model is only weakly observable. In all situations where the model is weakly
observable we give a complete characterization of the sets of states that are indistinguishable from a given
initial state. Finally, we show that the extended model that is obtained by considering multiple (at least two)
transponders is observable in all situations if the yaw rate is different from zero.
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1. Introduction

There is currently widespread interest in the development and op-
eration of autonomous underwater vehicles for challenging scientific
and commercial applications at sea. One of the key requisites for the
execution of such missions is that the vehicles be capable of comput-
ing their positions in 3D space. To this effect, a wide range of sen-
sor suites and methods can be used. See for example Kinsey, Eustice,
and Whitcomb (2006) and the references therein for a fast paced in-
troduction to this challenging area of research and some of the key
technological solutions adopted.

In recent years, motivated by the need to substantially reduce the
cost of underwater positioning systems, there has been a flurry of ac-
tivity on the study of single beacon positioning systems. These have
the potential to drastically reduce the complexity of position sys-
tems, for they enable a vehicle to find its position in space by us-
ing measurements of the successive ranges between the vehicle and
a transponder located at a fixed, known position. In spite of signifi-
cant advances in this area, however much work remains to be done
to clarify basic issues related to the observability properties of sin-
gle or multiple beacon positioning systems. Namely, to characterize
the types of vehicle trajectories that render a range-based positioning
design model observable. Clearly, this is an important first step in the
design of reliable position estimators.

The literature on single beacon positioning, oftentimes referred
to as single beacon navigation, is by now quite extensive and de-
fies a simple summary. For this reason, in what follows we give
only a brief description of representative work in the area. Differ-
ent types of models for 2D and 3D single beacon navigation systems
have been proposed and the corresponding observability issues have
been addressed by resorting to a number of methods that include
linearization techniques (Gadre & Stilwell, 2004, 2005) and state-
augmentation techniques (Krener & Isidori, 1983), together with dif-
ferential geometry-based (Arrichiello, Antonelli, Aguiar, & Pascoal,
2011) and algebraic methods (Jouffroy & Reger, 2006).

In Gadre and Stilwell (2004) the authors study the observability
of single beacon navigation systems for underwater vehicles evolving
in 2D. To this effect, a nonlinear model is adopted where the state
vector consists of the vehicle’s position and heading, the input vec-
tor includes the body’s linear and rotational speeds, and the output
vector consists of ranges to a fixed beacon and heading. The vehicle’s
sideslip angle is assumed to be negligible. The nonlinear system is lin-
earized about nominal trajectories and standard linear time-varying
(LTV) observability tools are used to analyze the observability proper-
ties of the resulting linear model (Rugh, 1996). In Gadre and Stilwell
(2005), unknown constant ocean currents are augmented to the state
vector and a procedure identical to that in Gadre and Stilwell (2004)
is used to study the observability of the ensuing model. Because of
the tools used, all results are local in nature.

The work in Arrichiello et al. (2011) addresses observability is-
sues in the context of relative AUV positioning using inter-vehicle
range measurements. This is done by exploiting nonlinear observabil-
ity concepts and resorting to Herman-Krener observability rank con-
ditions of local weak observability (Hermann & Krener, 1977). Two
observability metrics, given by the inverse of the minimum singular
value and the ratio between the maximum and minimum singular
values of an appropriately defined observability matrix are derived
for the system under study. The results obtained are validated exper-
imentally in an equivalent single beacon navigation scenario.

The problem of single-beacon navigation is also studied in
Jouffroy and Reger (2006). The proposed estimator structure and re-
lated observability conditions are derived using nonlinear differen-
tial algebraic methods. In Parlangeli and Indiveri (2014), the authors
discuss the observability properties of a kinematic model for cooper-
ative underwater vehicles using range measurements. Using a state
augmentation technique that seeks inspiration from that in Batista,

Silvestre, and Oliveira (2011), the trajectories of the nonlinear systems
evolving on R3 x $? are lifted into an equivalent linear time varying
(LTV) system on R%> and the observability analysis is done in a LTV
setting.

Recently, the work reported in Bayat, Crasta, Aguiar, and Pascoal
(2015) addresses the problem of range-based Autonomous Under-
water Vehicle (AUV) localization in the presence of unknown ocean
currents. In the set-up adopted, the AUV is equipped with an Atti-
tude and Heading Reference System (AHRS), a depth sensor, and an
acoustic device that provides measurements of its distance to a set
of stationary beacons. The number of active beacons is not known in
advance and may vary with time. The objective is to simultaneously
localize the AUV and the beacons. In the design model the states
evolve continuously with time but the range measurements are only
available at discrete instants of time, possibly in a non-uniform man-
ner. For trimming or steady-state maneuvers (that correspond to AUV
trajectories with constant linear and angular velocities expressed in
the body-frame) it is shown that if either the position of one of the
beacons or the initial position of the AUV are known, then even with-
out depth information the system is weakly observable (i.e., the set
of states that are indistinguishable from a given initial configuration
contains only a set of finite isolated points). If depth measurements
are also available, then the system is observable even in the presence
of unknown constant ocean currents. The theoretical setting adopted
borrows also from state augmentation techniques.

In spite of the progress done towards understanding observabil-
ity issues related to range-based AUV positioning, work is still re-
quired to characterize explicitly the types of AUV trajectories that
yield global observability. This is a direct consequence of the non-
linear characteristics of the problem at hand, which mandate the use
of analysis tools that go beyond those afforded by the theory of ob-
servability for linear time invariant (LTI) systems (Rugh, 1996).

The theory of nonlinear observability has received considerable
impetus due to the pioneering work of Hermann and Krener (1977).
In this seminal work the authors presented the celebrated Herman-
Krener algebraic rank condition for weak observability. The drawback
of it is that it is only a sufficient condition and, most importantly,
it fails to provide any additional insight into the unobservable space
when the rank condition fails. We recall that if a nonlinear system
is weakly observable at a given initial state in the sense of Herman-
Krener, then there exists, for every state in an open neighborhood of
the given initial state, a corresponding input that will distinguish it
from that initial state. Notice, however that this does not imply the
existence of a single admissible input that will be able to so for every
state in the neighborhood. Hence, in practice, there is a need to iden-
tify a class of admissible inputs (if its exists) with the property that
every input has the ability to distinguish every pair of initial configu-
rations through observation of the outputs.

Motivated by the above considerations, in this paper we use the
weaker notion of observability introduced in Crasta, Bayat, Aguiar,
and Pascoal (2014) to study the observability properties of a 3D un-
derwater vehicle model in the presence of ocean currents, under the
assumption that the vehicle can only measure the distances to one
or more fixed transponders located at known inertial positions. As in
Crasta et al. (2014) we consider the case where the vehicle moves
along trimming trajectories characterized by constant linear body
speed, flight-path angle, and yaw rate. For a single transponder case,
with range measurements only, we show that in the absence of ocean
currents the 3D kinematic model of an AUV undergoing trimming tra-
jectories with nonzero flight-path angle and yaw rate is observable.
In the case of non-zero but known ocean currents, identical results
apply subject to the condition that the flight-path angle satisfies a
current-related constraint. However, if the current is non-zero and
unknown, the model is only weakly observable. The situation changes
completely when both range and depth measurements are available.
In this case, under the assumption that the yaw rate is different from
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zero, observability is obtained even when the flight-path angle is zero
(vehicle moving in a horizontal plane) and there are non-zero un-
known currents. These obvious advantages are lost if the yaw rate is
equal to zero, for in this case the model is only weakly observable. In
all situations where the model is weakly observable we give a com-
plete characterization of the sets of states that are indistinguishable
from a given initial state. Finally, we show that the extended model
that is obtained by considering multiple (at least two) transponders is
observable in all situations if the yaw rate is different from zero. The
envisioned impact of the results obtained is twofold: (i) they afford
practitioners rules for the choice of general types of trajectories that
a vehicle should perform in order to enhance single/multiple beacon
observability properties, and (ii) by providing a complete characteri-
zation of the sets of indistinguishable states, they are extremely help-
ful during the phase of positioning system design by clarifying the
number of models to adopt in a multiple model adaptive estimation
(MMAE) set-up, along the lines proposed in Bayat and Aguiar (2012)
and Bayat et al. (2015).

At this point, it is relevant to point out that some of the observ-
ability results derived in the present paper bear resemblance to the
results derived by the authors in Bayat et al. (2015) using a different
mathematical setting. However, the observability analysis done in the
present work (for a larger number of single beacon navigation design
models) builds on conceptually simple geometric arguments and as
such it departs from other approaches proposed in the literature, in-
cluding that in Bayat et al. (2015). It is this simplicity that allows us to
fully characterize and give intuitive geometric interpretations of the
sets of indistinguishable states that are obtained when an AUV under-
goes trimming trajectories under a number of conditions that involve
the presence of ocean currents and the availability of complementary
sensor packages.

The paper is organized as follows. Section 2 introduces some ba-
sic notation and mathematical results that will be used in later sec-
tions. Section 3 summarizes key definitions of observability in the
context of nonlinear systems. Section 4 describes the model adopted
for the study of the observability properties of a 3D autonomous un-
derwater vehicle (AUV) model when the vehicle undergoes motions
along trimming trajectories, using range and depth measurements.
Sections 5, 6, and 7 address the observability properties of the 3D
single beacon system model for the trimming trajectories and differ-
ent sensor suites. Finally, Section 8 discusses the results obtained and
introduces some topics that warrant further research effort.

2. Mathematical preliminaries

Given a smooth real-valued function f : R — R, we define f®) :=
% with f© = f Givena, b € R such that a® + b? # 0, we let atan2(b,
a) be the unique angle 6 < [0, 2 ) satisfying sin6 = a/+/a? + b2 and
cos6 =b/+/a? + b2, Given a, b € R, we write a =b mod 27 if there
exists k € Z such that a = b+ 2km. We denote the Euclidean norm
inR3 by || - || and the unit sphere in R3 by $? := {x e R? : ||x| = 1}.
Further, we denote the 3 x 3 identity matrix by I3 and the zero vector
or matrix by 0. We further denote the elements of the standard bases
for R3 by e;, e, and ej.

We define the orthonormal vectors w(f) and w+(6) by

cos () —sin (0)
w(9) := | sin(9) | and w(0) :=| cos(0) |. (2.1)
0 0

The group of special orthogonal matrices in 3-dimensions is repre-
sented by SO(3). For every a € R3, (a x ) is the matrix representation
of the linear map b~ ax b, b e R3. Given a e R3 and 6 € [0, 27),
R(a,0) € SO(3) denotes the rotation matrix about the axis a by an
angle 0, given by (Murray, Li, and Sastry, 1994, Prop. 2.4)

R(a,0) = +sinf (ax )+ (1 —cosd) (ax)>. (2.2)

We parametrize points in S2 by the map s: [0, 2] x [0, ] — S2

described by

cos (a1) sin ()

sin (orq) sin (@) |, o = (o, o). (2.3)
cos (atp)

s(a) :=

3. Observability of nonlinear systems

Consider the general nonlinear system

x =f(x,u),
v = h(x), } (3.1)

where X € R" is the state, u is the input vector taking values in a com-
pact subset 2 of RP containing zero in its interior, f is a complete
and smooth vector field on R", and the output functionh : R" — RY
has smooth components. We recall the following definitions from
Hermann and Krener (1977). To capture the physical constraints of
the underlying system, we assume that u belongs to a (possibly large)
set U,q of admissible inputs.

Definition 1 (Indistinguishability). Two initial states z,z’ € R" of
(3.1) are indistinguishable in [to, t;) if, for every input u in the set of
admissible inputs 24,4 the solutions of (3.1) satisfying the initial con-
ditions x(tp) = z and x(tg) = z’ produce identical output-time histo-
ries in [to, tf).

For every z ¢ R", let Z(z) € R" denote the set of all states that are
indistinguishable from z. Note that indistinguishability is an equiva-
lence relation.

Definition 2 (Observability). The system (3.1) is observable at z ¢ R"
if Z(z) = {z}, and is observable if Z(z) = {z} for every z € R".

Definition 3 (Weak observability). The system (3.1) is weakly observ-
able at z € R" if z is an isolated point of Z(z) and is weakly observable
if it is weakly observable at every z € R".

It is important to remark that the above definitions, though ele-
gant, may prove to be quite restrictive in a number of applications.
To show this, notice that if a system is weakly observable at a point
z ¢ R", then there is an open neighborhood N, of z such that every
initial condition z’' € N; different from z is distinguishable from z it-
self. However, the computation of a particular input that will distin-
guish z and z’ may, for a fixed z, depend on the initial condition z’.
It is therefore natural to ask whether, for a given system, there is a
specific class of admissible inputs that are simple to characterize and
yet can be used to distinguish the state z from any other state z’ € N,
by forcing the system with a particular, fixed input in that class. Here,
we are strongly motivated by the concept of uniform universal inputs
introduced by Sontag in Sontag and Wang (2008).

As we will show later, the answer to the above question may be
affirmative in the context of systems that describe the motions of
a large class of autonomous vehicles if the outputs (measurements)
are chosen appropriately. In the latter case, there is a reduced class
Uc C Uyq of admissible inputs, with elements denoted u*, that can
be parameterized in terms of a small number of parameters but
are sufficiently general to generate maneuvers of interest in a wide
range of applications. One such example consists of AUV trimming
trajectories that are obtained by holding the physical inputs to the
vehicle constant. As we will show later, such trajectories are fully
parametrized by total speed, yaw rate, and flight path angle and cor-
respond to helices in 3D space that may degenerate into circumfer-
ences and straight lines (Elgersma, 1988). In the context of this pa-
per, such parameters play the role of inputs to the model adopted for
AUV trajectory generation. Interestingly enough, each element in this
reduced class of inputs (that generate helicoidal trajectories) is suffi-
ciently rich to yield, under well defined conditions, useful observabil-
ity properties for the models whose outputs consist of range or range
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Fig. 1. 3D AUV model for single-beacon navigation.

and depth measurements. This result affords system designers an ef-
fective way of selecting simple and yet effective manoeuvres from
an observability standpoint. With this motivational background, we
recall a weaker notion of observability originally proposed in Crasta
et al. (2014) that, as we shall see, will allow for the derivation of ob-
servability conditions for the localization system studied in this paper
that are easy to interpret physically.

Definition 4 (u*-Indistinguishability). Let u* be an admissible input
in a given set .. We say that two initial states z,z’ ¢ R" of (3.1) are
u*-indistinguishable in [ty, tf), if the solutions of (3.1) satisfying the
initial conditions Xx(ty) = z and X(ty) = z’ produce identical output-
time histories in [to, tf) for u*.

For every z € R", let 7% (z) < R" denote the set of all states that
are u*-indistinguishable from z.

Definition 5 (u*-Observability). The system (3.1) is u*-observable at
z € R" if 7% (z) = {z}, and is observable if 7% (z) = {z} for every z ¢
R™.

Definition 6 (u*-Weak observability). The system (3.1) is u*-weakly
observable at z < R" if z is an isolated point of Z% (z) and is u*-weakly
observable if it is u*-weakly observable at every z € R".

Remark 7. Note that observability (O) implies weak observability
(WO), while u*-observability (u*-O) implies u*-weak observability
(u*-WO0).

4. 3D single-beacon model and trimming trajectories

In what follows, {I} and {B} denote a inertial and a body-fixed
frame with unit vectors {X;, y;, z;} and {Xg, Vg, Zg}, respectively. See
Fig. 1. We describe the attitude of an AUV using a matrix R € SO(3)
such that the multiplication of R by a body-fixed vector expresses
that vector in the inertial frame. We use the Euler angles of roll (¢),
pitch (6), and yaw () (in this order) to parametrize the matrix R lo-
cally. The kinematic equations that describe the motion of an AUV in
{I} are given by

P =R (V¥) Ry(0) Ru(P) V.
i=Jme. } (1)

where p € R3 is the inertial position of the AUV, v := (u, v, w) € R3
is the body-fixed linear velocity vector relative to {I} expressed in
(B}, w := (p., q,1) € R3 is the body-fixed angular velocity vector rela-
tive to {I} expressed in {B}, n := (¢, 0, ¥) € [0,27) x (-7 /2,7 /2) x
[0,27) is the Euler angle vector (roll, pitch, and yaw), R,() :=

R(e3. V), Ry(0) :=R(e;.0). Rx(¢) :=R(e1, ¢), and

1 sin(¢) tan(f) cos(¢) tan(0)
J() = |:O cos (¢) —sin(¢) :| (4.2)
0 sin(¢)/cos(@) cos(¢)/cos(0)

Following standard nomenclature (Fossen, 1994), the AUV dynamic
equations admit the general representation

M[Z)} +C(v, w) [:)] +D(Vv, w) |:Z):| +g(p) =1, (43)

where M := Mgp + M, is the generalized mass matrix of the AUV with
Mg and M, denoting the rigid-body mass matrix and added mass
matrix, respectively, C(v, ) := Cgg(V, @) + C4(V, ®) is the matrix of
Coriolis and centripetal terms (including those arising from added
mass effects), D(v, @) is the hydrodynamic damping matrix, g(n) is
the vector of gravitational/buoyancy forces and moments, and t is
the vector of control inputs (force and torque due to thrusters and/or
control planes).

We now recall the concept of trimming trajectories for a vehicle
with motion described by (4.1)-(4.3), see Elgersma (1988). This type
of trajectories play an important role in the analysis of flight dynam-
ics (namely in aircraft control) because they correspond to situations
where there is a force-moment equilibrium in the body-fixed frame,
for a fixed input control configuration. Mathematically, they corre-
spond to the equilibrium points of the dynamic Eq. (4.3) with con-
stant inputs, that is, v=0 and ® =0 forall t > 0, yielding v = v,
and ® = we, Where Ve and we. (values at equilibrium) are constant.

From the dynamic Eq. (4.3), it follows that all the forces and mo-
ments that depend on the linear and rotational velocity vectors are
constant, with the exception of the static forces and moments g(n)
that depend on ¢ and 6. Hence, for a given constant input configu-
ration, in order to satisfy Eq. (4.3) it is necessary that g(n) must be
a constant vector, as the linear and angular velocity vectors are con-
stant along trimming trajectories. Now notice that stationarity of g(»)
implies that ¢ and 6 are constant, that is, ¢ = ¢e and 6 = 6., where
¢e and 0 (values at equilibrium) are constant.

At equilibrium ¢ = ¢e = 0and 6 = 6 = 0, thus implying that =
Y e5. From Eq. (4.1) @ = J()~! §, from which we may conclude that

) —sin (6e)
We =V |:sin (¢pe) cos («93):| . (4.4)
cos (¢e) cos (Oe)

Notice that the body-fixed trimming angular velocity vector depends
on the roll, pitch, and yaw rates. Further, since e is a constant vector,
Eq. (4.4) implies that v is a constant. In other words, the trimming
yaw angle 1. is given by

Ye(t) =1t + o, (4.5)

where r € R is the constant yaw rate and ¥ € [0, 27) is the initial
yaw angle.

Define & := [£, & &' = Ry (0e)Rx(¢he) Ve and note that & € R? is
a constant vector because e, ¢, Ve are constant. Then, from the lin-
ear velocity kinematics transformation (4.1) it follows that

Pe = [W(rt+ 1) —w-(rt+q) esé (4.6)

where pe describes the position of the AUV along a trimming trajec-
tory and w(-), w(-) are given by (2.1). Define 8, y € [0, 277) as

B = atan2(&;, &),
y = atan2(—&;, || & x e3||).} o

It can be shown that § is the angle between the vehicle’'s heading
and the velocity vector heading (that is, the side-slip angle) and y is
the angle between the horizontal and the velocity vector (that is, the
trimming flight path angle). By definition of the atan2 function, note
that atan2(b, a) = tan~! (b/a) € (- /2, 7w /2) whenever a > 0. Since
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Y

Fig. 2. An AUV trimming trajectory.

X -V

Fig. 3. Trimming trajectory shown in the x; — z; plane. (y - flight path angle; 6 - pitch
angle; « - angle of attack).

l€ x es|| > 0, from (4.7) we conclude that y € [—7 /2, 7 /2]. We make
the following assumption.

Assumption 8. We assume that ||§ x e3| > 0, that is, y e
(-m/2,7/2).

Eq. (4.6) is usually written in the equivalent form

Pe = [[Vell cos (y)w(rt + o — B) — [[Vell sin(y)es, (4.8)

where ||ve|| is the linear body speed at trimming. The solution of (4.8)
for the initial condition py € R3 is given by

Pe(t) —Po = [I[Vell T (= cos (Y)W (rt + o — B)
+cos (y)w* (Yo — B) —sin(y) est),

from which it can be easily concluded that the only trim-
ming trajectories of the underwater vehicle are helices with radii
Ivell 71 cos (y) that may degenerate into straight lines or circum-
ferences. Thus, all trimming trajectories can be parametrized by total
vehicle speed, flight path angle, and yaw rate. See Figs. 2 and 3.

In the presence of a constant ocean current v € R3, it can be
shown that Eq. (4.8) can be rewritten as

Pe = [|[Vel| cos (y) w(rt + o — B) — [[Vell sin(y)es +ve  (4.9)

where v, is now the steady state velocity of the vehicle with respect
to the fluid and the sideslip B angle is defined accordingly. We re-
mark that in the analysis that follows the dynamics of the AUV don’t
play any role. They were only introduced to simply show what kind
of trimming trajectories an AUV admits in 3D.

Consider now a set of m( > 1) transponders located at fixed in-
ertial positions by, ..., b, € R? with b; # b, 1 <ij<mi#j We
assume that the AUV is equipped with a range sensor that measures
its distance to these transponders and also a depth sensor. Then, the
output (measurement) function is given by

T
y= |
Ya

where
T
lpe — byl
yr = ,
lPe — b ||
Ya = e-;pe

We consider two cases (i) m = 1 and (ii) m > 2. First we begin with
m =1 and characterize the sets of indistinguishable states. Later
we extend the characterization in the m > 2 case using that ob-
tained for the m =1 case. With these characterizations we derive
conclusions about the observability/weak observability properties
of the single/multiple beacon system for different sensor-actuator
configurations.

5. Observability analysis with single beacon

From the results in the previous section, the 3D kinematic model
associated with the trimming trajectories of an AUV that measures its
distance to a single transponder located at a known position vector
b € R3 is given by

Pe(t) = g(Ve, ¥, 1t + Y0, B) + Ve (0),

vc(t) =0, (5.1)
y(©) = [Ipe(®) — b,
where

g(Ve, . 1t + Yo, B) := [[Vell (cos (¥ )W(rt + ¥74) —sin (y)es),
(5.2)

Pe(t) € R3 is the inertial position vector, v¢(t) € R3 a constant ocean
current disturbance, ||ve|| > 0 is the linear trimming body speed, y e
(=m /2, /2) is the trimming flight path angle, ¥/ is the initial yaw
angle, r is the yaw rate , B is the side-slip angle , and {4 := Yo — B
is the initial heading of the velocity vector. We make the following
assumption.

Assumption 9. Without loss of generality, we assume that the bea-
con is at the origin.

Eq. (5.1) defines a nonlinear input-affine system with state x :=
(Pe, V¢) € R3 x R3, drift vector field F(x) := (v¢, 0), control vector
field G(x) := (g, 0), and output function h(x) € R with h{(X) = ||pe||.
The solution of (5.1) for the initial condition Xg := (P, V¢,) € R x R3
at time t € [0, t7] is denoted by ®¢(xo) and is given by

D (Xo) = [‘lllco} n |:vcot+f0tg(ve, y(,)rr + Yo, B) dl’j|’

where the integration in the above equation is the component-wise
integration, while the output is given by

hi(®¢(x0)) =

t
po+vmt+/0 g(Ve.y. 1T + Y. B)dr

For a given ||ve|| > 0, y € (- /2,7 /2), and ¥q, B € [0, 27) we
denote

Vo 1= [[Vel| cos () W(¥q) — [[ve|l sin(y)es, (5.3)
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where w(:) is given by (2.1) and ;=1%o —B. Given y ¢
(=m/2,7/2), Vo, B €0, 2m), define t - K(t) by

K(t) 1= ko + K1(t), (5.4)
where k( € R3 and t k4 (t) are given by

ko = cos () W (¥q), (5.5)
K1(t) := —cos (Y)W (rt +vyy) —rsin(y)est. (5.6)
It can be shown that

kD) _y=r¢p1=j=<3, (5.7)
and k@ (t) = —1? k@ (t), where

&y 1= cos (y)W(¥q) —sin(y)es, (5.8)
&y 1= cos (y)w (), (5.9)

&3 1= cos (y) w(ry).

At this point, we will make use of a result in Crasta, Bayat, Aguiar, and
Pascoal (2013) in order to simplify the observability analysis. The re-
sult essentially states that the observability properties of the system
(5.1) with range squared measurement and range measurement are
equivalent.

In this paper we study the observability properties of model
(5.1) for two distinct cases with two different sensor suites, namely,
(i) known ocean current and (ii) unknown ocean current. In the fol-
lowing sections, we characterize the set of indistinguishable states for
cases (i) and (ii). Notice that the observability properties depend on
the type of trimming trajectory adopted, that is, we first fix a type of
trajectory and then examine the observability of the resulting model
in(5.1).

(5.10)

5.1. Known ocean currents

Consider the system in the presence of a known current v € R3,
that is,

Pe =g(Ve, ¥, Tt + V0, B) +vc,}

511
v = lIpell”. (>11)

where g(-) is given by (5.2). Given py € R3, we let Ir?l(c(po) and
Irf‘lic(po) denote the sets of states that are indistinguishable from
the given initial state py under the conditions of zero yaw rate and
nonzero constant yaw rate, respectively, for system (5.11). In the
above, the subscript ‘r" means that only range measurements are
available, the subscript ‘kc’ is the abbreviation of known current, and
the superscripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate, re-
spectively. We next characterize the above sets.

5.1.1. Zero yaw rate
Let r = 0. In this case, for a givenvc € R3, y € (- /2, 7/2), ¥, B

€ [0, 2 ) and initial state pg € R3,

@ (Po) = Po + Vot £,

hi(®:(po)) = [IPo + Veot t|

where  Vior :=Vg + Ve, Vo = [|Vel| cos (y) W(¥q) — [|[Vel| sin(y) es
and ¥4 = Yo — B. We have the following characterization.

2

Proposition 10. Consider vc € R?, ||ve|| > 0, ¥ € (=7 /2,7/2), and
Yo, B €0, 2 7). Then, for every pg € R3,

Irz,kc(pO) = {R(Vtot, )po:0 e R}.

Proof. Consider pg € R3, y € (—m/2,7/2), and Yo, B € [0, 2 7). Let
z € R? be such that z € T (o). Then hy(®¢(z)) = hy(P¢(po)) for

all t € [0, t], which implies [|z||* = ||po|* and z"Vror = P{Vior. These

Viot

Fig. 4. Geometric visualization of the set Z?, .(po).

two equations (intersection of a sphere and a plane) represent the
circumference given by the loci of points z = R (Vior, 0) Pg, 6 € R.

To show the reverse inclusion, consider q := R (Viot, €) Pg. € € R.
Using the properties of rotation matrices, note that ||q||? = ||po||? and
q Vot = pgvtot. Using the two previous facts, it can be shown that
hy(®:(q)) = hy(Pe(po)) forall t € [0, £]. Hence the result follows. O

The following corollary follows immediately from the above
proposition.

Corollary 11. Suppose the beacon is not at the origin, that is, b # 0.
Then,

Irz,kc(po) = {b + R (Vior, 6) (po —b) : 6 € R}.

Remark 12. Proposition 10 shows that for a given py € R3 the set
of all the points that are obtained by rotating py about the axis viot
through an arbitrary angle 6 € R are indistinguishable.

Remark 13. Note that for a given py € R> there exist y, ¥, B such
that vior x pg = 0, that is, pg is the eigenvector of R(Vi, 0) corre-
sponding the eigenvalue of +1. Consequently, Z%, (Po) = {Po}-

T

Fig. 4 gives a geometrical characterization of the set of states that
are indistinguishable from a given initial state py.

5.1.2. Nonzero, constant yaw rate
Let r > 0. Then for a given y € (- /2,7 /2) and ¥q, B € [0, 2 7),
D¢ (Po) = Po + [IVell " k() +vct,
hy (e(Po)) = o + Ivell T~ se(®) + vt ||,
where k is given by (5.4). We have the following result.

Proposition 14. Consider v¢ € R3, ||Ve|,r >0,y € (-7 /2, 7/2), and
Yo, B €[0,27). Then, for every py € R3,

{Po. ~R(es.m)po} if sin(y) = [[ve]| 'elve.

Z%(Po) =
rke {po} otherwise.

Proof. Consider pg € R3, y € (—m/2,7/2), Yo, B € [0, 27) and
|Vell, ¥ > 0. Let zeR? be such that ze I/t (po). Then, from
hi(®¢(z)) = h1(Pc(po)) for all t € [0, t7] it follows that

Uzl = Ipoll*) +2 (z = po) " { Vel ke (t) + Vet } =0, (512)
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¥=0

Fig. 5. Geometric visualization of the set Z"?

for every t € [0, t7]. At t = 0, the above equation implies that

1zI1> = lIpoll>. (5.13)
Consequently, (5.12) yields
(@ —po) " {IIvell ke (t) +vet} =0 (5.14)

for every t € [0, tf]. Since ||Vel|, v, 1, ¥y are fixed constants, Eq. (5.14)
is only a function of time. Differentiating (5.14) with respect to time
and evaluating at t = 0 gives

@-po){Ivell PO +ve]| <o, (5.15)
@-po)"?(©)| =0, (5.16)
t=0
@-po) k()| =0, (517)
t=0
Furthermore, using (5.7) in (5.15)-(5.17) yields
{Ivell &1 + v}t
3 (z-po) =0 (5.18)
]

where the ¢;’s are given by (5.8)-(5.10). It can be easily verified
that &, x &3 = —cos? (y) 3, so that £1(¢; x &3) = cos? (y) sin (y)
and (¢, x &3) = —cos? (y)elvc, and, consequently, {||vell&; +
Ve}T(&5 x &3) = |Ivell cos?(y) [sin (y) — 8], where § := ||ve||~"elvc.
Since y € (—m/2,7/2), it follows that cos(y) # 0. Consequently,
{IIvell &1 +vc}T (&5 x §3) = Oif and only if sin (y) = 6.

(a) First suppose that sin(y) # 8, that is, {||ve| &1 +vc}T(¢, x
¢3) # 0. Then, Eq. (5.18) implies that z = py. The reverse in-
clusion is trivial. Hence % (Po) = {Po}-

Next suppose that sin(y)=4. Note that ¢;=1¢3—
[vel~" (elvc)es. and consequently, {|[Vell &y +vc}T(E, x
¢3) = 0. Now (5.18) implies that z— py = @ ({; x &3), o € R,
that is, z=py—a cos? (y)es. Consequently, (5.13) im-
plies that either =0 or « =2elpy/cos?(y). Hence,
z e {po. —R(e3, m)Po} and ¥ (Po) S {Po. —R(e3.7)Po}.

To show the reverse inclusion, consider q := —R(e3, 77) pg and

note that elq=elp,, elq=elpy. R(e3,7)Tko= ko, and

R(es3, )Ty (t) = —k1(t) +2elki(t) e3, and consequently,

(b

~

sin(y) = |vell =" (efve)

(Po). Left: zero current; Right: known current.

R(es. )Tk (t) = —k(t) + 2 elk;(t) e;. With some algebraic
manipulations, it can be verified that

2
hi (Pc(q)) = || -R(e3, ) {po + [Ivel T se(®) + vt } |-

Using the properties of rotation matrices it now follows
that hy (®¢(q)) = hi(P¢(pg)) for all t € [0, &]. Consequently,
{Po. —R(es, m)pPo} < ZF.(Po) and the result follows. [

The following corollary follows immediately from the above proposi-
tion.

Corollary 15. Suppose the beacon is not at the origin, that is, b # 0.
Then,

{pﬂv b - R(e3v 7T)
x (Po—b)}
{po} otherwise.

71%.(po) = if sin () = Ivell " elve

Remark 16. Note that for the system (5.11) in the presence of known
currents, a flight path angle satisfying sin (y) # ||ve||*1e§vc yields
observability for every nonzero constant yaw rate. In particular, in
the absence of currents with nonzero flight path angle system (5.11)
is observable for every nonzero constant yaw rate.

Fig. 5 gives a geometrical characterization of the set of states that
are indistinguishable from a given initial state py.

5.2. Unknown ocean currents

Consider the model of a single-beacon navigation system in the
presence of an unknown constant ocean current vc € R3 described by

Pe =g(Ve, .1t + Y0, B) + Ve,
Ve =0, (5.19)
y = lIpell?.

where g(-) is given by (5.2). Given (pg,Vc,) € R® xR3, we let
Ty (Po- Ve, ) and I, (Po. V¢,) denote the sets of states that are in-
distinguishable from the given initial state (po, Vc,) for zero yaw rate
and nonzero constant yaw rate, respectively, for the system (5.19). In
the above, the subscript ‘T’ means that only range measurements are
available, the subscript ‘uc’ is the abbreviation of unknown current,
and the superscripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate,
respectively. We next characterize Z/. (Po. V¢,) and Z,"3.(po. V¢, ).
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5.2.1. Zero yaw rate
In this case r = 0. Consider ||Ve|| > 0, ¥ € (-7 /2,7/2), Yo, B €
[0, 277). Then, given an initial condition (py. V¢,) € R? x R3,

D¢ (po, Ve,) = |:‘l,)c0i| + [(Vo +0Vc0) ti|7

h1 (®¢(po, Ve,))

where vy € R? is given by (5.3). We have the following characteriza-
tion.

= [|po + (Vo + V¢,) t]|2,

Proposition 17. Consider ||ve|| >0,y € (-7 /2,7 /2), and ¥, B €0,
2m). Let A :=[0, 2] x [0, 7r]. Then, given (po. V¢,) € R® x R3,

T4 (o, Vo) = { (ol S(R), —Vo + [IVeet | 5(0)) = (i, 0) € Q},
where vy € R3 is given by (5.3), s(-) is given by (2.3) and

Vot = Vo + V¢,

o ._ [ Po T/ Vior
c0s ) = (jey) (cal)
Q:={(p.0) e Ax A:s(n)"s(a) = cos (A }.

Proof. Consider Xo= (Po.Vy) eR3xR3, [vel| > 0, ye
(=m/2,7/2), and Yo, B € [0, 2m). Let X; = (z,w¢) € R3 x R3

be such that Xx; €Z?,(Xp). Define W :=Vo+wce. Then,
hi (@ (X1)) = hi (D¢ (Xo)) for all t € [0, ¢] implies that

Izl = [Ipoll?. (5.20)
[Weot[|* = [[Veot 1%, (5.21)
Z'Wiot = PgVior. (5.22)
Eqgs. (5.20) -(5.22) yield

z=||polls(n), (5.23)
We = —Vg + ||Viot || s(0), (5.24)

with (u,0) € A x A. Using (5.23) and (5.24) in (5.22), we have
s(n)Ts(o) = cos (A*). In other words, (i, o) € Q and hence

T2 (%0) € {(IIPoll S(R), —Vo + [[Viatll (0)) : (1, 0) € Q}.

Conversely, consider q = (q,q>) where q; = ||po|ls(#) and q, =
~Vo + [|Viot || s(0) for some (u,0) € Q. Note that [|q || = [[poll and
Vo + (o = ||Viot|| (o). Using these facts, it can be shown that
hi (®:(q)) = hy(Pe(xo)) for all ¢ € [0, t]. Consequently,

{(Ipoll s(r), Vo + [IVeot | 5(0)) = (i, 0) € Q} < T7,(Xo).
Hence the result follows. O
The following corollary of the above proposition is easily obtained.

Corollary 18. Suppose the beacon is not at the origin, that is, b # 0.
Then,

Tl (X0) = {(b+ [Ipo — bl s(1), —Vo + [|Veerl| 5(0)) : (1, 0) € O},

where Xg = (Do, V¢,) » Vo € R3 is given by (5.3), s(-) is given by (2.3),
and

Vot := Vo + V¢,

po—b ! '
Y . 0 — tot
cos (A7) = (||Po —b||> ()
Q:={(p,0) e Ax A:s(n)"s(a) = cos (A) }.

Remark 19. The result above shows that for a given (pg. V¢,) € R3 x
IR3 the set of all the points that are indistinguishable from (po. v¢,) is
a lower dimensional surface in R3 x R3. Consequently, the system is
not weakly observable.

5.2.2. Nonzero, constant yaw rate
In this case r > 0. Consider ||Vel||,r >0, y € (=7 /2,7/2), Yo, B €
[0, 27r). Then, given an initial state (g, V¢,) € R3 x R3,

—1
¢ (po. Ve,) = [P0]+[Ilvellr l:)(t)+vcut]’

Ve,

2
hy (@ (Po, Ve,)) = o+ IVell 7™ 1e(0) + v, |,

where k is given by (5.4). We have the following result.

Proposition 20. Considerr, ||Ve|| >0, y € (—7/2,7/2), and Yrq, B €
[0, 277 ). Then, for a given Xg = (Po, V¢,) € R3 x R3,

7% (X0) = {Xo, (=R(e3, 77) Po, 2 [[Ve | sin (y) €5 — R(e3, ) ve,) }.

Proof. Consider Xq:= (pg.Ve,) € R3xR3, |vel, 1 > 0, ye
(=m/2,7/2), and Yo, B € [0, 27). Let (z,wc) € R? x R3 be such
that (z, we) € Z(Po, Ve,). Then, hy(P¢(z, we)) = hy (Pt (Po, Ve,))
att = 0 implies

z[1> = [Ipoll®. (5.25)
Define

vi(t) = [[Vel 1 k() +wet, (5.26)
Vo (t) = [[Vell T k() + Ve, €, (5.27)
where « is given by (5.4) and note that

V() = el 7 e (0) + we, (5.28)
vV () = Vel = D () + v, (5.29)

Consequently, vgz) t) = v§2) () := ||vel =1 &M (t). Using (5.25) in
hq(®¢(z, We)) = hy (D¢ (po. Ve,)) for all ¢ > 0, we have

w2 (0112 + 22 w5 (t) = [[v1 (O)]1> + 2 pgws (1), (5.30)

for all ¢ € [0, t;]. The successive time derivatives of (5.30) evaluated at
t = 0 are given by

2" (0) = pvi" (0) (5.31)
057 (0)[12 + 2"v{? (0) = [[v{" (0) 1% + ppvi® (0) (532)
357(0)v$? (0)+2"v (0) =3 vV (0)Tw'® (0) +piv{? (0)  (5.33)
4y (0) v (0)+2"v? (0) =4 v{V (0)v{? (0)+piv'? (0)  (5.34)
50 (0)"w? (0)+2"v? (0) =5V (0)v? (0)+pir'P (0)  (5.35)
605" (0)v$? (0)+2"v{ (0) =6 v{" (0)™v'¥ (0) +pfv{? (0). (5.36)
Egs. (5.33) and (5.35) imply that

v (0)v{? (0) = vV (0)"v{? (0), (5.37)
while (5.34) and (5.36) yield

v (0)v{? (0) = vV (0w (0). (5.38)

Since vf) 0) = v%z) (0) and vf’) 0) = vg?’) (0), it follows from Egs.
(5.37) and (5.38) that

i (0) — vV (0) = o (VP (0) x v$?(0)), « e R. (5.39)
Further note that

v (0) = [[vell T cos (¥ )w (Yo — B).

v (0) = —|[ve|| r* cos (¥ )W (o — B).

and therefore

V2 (0) x v5? (0) = (|[vell cos (y))*r*es # 0 (5.40)
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Observability analysis for zero/nonzero (but constant) yaw rate with range-only measurements in the

weaker sense.

System Zero yaw rate Nonzero, constant yaw rate

Vit xPo =0 Vi xPo#0  sin(y) =|[lvc[ejve  sin(y) # [[ve["efvc
Known current u*-0 Not u*-WO u*-WO0 u*-0
Unknown current Not u*-WO u*- WO

u*-0: u*-Observable and u*-WO: u*-Weakly observable.

because y € (—m/2,7/2) and ||Vel||, r > 0. It can be easily verified
that

el (0) = elv? (0) = 0.

Therefore, using (5.40) in (5.39) yields

v (0) = v{V(0) + a (||ve|l cos (¥))* 1P e3, @ e R.

From (5.41) and (5.42), it follows that

vgl) (O)Tv§2) (0) = vgl) (O)va) 0),

v (0w (0) = vV (0)TvP(0),

and consequently, Egs. (5.33) and (5.34) imply that
v§2) (0)T
v§3) (0)T

that is,

(5.41)

(5.42)

} (z—po) =0, (5.43)

z—po=a (VP (0) x v{P(0)) = a[[lve]l cos ()P res, & e R.

In other words, z=py+a(||vel?>r? cos?(y))es;. Further,
lzl2 = |lpol>?  implies  that either «=0 or «a=
—2[[Ivell?r3 cos? (y)] ' elpy. Note that o =0 implies z=py,
while o = —2[|[ve? r® cos? (y)]~'elpy implies z=—R(es,7)po.
thatis, z € {pg, —R(e3, 7)po}.

(i) Suppose first that z=pg. Recall that vgl)(o) = vgl)(O) +
al|lvell cos(y)]?r*e;, « € R. Then, Eq. (532) implies
that [[v{P(0)[12 = |v{"(0)||2, that is, either &« =0 or
a = —2[|Ivel21* cos? ()] " elv{" (0).

Further, o = 0 implies v;l)(o) = v&l)(O), which in turn im-
plies We = V¢,. On the other hand, @ = —2[||ve[|?r* cos? (y)]~!
egvﬁl)(o) implies v§”(0) = —R(e3, ) vﬁ”(o), which further im-
plies that wc =2 ||ve| sin(y)es — R(e3,m) Ve, that is, zce
{Vep. 2]IVell sin(y)es —R(es, ) ve,}.

Now consider (z.zc) = (Po. 2 ||[Vel sin(y)e3 — R(e3.7) V).
Then,

hy (e (2, 20)) = |2+ Vel 7 se(t) +Zc t || # 1y (e(Po, Vey)).-

Consequently, (z. zc) ¢ ;"5 (Po. V¢, )-

(ii) Suppose next that z= —R(e3,7)pg. Recall that vgl)(O) =
vgl)(O) +af|lve]l cos (y)]?r3 e5, a € R. Then, Eq. (5.32) implies
that v (0))12 = [v{V(0)|12, that is, either & =0 or &=
~2[[|[vel|?* cos? ()] elv{" (0).

Further, @ = 0 implies that vg)(o) = v?)(O), which in turn im-
plies we = V¢,. On the other hand, o = —2[||Ve||? 3 cos? (y)]~!
gv?‘) (0) implies vg)(O) = —R(es3, ) v§1)(0), which further
implies that we = 2[|ve|| sin(y)es; — R(e3, w)ve,, that is, zc €
(Vey. 2lIVell sin (v) €3 — R(es, 7) Ve, .

Consider (z, z¢,) = (—R(e3, 7)Po. Vc, ). Then, one may easily ver-
ify that

B (B (2. 2e)) = 2+ Vel 77 1e(0) + Ze, £ # hi (D1 (Po. Ve,)).

and consequently, (z, z¢,) ¢ Z,"% (Po. Vc,)-

Fig. 6. Geometric visualization of the set Z"Z (po, V).

T, uc

Table 2
Observability analysis for zero and nonzero (but constant) yaw rate with
range-only measurements in the Hermann-Krener sense.

System Zero yaw rate Nonzero, constant yaw rate

Known current (0] (0]
Unknown current ~ Not WO WO

0: Observable and WO: Weakly observable.

In other words,
I (%0) < {0, (=R(e3, 7)o, 2||Ve| sin (y)es — R(e3, 7)Ve,)}.

To show the reverse inclusion, consider (z, z.)= (-R(e3, )
Po. 2 ||ve| sin(y) e3 — R(e3, ) ve,). Then, it can be shown that
hi (®¢(z. zc)) = hy (D (po. Ve, )) for all t > 0. Consequently, (z, zc) €
Z%(Po. V¢, ) In other words,

{Xo0, (—=R(e3, ) po, 2 |Ve|l sin (y) €3 — R(e3, ) Ve,) } < I (Xo).
This completes the proof. O

Corollary 21. Suppose the beacon is not at the origin, that is, b # 0.
Then,

% (X0) = {Xo. (b — R(e3, 7)(po — b). 2|V || sin (y)e3
—R(e3, T)Ve,)}.

Remark 22. The system (5.19) with nonzero constant yaw rate is
weakly observable.

Fig. 6 depicts the set of states that are indistinguishable from a given
initial state (po. Vc,).

Tables 1 and 2 summarize our findings about the observability
properties with the range-only output function in the weak notion
and the Herman-Krener sense, respectively.
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6. Observability analysis with single range
and depth measurements

We now address the case where depth measurements are avail-
able. Consider the system in the presence of a known current v € R3
given by

Pe(t) = g(Ve, ¥. 1t + Yo, B) + Ve (b)), (6.1)

ve(t) =0, (6.2)
lIpe ()1

y(t) = [egpe © } (6.3)

where pe(t) € R is the inertial position vector, v¢(t) € R? a constant
ocean current disturbance, ||ve|| > O is the linear trimming body
speed, y € (—m /2, /2) is the trimming flight path angle, 1/ is the
initial yaw angle, r is the yaw rate, and 8 is the side-slip angle.

6.1. Known ocean currents

Consider the system in the presence of a known current v¢ € R3,
that is,

Pe =8(Ve, Y. 1t + V0, B) + Ve,

|:||pe||2i| (6.4)
y=| . |
elp.

where g(-) is given by (5.2). Given pg € R3, we let Irzd,kc(pO) and

(Do) denote the sets of states that are indistinguishable from

the given initial state py for zero yaw rate, and nonzero constant yaw
rate, respectively, for the system (6.4). In the above, the subscript ‘rd’
means that both range and depth measurements are available, the
subscript ‘kc’ is the abbreviation of known current, and the super-
scripts ‘2’ and ‘nz’ denote zero and non-zero yaw rate, respectively.
We next characterize Irfj,k (Po) and Z¥, (po) for the system (6.4).

6.1.1. Zero yaw rate
In this case r = 0. Consider y € (-m /2,7 /2), Yo, B €[0,27)and
|Ive|l > 0. Then, for a given py € R3, we have

D (po) = Po + Viot L,
[P0 + Veor £2
h(®¢(po)) = [ el

el[Po + Vot t]
where Vi 1= Vg + V¢ and vy € R3 is given by (5.3).

Proposition 23. Consider vc € R3, ||Ve|| > 0, y € (-7 /2,7/2), and
Yo, B €[0,27). Then, for every py € R3,

{Po} if Vior X po =0,

{Po. R(Vior, 0*)Po }

where Viot 1= Vg + Ve With vy € R3 is given by (5.3) and
* T «

an <92> = 3v(t:’3;<v:f : P

Proof. Clearly, 72

rd, ke

Irz,kc(pO) = {R(Vtot, )po:0 e R}.
Let z :=R(Viot, ©) Po € 2/, .(Po) be such that zeZ%, (po). Then

ke

hy (®¢(z)) = hy (Dr(pg)) for all t > 0, implies
elz =elpg. (6.5)

Irffl,kc(pO) = {

otherwise,

(Po) € 7%, .(Po). From Proposition 10 recall that

T,k

First suppose Vit x pg = 0. Then z = R(Vior, 0) Pg = po and conse-

quently, Irf“(c(po) = {po}. Next suppose Vit x pg # 0. Using (2.2),
(6.5) can be written as

sin (9)e§("tot xPo)+(1—cos (0))(e3 x Vi)' (Viot x Po)=0.  (6.6)

Clearly, & =2nsm is a trivial solution of this equation. Hence we
assume 6 # 2nm. Using the trigonometric identities sin(6) =
2sin(6/2) cos (6/2) and 1— cos(0) = 2sin® (8/2) along with the
fact that 6 # 2nm, Eq. (6.6) yields

*

E§ (Vior X Po)

tan{ — | = — .
( 2 ) (€3 X Vior) T(Vior X Po)

We claim that either e (Vior x Pg) # 0 or (€3 x Vior)T(Vior x Po) # 0.
To prove the claim suppose el(Vior x Po) = 0 and (e5 x Vior) T (Vior x
Po) = 0. This implies

€3 = k|[Viot X Poll* Vior. k € R,

which is not possible because vt x pg # 0 and y € (-7 /2,7 /2).
Thus, tan (6/2) is well defined.

Further, 6 = 2nmr implies zZ = R (Vior, 21n7T) Pg = Po. SUppose q :=
R (Veot, 0*) po. We have to show that depth information correspond-
ing the trajectories starting from the distinct initial conditions q and
Po are identical. By using the trigonometric identities
2tan (6%/2)

SN0 = G @2

(6.7)
1 —tan? (0*/2)

gr) — 1—an (07/2)
cos (0%) T @2)

(6.8)

along with Eq. (2.2) one can easily show that
e[z + Vit t] = e[R(Vior, 0%) Po + Vot t]
= e3[po + sin (6%) (Vior x Po)
+ (1= cos (8%)) (Veor X (Veot X Po)) + Viot t]
= eg[Po + Veor ]

Hence the result follows. O

Corollary 24. Suppose the beacon is not at the origin, that is, b # 0.
Then,

{po} if Vior x (po —b) =0,
ik (P0) = 1 {po. b + R (Vier. )
x(po —b)} otherwise,

where
tan 0" _ el(Vior x (po — b))
2 (€3 X Vior) T(Vior x (Po — b))~

Remark 25. Note that for a given po € R3 the system is weakly
observable.

6.1.2. Nonzero, constant yaw rate
In this case r > 0. Consider y € (-1 /2,7 /2), Yo, B €[0,27)and
|IVell, 7 > 0. Then, for a given py € R3,

®e(Po) = Po + [IVell " ke(8) + Ve,

(. (po)) = | [P0+ Ivell "k +vee”
eg[l’o + Vel r Tk (t) +vet] |

where «(t) is given by (5.4).

Proposition 26. Consider v¢ € R3, ||Ve||, 7> 0,y € (-7 /2,7 /2) and
Yo, B €10, 27). Then, for every py € R3,

Irrclfkc (Po) = {Po}-

Proof. Consider vc € R3, ||Ve|, 7> 0, ¥ € (-7 /2,7/2) and ¥, B €
[0, 2 7r). From Proposition 14, recall that
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{Po. —R(es.m)po} if sin(y) = [[ve| "€]ve.

{Po} otherwise.

rd ke (Po) = {

and note that Irfc‘lzkC (Po) € Z%.(po). Let z € I (Po) be such thatz e

I (Po). Then h(®¢(2)) = h(P:(po)) for all ¢ € [0, tf].
Considerz = —R(e3, T) pg € Z"? (pg) and suppose that sin () =

r.ke
Ivell” eTvc Notice that elpy = 0 implies that z = p,. Hence we as-
sume egpo # 0. Now hy(®¢(2)) = hy(Pr(po)) forall t € [0, tf] implies
that egpo =0, which is a contradiction. Hence Irl;lizkc(p()) = {po} and
the result follows. O

The following corollary follows immediately from the above proposi-
tion.

Corollary 27. Suppose the beacon is not at the origin, that is, b # 0.
Then,

Ik (Po) = {Po}.

6.2. Unknown ocean currents

Consider the system in the presence of an unknown constant
ocean current v. € R3 described by

Pe =8(WVe, ¥, Tt + Yo, B) + Ve,
‘.’c=07

yo [npeuZ} (69)
elpe |

where g(-) is given by (5.2). Given Xo := (Po. Vc,) € R? x R3, we let
5 % uc(X0) and 7, rfc‘i uc(xo) denote the set of states that are indistin-
guishable from the given initial state X, for zero yaw rate and nonzero
constant yaw rate, respectively, for the system (6.9). In the above, the
subscript ‘rd’ means that both range and depth measurements are
available, the subscript ‘uc’ is the abbreviation of unknown current,
and the superscripts ‘z’ and ‘nz’ denote zero and non-zero yaw rate,
respectively. We next characterize 7?2 e (Xg) and ¥ (Xp).

6.2.1. Zero yaw rate
Letr=0.Foragiveny € (-m/2,1m/2), ¥, B €[0, 2r) and initial
condition (po, v¢,) € B3 x R3, we have

®¢(po. Ve,) = Po+ (Vo + V) £,

||p0 + (vo +Vco) t”z
h(®¢(po. Vc,)) = |:e'§[p0 + (Vo + V¢,) t]i|’

where vy € R3 is given by (5.3).

Proposition 28. Consider ||ve|| >0,y € (-7 /2,7 /2), and vrq, B €0,
27r). Then, for a given Xg := (Po. V¢,) € R? x R3,

72 5 (%0) = { (IPoll ("), —Vo + Vet | $(0)) : 0 € [0, 271}
U {lIpoll s(e7). ~vo + Iveael| s(0)) = 0 € [0, 2]},
where wt 1= (u*, 0y, o= = (u*, u_), 0 :=(0* 0),Vo € R is given

by (5.3), s(-) is given by (2.3) and

Viot -= Vo + Vg,

T

cos (A*) := (||P0||71P0) (”Vtot||7]vt0t)a
cos (1) := [poll " e3po,
cos(0%) := ”Vtot”qegvtoty

Uy = (o +A) mod 2,

U_:=(c —A) mod 2m,

A = cos ! (cos (M) = cos (u*) cos (a*)).

sin (j4*) sin (o*)

Proof. Consider Xq:= (pp.Ve,) € R3xR3, |vel, 1 > 0, ye
(=m/2,7/2), and Vg, B € [0, 27). Recall T4 we (X0) € I (X0)-
Let X := (z,wc) € T} ,.(Xo) be such that X; € Z7(Xo). Then, for
every t € [0, tg],

hy (@¢(x1)) = h1(Pe(X0)),

hy (P¢(x1)) = ha (D (X0)).

Clearly hy(®¢(x1)) = hi(Pe(xg)) for every t e [0, ]
Proposition 17, recall that

T2 (%0) = {(IPoll s(i), —Vo + [Veot|| $(0)) : (1, 0) € Q},
where

Q:={(n.0) e Ax A:s(u)"s(a) = cos (1) }.

Consider (z, we) = (I[poll s(#), —Vo + [|Viot || (o)) for some (1, 0) €
Q. Then, hy (Pt (z, we)) = hy (D¢ (Xg)) for all t € [0, t;] implies that

From

elz =elpy, (6.10)

eIWor = €LV, (6.11)

where Wior = Vg 4+ We and Vit = Vg + V¢,. From Egs. (6.10) and (6.11)
it follows that

cos (1£7) = [Ipoll~'e3po. (6.12)
cos (o) = ||Vtot||71egvtot~ (6.13)

On the other hand, s(u)Ts(0) = cos (A*) implies

cos (A*) — cos () cos (o)

sin (u}) sin (o) '
Invoking a standard result in elementary trigonometry, we conclude
that u} = (03 + A) mod 27 and u? = (03 — A) mod 27, where
. (cos (A*) — cos (u) cos (a;))

sin () sin (o)

cos (uz — 02) =

A=

In other words,

T2 wcX0) S { (Ipolis(ie, 113), —Vo + Vet lIs(a7, 02)) : 02
e[0,27]}

U{ (Ipolls(iei. 13). ~vo + [Viadlis(o7. 02)) = 02 € [0, 2701},

To show the converse, first consider q = (q;,q;) where q; =
IPolls(i;. ). and qz = —vg + [V + V¢, [Is(of. o) for some o, €
[0, 277]. Note that [lq; || = [[poll and Vo + G2 = |[vo + V¢, [ (o], 02).
Using these results, it can be shown that h(®:(q)) = h(®d¢(xp)) for
all t € [0, 7.

Next consider § = (. &,) where @, = [|polls(12}. 113) and &, =
—Vo + [ (Vo + V) [Is(o;, o) for some o5 € [0, 277 ]. Note that ||q || =
Ipoll and vo + @, = [|vo + V¢, | (o', 02). Using these facts, it can be
shown that h(®:(q)) = h(P¢(xg)) forallt e [0, t7]. O

The following corollary follows immediately from the above proposi-
tion.

Corollary 29. Suppose the beacon is not at the origin, that is, b # 0.

Then,
72 1 (%0) = {(IPoll s(1*), ~Vo + [Viatll $(0)) : & € [0, 27])
U {(lIpoll (i), —vo + Vil s(0)) : o < [0, 271},
where put = (u*, uy ), o= = (W, n_), 0 :=(0* 0),vg € R is given

by (5.3), s(-) is given by (2.3) and
Viot := Vo + Vco?

cos () := (IIpo = b~ o — )" (IViot ]l Vier)-

Please cite this article as: N. Crasta et al., Observability analysis of 3D AUV trimming trajectories in the presence of ocean currents using range
and depth measurements, Annual Reviews in Control (2015), http://dx.doi.org/10.1016/j.arcontrol.2015.09.009



http://dx.doi.org/10.1016/j.arcontrol.2015.09.009

JID: JARAP

[m5G;October 21, 2015;18:18]

12 N. Crasta et al. / Annual Reviews in Control 000 (2015) 1-15

cos (1) := [|po — b[|"e3(po — b).
€05 (0%) := || Veot || ' €3 Veor,
Uy = (o +A) mod 2m,
U_:=(o —A) mod 2m,
A= cos! (cos (A*) — cos (u*) cos (0*)>.
sin (u*) sin (o*)

6.2.2. Nonzero, constant yaw rate

Let r > 0. Consider y € (—m/2,7/2), Yo, B € [0, 27) and
[Ive|l > 0. Then, for a given initial condition Xg := (Po, V¢,) € B> x R?,
we have

®¢(Xo) = Po + [IVell T ke (t) + Ve

[P0 + Vel 7= se(6) + v,
h(®¢(xo)) = ,
el[po + [[Vell =" (t) + v, t]

where «(t) is given by (5.4).

Proposition 30. Consider ||Ve||, r > 0, y € (-7 /2,7 /2), and ¥,
B € [0, 27). Then, for every (po,Vc,)) € R x R3, T2 (po,Vc,) =
{(Po. vey)}-

Proof. Consider X := (Po,Ve,) € R3 xR3, |vell, 1 > 0, ye
(—m/2,7/2), and Yo, B € [0, 27). Recall ZZ (Xo) S Z"% (Xo).

rd,uc
Let Xq := (z,W¢) € 7. (Xg) be such that x4 € Z¥ (Xo). Then, for

every t e [0, t], e
hi (@ (X1)) = hi (Pr(X0)).
ha (@ (X1)) = ha(Pr(X0)).

Clearly hy(®¢(x1)) = hi(P(xg)) for every t e [0, ]
Proposition 20, recall that

From

I (Xo) = {(Po. V¢, ). (=R(€3.77) Po. 2 [[Vel| sin () e
—R(e3.7) Ve,)}.

Suppose (z,Wc) := (~R(e3,7) Po. 2 ||Vel| sin(y) e3 — R(e3, ) Ve,)
€ I, (Xp). Then,
ha (P (z, W) = e3[z+ [[Vell " ke(6) +wet]
e3[—R(es, )P + [Ivell 1 ke (£)

+ Vel sin (y)est — R(es, 7)Ve, t]
e3[—Po + [IVell 7" ke (6) + [|vell sin (v )es t — e, t]
—h2 (P (%0)) + [IVell sin () ¢ + Vel " €3k ()
# ha (1 (X0)).

Consequently, (z, wc) ¢ 77

(Xg). This completes the proof. O

The following corollary follows immediately from the above proposi-
tion.

Corollary 31. Suppose the beacon is not at the origin, that is, b # 0.
Then,

Irrzfuc (po’ VCo) = {(va Vco)}-

Table 3 summarizes our findings with range and depth as output
functions, whereas Table 4 provides a summary of observability prop-
erties in the Herman-Krener sense.

7. Observability analysis with multiple beacons

In this section we extend the observability analysis of Section 5 to
multiple transponders. We make use of the characterization of indis-
tinguishable states in Section 5 to draw stronger conclusions in this
section.

Table 3
Observability analysis for zero and nonzero (but constant) yaw rate with range-only
measurements in the weaker sense.

System Zero yaw rate Nonzero, constant yaw rate
Vot X Po =0 Vot X Po # 0

Known current u*-0 Not u*-WO u*-0

Unknown current Not u*-WO u*-0

u*-0: u*-Observable and u*-WO: u*-Weakly observable.

Table 4
Observability analysis for zero and nonzero (but constant) yaw rate with
range and depth measurements, in the Hermann-Krener sense.

System Zero yaw rate Nonzero, constant yaw rate

Known current 0] (0]
Unknown current ~ Not WO (0]

0: Observable and WO: Weakly observable.

Consider a set of m( > 2) transponders located at fixed inertial
positions B = {by..... by} c R3 withby #b;, 1 <k, | <m.In this case,
the corresponding output function is given by

[pe — b1
y= : . (7.1)
[pe — bl

For the sake of clarity, we denote the set of indistinguishable states
with respect to the it" beacon b; by b, Z:"s (Po), whereas gZ*,, (Po)
denotes the sets of indistinguishable states with respect to all the
beacons. In the above the superscript refers to the situation of
zero/nonzero yaw rate, the subscript ‘' refers to the availability of
range/range and depth measurements, and the subscript ‘s*’ denotes
the case of known/unknown current. Clearly,

8Z..(P0) = [) bZ"(Po)- (7.2)

T<i<m

In general, with more than four transponders it is possible to achieve
observability. However our next results show that with less than four
transponders it is possible to achieve observability with the aid of
depth information.

7.1. Knownocean currents

In this section, under some mild conditions, we show that ob-
servability can be achieved with at least two transponders for any
constant yaw rate. However, the zero yaw rate case requires depth
information.

7.1.1. Zero yaw rate

In this case, one can clearly obtain observability with four
transponders using trilateration. However, with depth measure-
ments, it is possible to achieve observability with two distinct
transponders.

Proposition 32. Let m > 2 and assume that the depth information is
accessible. Consider vc € R3, ||Ve|| > 0,y € (—m/2,7/2), and Yo, B €
[0, 2 7). Suppose there exist distinct i, j € {1, ..., m} such that

(bj — b))  (Vior x €3) # 0.
Then, for every pg € R3,
8Z;q 1 (Po) = {Po}-

Proof. Letp € R3, p +# py. be such that p € gZ~

- «(Po)- Then, for each
s,1<s<m,

1P + Veor t — bs|? = [[Po + Veor £ — by]|2, (7.3)
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el (P + Vi t — by) = el (po + Vior t — by), (7.4)

which implies that

B —bsll*> = [[po — bs |1, (7.5)

Vioe (B — bs) = Vi (po — by). (76)

el(p—bs) =el(py—by) (7.7)
3 (P — Ds 3(Po — Ds),

where Vit = Vg + Ve and vy is given by (5.3). Let i, j € {1, ..., m} be

such that b; # b; and (b; — b;)T(Vior x €3) # 0. Then, Eq. (7.5) yields

P — bil|* = [Ipo — byl|% (7.8)

1B —b; 1> = lIpo — bjI*. (7.9)

Taking the difference of the above two equations we obtain

(bj —b)"p = (b; — b)"po. (7.10)
Egs. (7.6),(7.7) and (7.10) yield
(b; —byT (bj —b)T
Viot p= Vige Po (7.11)
e e

By hypothesis the coefficient matrix is invertible and consequently
P=po. U

7.1.2. Nonzero, constant yaw rate

The following result shows that with at least two distinct
transponders at different depths, observability can be achieved for
nonzero yaw rate in the presence of a known current.

Proposition 33. Consider m > 2, vceR3, |vel|, 1 > 0, y e
(=m/2,7/2), and Yo, B € [0, 27). Suppose there exists k.l e
{1,....m} such that X (b, — by) # 0. Then, for every py € R3

87 (Po) = {Po}.

Proof. Foreveryie {1,...,m}, Corollary 15 implies that
{po. b; — R(e5, )
nz e elv.
b Zr ke (Po) = x(po — by)} if sin(y) = Vel
e
{po} otherwise.

Note that if sin(y) # ||ve||’1e§vc, then . Z"? (pg) = {po} and con-

iT,ke
sequently gZ?, (Po) = {po}. Hence we assume sin (y) # ||ve|| -1 egvc.

Then, , 7" (Po) = {Po. b; — R(e3, ) (po — b;) }. Further, it can be
easily verified that py = by, — R(e3, ) (pg — by) for all k implies b, —
b; =0, Vk #1, while b, — R(es, ) (pg — by) = b; — R(e3, ) (pg —
b)) implies eg(b,< —b;) =0, for all k # I, which is a contradiction.
Hence

BZ % (P0) = [ bZ % (Po) = {po}.

1<i<m

7.2. Unknown ocean currents

In this section we show, under some mild conditions, that observ-
ability can be achieved with at least two transponders for nonzero
constant yaw rate. However, the zero yaw rate case requires at least
three transponders as well as depth information.

7.2.1. Zero yaw rate

Proposition 34. Let m > 3 and assume that the depth information
is available. Consider (po, V¢,) € R3 x R3. Suppose there exist distinct
i,j. ke{1,...,m} such that

e((b; — b)) x (b; —by)) #0, (7.12)

e3((po —bj) x (po —b;)) #0. (713)

Consider vc € R3, |Ve|| > 0, ¥ € (—m/2,7/2), and ¥rg, B € [0, 2 7).
Then,

BIrfi.uc(pO’ VCU) = {(pOs Vco) } . (7.14)

Proof. Let (Pp,Vc) e R3 xR3, (P.Vc) # (Po,V,). be such that
P, V) BZ uc(Po: Vc,). Then, for eachs,1 <s<m,

P + Vot £ — bs|? = [[Po + Veor t — b ||
and
e%-(15 + Vi £ — by) = eg(Po + Vior £ — by)

for all t € [0, t7], where Vot = Vo 4 V¢, Vior = Vg + Ve and vg € R3 is
given by (5.3). This implies that

I —bsl|* = [[po — bs]|*, (715)
Vot 12 = [IVeot]l?, (7.16)
Vior (P — bs) = Vior (Po — bs) (717)
and
elp = ejpo. (7.18)
eg‘-’tot = egvtot. (719)
Leti, j, k € {1,..., m} be such that
e3((bi—bj) x (b; —by)) #0, (7.20)
e3((po — bj) x (po — b;)) #0. (7.21)
Then Eq. (7.15) implies that

[P — bill*> = [[po — byll%,

B —bjlI> = [[po — bjlI*, (7.22)

1B — bll* = [Ipo — by|1*.

Taking the differences of [|p — b;||2 = [[po — b;[|> and [|p—b;||? =
Ipo — bj|? yields

(bj —b)"p = (b; —b)po

while taking the differences of ||1')_bj||2 = |Ipo _b],”z and ||p—
by |12 = [|po — by ||? yields

(7.23)

(b —b))™H = (b —b;)"po. (7.24)
Eqgs. (7.15),(7.23) and (7.24) imply that
(bj —by)T (bj —b)T
(b —b)T |p=| (b—b)T |po. (7.25)
el el
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Table 5
Observability analysis for zero and nonzero (but constant) yaw rate with
multiple range measurements in the weaker sense.

System Zero yaw rate Nonzero, constant yaw rate
Known current u*-0 u*-0
Unknown current u*-0 u*-0

u*-0: u*-Observable.

Table 6
Observability analysis for zero and nonzero (but constant) yaw rate with
multiple range measurements in the Hermann-Krener sense.

System Zeroyaw rate  Nonzero, constant yaw rate
Known current (0] 6]
Unknown current O (6]

O: Observable.

By assumption the coefficient matrix is invertible and consequently
P = po. Since p = pg. Eq. (7.17) with (7.19) yield

(Po — b))’ (Po —b)T
(pO - b])T ‘-’tot = (Po — b])T Viot-
e}: eg

(7.26)

Now the assumption implies that V¢ = v¢,. O

7.2.2. Nonzero, constant yaw rate

Our next result shows that the with at least two distinct transpon-
ders, observability can be achieved for nonzero yaw rate in the
presence of unknown currents. The proof is similar to that of
Proposition 33.

Proposition 35. Suppose m > 2. Consider ||ve|, r > 0, y ¢
(=m/2,7/2), and Vo, B € [0, 2 ). Suppose there exist distinct k, | e
{1,...,m} such that el(bj, — b)) 0. Then, for every (po, V¢,) € R? x
R3

BIrr,lSc (Po. V) = {(Po. V) }- (7.27)

Tables 5 and 6 summarizes our findings with multiple range
and/or depth as output functions in the weaker and Herman-Krener,
sense under suitable assumptions, as shown in the results of this
section.

8. Conclusions

This paper provided an analysis of the observability properties of
the kinematic model of an autonomous underwater vehicle (AUV)
moving in 3D, under the influence of ocean currents, using measure-
ments of its depth and the range to one or more fixed transpon-
ders. We exploited the situation where the vehicle undergoes
maneuvers commonly known as trimming trajectories, that are nat-
urally obtained when the inputs (thruster rpms and control surface
deflections) are held constant. In the case of a single transponder,
we showed that for nonzero yaw rate, in the presence of non-zero
but known ocean currents, the 3D kinematic model of an AUV under-
going trimming trajectories subject to the condition that the flight-
path angle satisfies a current-related constraint is observable. In
particular, in the absence of currents the current-related constraint
results in a nonzero flight-path angle. However, in the presence of
unknown currents, we proved that the model is only weakly observ-
able for nonzero yaw rate. Further, when the latter condition fails, we
concluded that the model also fails to be weakly observable. By fus-
ing depth and single range information together, under the assump-
tion that the yaw rate is different from zero, we showed that the 3D
kinematic model of an AUV undergoing trimming trajectories subject

non-zero unknown currents is observable even when the flight-path
angle is zero (vehicle moving in a horizontal plane). These obvious
advantages are lost if yaw rate is equal to zero, for in this case the
model is only weakly observable. For all situations where the model
is weakly observable we gave a complete characterization of the sets
of states that are indistinguishable from a given initial state. Finally,
we showed that the 3D kinematic model of an AUV undergoing trim-
ming trajectories with multiple (at least two) transponders is observ-
able in all situations if the yaw rate is different from zero. However,
zero yaw rate case requires depth information to achieve observabil-
ity. Future work will aim at exploiting the use of trimming trajecto-
ries to estimate the position of an underwater vehicle in 3D using
multiple-range localization systems.
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