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Abstract: We address the problem of steering multiple unmanned air vehicles (UAVSs) along
given paths (path-following) under strict temporal coordination constraints requiring, for
example, that the vehicles arrive at their final destinations at exactly the same time. Path-
following relies on a nonlinear Lyapunov based control strategy derived at the kinematic level
with the augmentation of existing autopilots with £; adaptive output feedback control laws to
obtain inner-outer loop control structures with guaranteed performance. Multiple vehicle time-
critical coordination is achieved by enforcing temporal constraints on the speed profiles of the
vehicles along their paths in response to information exchanged over a dynamic communication
network. We consider that each vehicle transmits its coordination state to only a subset of the
other vehicles, as determined by the communications topology adopted. We address explicitly
the case where the communication graph that captures the underlying communication network
topology may be disconnected during some interval of time (or may even fail to be connected
at any instant of time) and provide conditions under which the closed-loop system is stable.
Flight test results obtained at Camp Roberts, CA in 2008 and hardware-in-the-loop (HITL)

simulations demonstrate the benefits of the algorithms developed.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are becoming ubig-
uitous and play an ever increasing role in a number of
missions that include military reconnaissance and strike
operations, border patrol missions, forest fire detection,
and police surveillance and recovery operations. In a typ-
ical application, a single autonomous vehicle is managed
by a crew using a ground station provided by the vehi-
cle manufacturer. To execute more challenging missions,
however, requires the use of multiple vehicles working
together to achieve a common objective. Representative
examples of cooperative mission scenarios are sequential
auto-landing and coordinated ground target suppression
for multiple UAVs. The first refers to the situation where
a fleet of UAVs must break up and arrive at the assigned
glideslope point, separated by pre-specified safe-guarding
time-intervals. In the case of ground target suppression,
a formation of UAVs must again break up and execute
a coordinated maneuver to arrive at a predefined position
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over the target at the same time. In both cases, no absolute
temporal constraints are given a priori - a critical point
that needs to be emphasized. Furthermore, the vehicles
must execute maneuvers in close proximity to each other.
As pointed out in [Kaminer et al. 1998, Kim and Mesbahi
2006], the flow of information among vehicles may be
severely restricted, either for security reasons or because of
tight bandwidth limitations. As a consequence, no vehicle
will be able to communicate with the entire formation and
the inter-vehicle communication network may change over
time. It is therefore imperative to develop coordinated mo-
tion control strategies that can yield robust performance
in the presence of communication failures and switching
communication topologies.

Motivated by these and similar problems, there has been
over the past few years a flurry of activity in the area
of multi-agent system networks with application to en-
gineering and science problems. The range of topics ad-
dressed include parallel computing [Tsitsiklis and Athans
1984], synchronization of oscillators [Sepulchre et al. 2003],
study of collective behavior and flocking [Jadbabaie et al.
2003], multi-system consensus mechanisms [Lin et al.
2005], multi-vehicle system formations [Egerstedt and
Hu 2001], coordinated motion control [Ghabcheloo et al.
2006b], asynchronous protocols [Fang et al. 2005], dy-
namic graphs [Mesbahi 2005], stochastic graphs [Mesbahi



2005, Stilwell and Bishop 2000, Stilwell et al. 2006], and
graph-related theory [Cao et al. 2005, Kim and Mesbahi
2006]. Especially relevant are the applications of the the-
ory developed in the area of multi-vehicle formation con-
trol: spacecraft formation flying [Mesbahi and Hadaegh
2001], unmanned aerial vehicle (UAV) control [Song et al.
2005, Stipanovic et al. 2004], coordinated control of land
robots [Ghabcheloo et al. 2006b], and control of multi-
ple autonomous underwater vehicles (AUVs) [Ghabcheloo
et al. 2006a, Aguiar and Pascoal 2007].

In [Kaminer et al. 2007], a general framework for the
problem of coordinated control of multiple autonomous ve-
hicles that must operate under strict spatial and temporal
constraints was presented. The proposed framework bor-
rows from multiple disciplines and integrates algorithms
for path generation, path following, time-critical coordi-
nation, and £; adaptive control theory for fast and robust
adaptation. Together, these techniques yield control laws
that meet strict performance requirements in the presence
of modeling uncertainties and environmental disturbances.
The methodology proposed in [Kaminer et al. 2007] is
exemplified for the case of UAVs and unfolds in three
basic steps. First, given a multiple vehicle task, a set of
feasible trajectories is generated for all UAVs using a direct
method of calculus of variations that takes explicitly into
account the initial and final boundary conditions, a gen-
eral performance criterion to be optimized, the simplified
UAV dynamics, and safety rules for collision avoidance.
The second step consists of making each vehicle follow its
assigned path while tracking a desired speed profile. Path
following control design is first done at a kinematic level,
leading to an outer-loop controller that generates pitch and
yaw rate commands to an inner-loop controller. The latter
relies on off-the-shelf autopilots for angular rate command
tracking, augmented with an £; adaptive output feedback
control law that guarantees stability and performance of
the complete system for each vehicle in the presence of
modeling uncertainties and environmental disturbances.
Finally, in the third step the speed profile of each vehicle is
adjusted to enforce the temporal constraints that must be
met in order to coordinate the entire fleet of UAVs. This
step relies on the underlying communication network as a
means of information exchange between the vehicles.

This paper builds upon and complements the results
in [Kaminer et al. 2007] to deal with network commu-
nication failures. In particular, we address explicitly the
case where the communication graph that captures the
underlying communication network topology may be dis-
connected during some interval of time or may even fail to
be connected at any instant of time. Flight test results and
hardware-in-the-loop (HITL) simulations demonstrate the
benefits of the algorithms developed. More flight tests are
planned at Camp Roberts, CA in April-May 2008.

Due to space limitations, all the proofs are omitted.
2. PATH FOLLOWING IN 3D SPACE

This section formulates the problem of path following
control for a (single) UAV in 3D space. We recall that
path following refers to the problem of making a vehicle
converge to and follow a desired feasible path. Although in
general no time schedule is assigned to the path, one may
assign a desired speed profile for the vehicle to track.

In what follows we avail ourselves of the results derived
in [Kaminer et al. 2006] (see also [Taranenko 1986, Yaki-

menko 2000]) where an algorithm was proposed to gener-
ate space deconflicting feasible paths for multiple UAVs,
that is, paths that do not intersect each other and that
yield trajectories that can be tracked by an UAV without
exceeding prespecified bounds on its velocity and total
acceleration along that trajectory.

In order for the ith vehicle to follow the spatial path
pe, using the algorithm in [Kaminer et al. 2006], a path
following algorithm that extends the one in [Soetanto et al.
2003] to a 3D setting with a further modification aimed
at meeting time-critical and inter-vehicle constraints is
now presented. At this level, only the simplified kinematic
equations of the vehicle are addressed. The dynamics of the
closed-loop UAV with autopilot are dealt with in Sections 5
and 6 by introducing an inner-loop control law via a novel
L1 adaptive output feedback controller.

desired
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Fig. 1. Problem geometry

The required notation is introduced with reference to
Figure 1. Let Z denote an inertial frame. Let @ be the
UAV center of mass and W be the wind frame attached to
the UAV. Further, let p.() be the path to be followed,
parameterized by its path length [, and let P be an
arbitrary point on the path that plays the role of the center
of mass of a virtual UAV to be followed. Let F be a Serret-
Frenet frame attached to the point P on the path, and let
T(l), N(I) and B(l) present an orthonormal basis for F.
Note that these unit vectors define the tangent, normal,
and binormal directions, respectively, to the path at the
point determined by [. Finally, let

qr(t) =[zr(t) yr(t) 2r(t)]"
be the position of the UAV center of mass ) with respect
to the Frenet frame resolved in F, and let

P (t) - [(be (t) Oe (t) Ve (t) ]T
denote the Euler angles that locally parameterize the
rotation matrix from F to W.

In what follows, v(t) is the magnitude of the UAV’s
velocity vector, and ¢(t) and r(t) are the z-axis and z-
axis components, respectively, of the vehicle’s rotational
velocity resolved in wind frame WW. With a slight abuse of
notation, ¢(t) and r(¢t) will be referred to as pitch rate and
yaw rate, respectively, in the wind frame W.

Straightforward computations! yield the dynamic equa-

tions of the path following kinematic error states as:

1 See [Kaminer et al. 2006] for details in the derivation of these
dynamics.



Tp = —{(1 — k(l)yr) + v cos b, cos 1,
gr = —l(k(D)zrp — ((D)zp) + vcos b, sint,
Ge:q ir = —i¢(h)yp —vsinb, (1)

Ze = D(t7967¢6)+T(t796) |:'?":|
where
B IC(1) sin g
D (t,0c,%.) = [ —l(((l) tan @, cos ¥ + k(1)) }

COS P — SN @¢
T(t,ee>=[smi gy }

cos 0 cos 0
and x(l) and ((I) are the curvature and the torsion of
the path respectively. Note that, in the kinematic error
model (1), ¢(t) and r(¢) play the role of control inputs.
Notice also how [(t) becomes an extra variable that can
be manipulated at will.

Furthermore, we define the state vector for the path
following kinematic dynamics as:

2(t) = [zr(t) yr(t) 2p(t) Oc(t) = do(t) Yelt) — dp(t)]",

where

Jg =sin~! (ZF> . 0y =sin"t <yF) ,
’ lzr| + da v lyr| + do

with dy and dy some positive constants. Notice that, in-
stead of the angular errors 6, (t) and . (t), we use 0.(t) —
do(t) and t.(t) — dy(t) respectively to shape the “ap-
proach” angles to the path. The system G, is completely
characterized by defining the vector of input signals as:

y(t)=[q(t) r()]".

Next, we show that there exist stabilizing functions for ¢(¢)
and r(t) leading to local exponential stability of the origin
of G, with a prescribed domain of attraction. We start by
assuming that the UAV speed satisfies the lower bound

v(t) > Umin, VE>0. (2)
Furthermore, let ¢; and co be arbitrary positive constants
satisfying the following condition

v & \/fces +sin™t (C \;Cid> < g—q, i=1,2
\/ 1 7

where ¢ > 0 is any positive constant, d; and do were
introduced in (1), and €; and e; are positive constants
such that 0 < ¢; < 5, @ = 1,2. Letting the progression of
the point P along the path be governed by

[(t) = kyzp(t) + v(t) cos B, (t) cos e(t) (3)
where k1 > 0, the functions

e —rr ([ - o) @

c

where ug, (t) and uy, (t) are defined as:

ug, = —ka (0 — 0p)

Co sinf, —sindg -
+azm}796 5, + dp
Uy, = —k3 (e — dy) (5)

. s .
—c—zypv cos 96—51n Ve T 5in 0y + 0y s

C1 e — 6w

stabilize the subsystem G, for any ks > 0 and k3 > 0.

Lemma 1. Let the progression of the point P along the
path be governed by (3). Then, for any v(t) verifying (2),
the origin of the kinematic error equations in (1) with the
controllers ¢(t) = q.(t), r(t) = r.(t) defined in (4)-(5) is
exponentially stable with the domain of attraction

Q:{x : vp(x)<§}, (6)

_ _ 1 1 1 1 1
Vp(r)=2"Pz, P=diag|(=—,=—,=—,~—,-—— | .0
p(z) =2 Pz, 188 <2017 2¢1 2¢1 2¢s’ 202)

3. TIME-CRITICAL COORDINATION

We now address the problem of time-coordinated control
of multiple UAVs. Examples of applications in which this
would be useful include situations where all vehicles must
arrive at their final destinations at exactly the same time,
or at different times so as to meet a desired inter-vehicle
arrival schedule. Without loss of generality, we consider
the problem of simultaneous arrival. Let ¢y be the arrival
time of the first UAV. Denote [y, as the total length of the
spatial path for the ith UAV. In addition, let [;(t) be the
path length from the origin to p., (¢) along the spatial path
of the ith UAV. Define I}(t) = l;(t)/ls;. Clearly, l;(ty) =1
for s = 1,2,...,n implies that all vehicles arrive at their
final destination at the same time. Since I;(t) = [;(t)/ls;,
it follows from (3) that

l;(t) _ k1zp, (t) + vi(t) cl(: Bc.i(t) cos e ;(t) ' )

To account for the communication constraints, we intro-
duce the neighborhood set .J; that denotes the set of vehi-
cles that the ith vehicle exchanges information with. We
impose the constraint that each UAV only exchanges its
coordination parameter I(¢) with its neighbors according
to the topology of the communication network.

To solve the coordination problem, we propose the follow-
ing desired speed profile for the ith UAV [Kaminer et al.
2006]

v — Ucoordilfi - kle,;
“ cos O ; cos e ;
with the following decentralized coordination law

_ ’ / Vd,1
Ucoord,1 = —a E (ll _lj) + Tr

i=1,...,n, (8)

Jjen

Ucoord,i = _GZ(%_Z;)‘FXI);‘, 1=2,...,n
JjeJi

Xri=—b> (-1, i=2...,n
JjeJi

where we have elected vehicle 1 as the leader, vg,1(t) denote
its desired speed profile, and a, b are positive constants.
Note that the coordination control law has a Proportional-
Integral structure, thus allowing each vehicle to learn the
speed of the leader, rather than having it available a priori.

The coordination law can be rewritten in compact form
as:

teoora(t) = —aL(B' () + [ "2 | (9)
Xi(t) = —bCL(t)I'(t), (10)



where I'(t) = [I1(t) ... I,()]T, Ueoora(t) = [tcoord, (t) ...
Ucoord,, (t)]Ta xir(t) = [xra(t) ... X17n(t)]T7 C=[01I-1],
and the n x n piecewise-continuous matrix L(t) can be
interpreted as the Laplacian of an undirected graph I'(t)
that captures the underlying bidirectional communication
network topology of the UAV formation at time ¢. It is
well known that LT = L, L > 0, L1, = 0, and that the
second smallest eigenvalue of L is strictly positive if and
only if the graph T' is connected (see e.g., [Biggs 1993)]).

Next we reformulate the coordination problem stated
above as a stabilization problem. To this aim, we introduce
the following notation. Let

N 1,1,

Mm=71, —

)

and let @ be a (n — 1) x n matrix such that

Ql, =0, QQ"=1Iy 1.
Notice that QTQ = II, I = IIT =112 > 0, LIl =
IIL = L, and the spectrum of the matrix L = QLQT

is equal to the spectrum of L without the eigenvalue
A = 0 correspondent to the eigenvector 1,,. Define the

()T G as:

Cl(t):Qll(t), Udl(t>
Ly

where by definition (;(¢t) = 0 < I’ € span{l,} which
implies that, if ((ty) = 0, then all UAVs arrive at their
final destination at the same time.

state variables ((t) =

1n717

Thus, denoting the velocity error for the ith vehicle in the
coordination by 0;(t) = v;(t) — v, (t), i = 1,...,n, the
closed-loop coordination dynamics formed by (7) and (8)-
(10) can be reformulated as:

C(t) = F(£)¢(t) + Goaa () + Hep(t) (11)

where
—aL(t) QC
F(t) = [ bOTQTL(E) 0 ]
_11o _ |@
eog ] = (3]
and ¢(t) € R" is a vector with its ith element

0;(t) cos Oe i (t) cos e i (1)
lfi :

Next we show that for fixed or time-varying communi-
cation topologies, but assuming that the graph remains
connected for all ¢ > 0, if every vehicle travels at the de-
sired speed v, (t) and the speed profile of the leader vg 1 is
constant, then the coordinated system reaches agreement
and all the vehicles travel at the same path-length rate.
However, if vg1(t) is not constant but its time-derivative
0g,1(t) is bounded, then the error of the disagreement
vector (i (t) degrades gracefully with the size of 041 ().

Lemma 2. Consider the coordination system (11) and
suppose that the graph that models the communication
topology I'(t) is connected for all ¢ > 0. Then, for
any selected rate of convergence A > 0, there exist a
sufficiently large coordinated control gains a,b such that
the system (11) is input-to-state stable (ISS) with respect

to 04.1(t) and 0(t) = [D1,...,0,] ", that is,

IS < k1S €™ + k2 sup [0g.(7)|

T€[0,t)

+kg sup [[o(7)]|, V=0 (12)
T€[0,t)

for some ki,ko k3 > 0. Furthermore, the normalized

lengths l/(t) and path-length rates I}(t) satisfy

tlim sup |l; (t) — l; (t)| <k4 tlim sup |0q,1(t)]

s Jim sup [5(0)] . (13)
: v

tlim sup |l5(t) — UHON e tlim sup [9a,1(t)]

oo f =00

+hr Jim sup [3(0)], (14)

for all i,5 € {1,...,n}, and for some ky, ks, kg, k7 > 0. O

We now consider the case where the communication graph
I'(t) may be disconnected during some interval of time or
may even fail to be connected at any instant of time; how-
ever, we assume that the connectivity of the graph satisfies
the following less restrictive persistency of excitation (PE)-
like condition

for some T, > 0.

Lemma 3. Consider the coordination system (11) and
suppose that the Laplacian of the graph that models the
communication topology satisfies the PE condition (15).
Then, for any given A > 0 there exist sufficiently large
coordination control gains a,b such that the system (11)
is ISS with respect to 041(t) and 9(t). Moreover, I}(¢) and
I5(t) satisfy (13) and (14), respectively. O
Remark 4. The PE condition (15) only requires the graph
be connected in an integral sense, not pointwise in time.

Similar type of conditions for other coordination laws can
be found in e.g. [Lin et al. 2007] and [Arcak 2007].

4. £; ADAPTIVE AUGMENTATION OF
COMMERCIAL AUTOPILOTS

Tedr >p, VE>0; Vo e R ! (15)

So far, both the path following and time-critical coordina-
tion strategies have been based on the vehicle kinematics
only (outer-loop control). It is now necessary to bring
the UAV dynamics into play. To this effect, the above
variables must be viewed as commands to be tracked by
an appropriately designed inner-loop control system. At
this point, a key constraint is included: the inner-loop con-
trol systems should build naturally on existent autopilots.
Since commercial autopilots are normally designed to track
simple way-point commands, we modify the pitch and yaw
rates, as well as the speed commands computed before
by including an £; adaptive loop. We notice that this £;
augmentation is what allows us to account for the UAV
dynamics.

We define now the system G,, which models the closed-
loop system of the UAV with the autopilot, as:

U(S) = Go(5) (Vaa(s) + 2o(s))
= Gq(s) (qaa(s) + z4(s))
= Gr(5) (raa(s) + 2r(s))

where Gy(s), G ( ), G,(s) are unknown strictly proper
and stable transter functions, and z,(t), z4(t), z-(t) rep-
resent bounded time-varying disturbances with uniformly

(16)



bounded derivatives. We note that only very limited
knowledge of the autopilot is assumed. We do not as-
sume knowledge of the state dimension of G,(s), G,(s)
and G,(s). We only assume that these are strictly proper
and stable transfer functions. We nevertheless notice that
the bandwidth of the control channel of the closed-
loop UAV with the autopilot is very limited, and that
model (16) is valid only for low-frequency approxima-
tion of G,. Then, since ¢.(t) and r.(¢) defined in (4)-
(5) stabilize G., and v.(t) in (8) (with the coordination
control algorithm (9)-(10)) leads to coordination in time,
the control objective is reduced to designing an £; adap-

tive controller u(t) = [vga(t) qaa(t) Taa(t)]" such that the
output y(t) = [v(t) q(t) r(t)] tracks the reference input
Ye(t) = [ve(t) qo(t) re(t)]" following a desired model M(s),

Le. y(s) = M(s)y.(s) .

5. PATH FOLLOWING WITH £; ADAPTIVE
AUGMENTATION

We now address the stability of the path following closed-
loop system with £, augmentation. We show that the orig-
inal domain of attraction for the kinematic error equations
in (6) can be retained with the £; augmentation.

Theorem 5. Let the progression of the point P along the
path be governed by (3). For any smooth v(t) verifying (2),
if £(0) € €, where Q is defined in (6), then there exist
adaptation control gains that guarantee z(t) € € for all
t > 0, and therefore the complete closed-loop cascaded
system is ultimately bounded with the bounds as those
for the kinematic closed-loop system of Lemma 1. a

Remark 6. We notice that the approach in this paper
is different from common backstepping-type analysis for
cascaded systems. The advantage of our structure is that
it retains the properties of the autopilot, which is designed
to stabilize the inner-loop. As a result, it leads to ulti-
mate boundedness instead of asymptotic stability. From a
practical point of view, the inner/outer-loop architecture
adopted is quite versatile in that it adapts itself to the
particular autopilot installed on-board.

6. COMBINED PATH FOLLOWING AND
TIME-CRITICAL COORDINATION WITH
L1 ADAPTIVE AUGMENTATION

This section addresses the stability properties of the com-
bined path following/coordination systems and the inner-
loop with £; adaptive augmentation (see Figure 2).

Theorem 7. Consider the combined path following sys-
tem (1) and the time-critical coordination system (11)
under the communication constraints of Lemmas 2 or 3.
There exist suitable control gains that guarantee that
the path following errors z(¢) are ultimately bounded
and satisfy z(t) € Q, and that the coordination errors
C(t) satisfy (12). Furthermore, the resulting velocity for
the ith UAV verifies the a priori specified lower bound
Ui(t) > Umin > 0. (]

7. EXPERIMENTAL RESULTS

The complete coordination path following control algo-
rithm was implemented on experimental UAV RASCALs
operated by NPS. The payload bay of each aircraft is
used to house two PC104 embedded computers, a wireless
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Fig. 2. Coordinated path following closed-loop for the ith
UAV with £; augmentation

network link, and the Piccolo autopilot. The first PC-
104 board runs developed algorithms in real-time while
directly communicating with the autopilot. The second
PC-104 computer is equipped with a mesh network card
that provides wireless communication to another UAV and
to the ground station. This setup is being used for both
hardware-in-the-loop (HITL) simulations and flight tests.

The path-following control algorithm for a single UAV was
flight tested in February 2008. These flight tests demon-
strated the benefits of the £, adaptive augmentation to
achieve improved path following performance. Figure 3(a)
presents one of the trials used to tune the control param-
eters. In particular, it shows the inertial position of the
UAV with respect to the commanded feasible trajectory. It
can be seen that the maximum deviation from the desired
trajectory is of about 150 m, which corresponds to the
point of the sharp turn. Other than at this point, the
tracking errors are very small and the UAV is following the
commanded path very closely (Figure 3(b)). Moreover, the
control efforts required to bring each airplane to the com-
manded trajectory do not exceed any limitations imposed
by the autopilot and are typical for this class of UAVs.

Figures 4(a)-4(b) include results of an HITL test where
two UAVs follow feasible trajectories while using their ve-
locities to coordinate simultaneous arrival in the presence
of communication failures. Figure 4(a) shows the desired
and the actual paths of each UAV, while their normalized
coordination states are presented in Figure 4(b). Both
UAVs arrive at the final position at nearly the same time.

The results presented above demonstrate feasibility of
the onboard integration of the path following, adaptation
and coordination concepts. The achieved functionality of
the UAV following 3D curves in inertial space has never
been available for the airplanes equipped with traditional
AP; the adaptive strategy outperforms the conventional
waypoint navigation method. Presented results not only
demonstrate the feasibility of the concept but provide a
roadmap for further development and onboard implemen-
tation of intelligent multi-UAV coordination.

8. CONCLUSION

A novel solution was presented to the problem of coordi-
nated control of multiple UAVs for time-critical missions
in the presence of time-varying communication topolo-
gies. The framework adopted makes use of algorithms
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for deconflicted real-time path generation, nonlinear path
following, and multiple vehicle coordination. The proposed
control algorithm has an inner-outer structure that relies
on the augmentation of existing autopilots with £; adap-
tive output feedback controllers. Multiple vehicle coordi-
nated control is done by adjusting the speed profiles of
the UAVs along their paths in response to information
exchanged over the underlying communication network.
Both theoretical and flight test results were presented.
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