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Abstract: This paper discusses the identification and convergence, in a deterministic setting,
of a class of Continuous-Time Multiple-Model Adaptive Estimators (CT-MMAE) for state-
affine multiple-input-multiple-output systems with parametric uncertainty. The CT-MMAE is
composed by a dynamic weighting signal generator and a bank of local continuous-time observers
where each observer is designed using one element of a finite discrete model (parameter) set. The
state estimate is generated by a weighted sum of the estimates produced by the bank of observers
and the parameter estimate is selected to be the one that corresponds to the weighted signal
with the largest value. We show that under suitable persistent of excitation like conditions the
model identified is the one that exhibits less output error “power”. Furthermore, a distance-like
metric between the true plant and the identified model is derived. We also provide conditions
for convergence of the state estimation error and for L2 and L∞ input-to-state stability. These
deterministic continuous time results complement existing knowledge for stochastic discrete-time
MMAE designs.
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1. INTRODUCTION

The design of a single state-estimator for a plant requires
exact knowledge of the plant parameters for optimal
performance. In practice, parameter uncertainty and/or
parameter variations will impact the robustness of the
estimator. In fact, incorrect modeling in the estimator
may lead to large estimation errors or even divergence (see
Price [1986], Fitzgerald [1971]). To cope with this problem,
adaptive estimators (where the adaptation is with respect
to the uncertainty in the plant parameters) have been
proposed.

Many approaches to the problem of adaptive estimation
have been considered in the literature. In particular, the
Multiple Model Adaptive Estimation (MMAE) algorithm
has received considerable attention.

The use of multiple models for Adaptive Estimation is by
no means new. In the 1960s and 1970s several authors
including Magill [1965], Lainiotis [1976], Athans et al.
[1977; 1979], Anderson and Moore [1979], and Li and Bar-
Shalom [1996] studied Kalman filter based models and
LQG controllers as a basis for adaptive control.

In MMAE a separate discrete-time Kalman filter (KF) is
developed for each different assumed value of the uncertain
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parameters defining a “model”. The resulting set of KFs
forms a “bank” where each local KF generates its own
state estimate and an output error (residual) as shown
in Fig. 1. The bank of KFs runs in parallel and at each
time the residuals are used to compute for each KF the
conditional probability that it corresponds to the correct
parameter value. The overall state estimate is a weighted
combination of each filter’s estimate. The rational is that
the highest probability should be assigned to the most
accurate KF, and lower probabilities assigned to the other
KFs. Since the range of parametric uncertainty is contin-
uous, the uncertain parameters can take on an infinite
number of different values. In practice, the parameter
space must be discretized to keep the number of filters
realizable. The discretized parameter space is composed
of representative point values that define the elemental
Kalman filters. Intuitively, one can say that more models
have to be used to improve the accuracy but this in turn
increases the computational burden. In fact, the number of
local observers needed and how to quantize the parameter
space optimally are still open issues.

The stochastic continuous-time MMAE (CT-MMAE) was
introduced in Dunn and Rhodes [1973] and Dunn [1974]
but no further research has been carried out on this
subject, to the best of our knowledge (except Aguiar et al.
[2007a]). In this case, the plant in Fig. 1 is described by
a stochastic differential equation, w and v are continuous-
time white noises, and the estimators are continuous-time
steady state KFs. The dynamic weights are generated by
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Fig. 1. The MMAE architecture.

a continuous time differential equation. No convergence
results were derived in Dunn and Rhodes [1973], Dunn
[1974].

We now present the main motivation behind this research.
Although MMAEs are important in their own right (for
navigation, tracking, surveillance, etc.) they have also
formed the basis for Multiple-Model Adaptive Control
(MMAC). Some of the MMAC approaches use continuous-
time deterministic architectures; Anderson et al. [2000],
Hespanha et al. [2001], Morse [1996; 1997], Narendra and
Balakrishnan [1997], Narendra and Driollet [2001]. On
the other hand, many MMAC approaches use discrete-
time stochastic frameworks; Athans et al. [1977], Schiller
and Maybeck [1997], Morse [1996], Athans et al. [2005],
Fekri et al. [2006; 2007]. As pointed out in the later
references, there is a need to understand the connection
between the discrete-time stochastic MMAC designs and
the deterministic continuous-time ones. The results in
this paper should be useful along this direction and the
convergence of the deterministic MMAE to its nearest
model is of great importance. This is the main contribution
of this paper.

Following the work of Krener [1980] one can interpret
continuous-time Kalman filters as deterministic observers
and view, and analyze, the CT-MMAE architecture in
Fig. 1 in a deterministic setting, where the plant is
described by a linear continuous time-varying system and
the estimators are Krener observers (KOs). We propose
a Dynamic Weighting Signal Generator (DWSG) system
(different from the one considered in Aguiar et al. [2007a])
that guarantees the following properties: i) the weights pi

are always positive and bounded above by 1; ii) under
suitable persistency of excitation conditions, one of them
converges to 1 and the others converge to zero. We show
that the model identified is the one that exhibits less
output error “power”. A distance-like metric between the
true plant and the identified model is derived. We also
provide conditions for convergence of the state estimation
error and for L2 and L∞ input to state stability.

The structure of the paper is as follows. In section 2 we
review the main issues of CT-MMAE and we define the
details of the CT-MMAE of Fig. 1. Section 3 summarizes
our main results and Section 4 contains the proofs. Section
5 illustrates the performance of the CT-MMAE algorithm

proposed through computer simulations. Conclusions and
suggestions for future research are summarized in Section
6. Due to space limitations, some proofs are omitted. These
can be found in Aguiar et al. [2007b].

Notation and definitions: We denote by x ∈ R
n

a vector and by P a symmetric, positive definite n ×
n matrix. ‖x‖ denotes the standard Euclidean norm of

vector x and ‖x‖P :=
(

x′Px
)1/2

. A piecewise continu-
ous function φ : [0, T ) → R

n, T ∈ (0,∞] is in L2 if
∫ T

0 ‖φ(τ)‖2 dτ < c for some constant c. The RMS norm 1

of a deterministic vector signal u is defined as ‖u‖rms :=
(

limT→∞
1
T

∫ T

0 u(t)′u(t) dt
)1/2

provided that this limit

exists. The RMS can be expressed in terms of the autocor-

relation of u, Ru(τ) := limT→∞
1
T

∫ T

0
u(t)′u(t + τ) dt, or

its power spectral density, Su(ω) :=
∫ ∞
−∞Ru(τ)e−jωτ dτ ,

as follows: ‖u‖2
rms = Ru(0) = 1

2π

∫ ∞
−∞ Su(ω) dω.

2. THE MULTIPLE-MODEL ADAPTIVE
ESTIMATOR

In this section we propose a class of CT-MMAE modeled
in a purely deterministic setting. We consider state-affine
multiple-input-multiple-output (MIMO) systems of the
form

ẋ(t) = A(t, θ)x(t) +B(t, θ)u(t) +G(t)w(t), (1a)

y(t) = C(t, θ)x(t) + v(t), (1b)

where x(t) ∈ R
n denotes the state of the system, u(t) ∈

R
m its control input, y(t) ∈ R

q its measured noisy output,
w(t) ∈ R

r an input plant disturbance that cannot be
measured, and v(t) ∈ R

p measurement noise. The matrices
A(t, θ), B(t, θ), and C(t, θ) are assumed piecewise contin-
uous, uniformly bounded in time, and contain unknown
constant parameters denoted by vector θ ∈ R

l. The initial
condition x(0) of (1a) and the signals w and v are assumed
deterministic but unknown.
Consider a finite set of candidate parameter values Θ :=
{θ1, θ2, . . . , θN} indexed by i ∈ {1, . . . , N}. We propose
the following CT-MMAE:

x̂(t) :=

N
∑

i=1

pi(t)x̂i(t), (2)

θ̂(t) := θi⋆ , i⋆ := arg max
i∈{1,...,N}

pi(t), (3)

where x̂(t) and θ̂(t) are the estimates of the state x and
parameter vector θ at time t, respectively, and pi; i =
1, . . . , N are dynamic weights defined later. In (2), each
x̂i; i = 1, . . . , N corresponds to a “local” state estimate
generated by a (deterministic) Kalman-Bucy filter or min-
max filter (Krener [1980]) of the type 2

Ṗi = AiPi + PiA
′
i +GQG′ − PiC

′
iR

−1CiPi, (4a)

˙̂xi = Aix̂i +Biu+ PiC
′
iR

−1
(

y − Cix̂i

)

, (4b)

where Ai(t) := A(t, θi) (the same notation applies to Bi

and Ci) and Pi(0) = P0i, x̂i(0) = x̂0i. The matrices P0i,
Q(t) and R(t) play the same role as the covariances and
white-noise intensities of the corresponding Kalman-Bucy
filter models.
1 In fact, this is not a norm but a semi-norm.
2 For simplicity of notation, we will drop the arguments of the
matrices.



In the structure proposed, the dynamic weights pi ∈ R,
i = 1, . . . , N in (2),(3) satisfy

ṗi = −λ
(

1 −
βie

−ωi

∑N
j=1 pjβje−ωj

)

pi, pi(0) = p0i (5)

where λ is a positive constant, βi(t) is a signal assumed
to satisfy the condition c1 ≤ βi(t) ≤ c2 for some positive
constants c1, c2 and ωi(·) is a continuous function called
an error measuring function that maps the measurable
signals of the plant and the states of the i-th local
estimator to a nonnegative real value. Examples of an error
measuring function and a βi function are ωi := 1

2‖ŷi−y‖
2
Si

and βi := 1√
detSi

, respectively, where Si is a positive

definite weighted matrix.

The structure of the key equation (5), which generates
the time-evolution of the weights pi, was inspired by
the continuous approximation of the “standard” discrete
MMAE formulas (see Anderson and Moore [1979]).

We impose the constraint that the initial conditions p0i

be chosen such that p0i ∈ (0, 1) and
∑N

i=1 p0i = 1. The
parameters G, Q, R, λ and the functions βi, ωi are tuning
parameters/functions of the CT-MMAE chosen by the
designer.

3. MAIN RESULTS

In this section we summarize our main results regard-
ing the CT-MMAE. We first show that positiveness and
boundedness of the dynamic weights pi(t) are independent
of the input signals of the dynamic weighting signal gener-
ator (DWSG) system. We also show that the overall sum
of the pi’s is always unity for all t ≥ 0.

Theorem 1. Suppose that p0i ∈ (0, 1) and
∑N

i=1 p0i =
1. Then, each pi(t), i = 1, . . .N governed by (5) is
nonnegative, uniformly bounded and contained in the
interval [0, 1] for every t ≥ 0. Furthermore,

N
∑

i=1

pi(t) = 1, ∀t ≥ 0

2

We next provide conditions for the convergence of the
dynamic weights pi(t).

Theorem 2. Let i⋆ ∈ {1, 2, . . . , N} be an index of a
parameter vector in Θ and I⋆ := {1, 2, . . . , N}\i⋆ an index
set. Suppose that there exist positive constants T , c, and
ǫ with ǫ > c such that for all t ≥ 0 the following condition
holds

1

T

∫ t+T

t

(

ωi⋆(τ) + ǫ
)

dτ <
1

T

∫ t+T

t

min
j∈I⋆

ωj(τ) dτ (6)

and supt≥0 ln
maxj∈I⋆ βj

βi⋆
≤ c. Then, pi⋆(t) governed by (5)

satisfies pi⋆(t) → 1 as t→ ∞.
2

To get some intuition for the meaning of (6), note that
if the error measuring functions ωi(·), i ∈ {1, . . . , N}
are uniformly persistently exciting (PE), i.e., there exist
positive constants µi and T such that for every t ≥ 0

1

T

∫ t+T

t

ωi(τ) dτ ≥ µi,

condition (6) is equivalent to

µi⋆ + ǫ <
1

T

∫ t+T

t

min
j∈I⋆

ωj(τ) dτ.

Thus, roughly speaking, the “model” identified is the one
that exhibits less measuring error “power”. More precisely,
we obtain the following Corollary.

Corollary 3. Suppose that condition (6) of Theorem 2
holds for some i = i⋆ ∈ {1, . . . , N}. Then, the parameter

estimate θ̂(t) converges to the closest to the true parameter
θ in the following sense

lim
t→∞

θ̂ = θi⋆ , i⋆ = arg min
i∈{1,...,N}

lim
T→∞

1

T

∫ T

0

ωi(τ) dτ

2

For Linear Time-Invariant (LTI) systems and selecting
weighted quadratic norms of the output estimation errors
for the error measuring functions we obtain the following
result.

Corollary 4. Let ωi := ‖ŷi − y‖2
Si

with Si > 0 and sup-
pose that the conditions of Theorem 2 hold. If w, v, u
are bounded-spectral signals with spectral factor Sin =

W (jω)⋆W (jω), then the parameter estimate θ̂(t) con-
verges to the closest to the true parameter θ in the fol-
lowing sense

lim
t→∞

θ̂ = θi⋆ , (7a)

i⋆ = arg min
i∈{1,...,N}

‖S
1/2
i (Ci(sI − Ai)

−1
Bi + D)W (s)S

−1/2
i ‖2

(7b)

where

Ai :=

[

A 0
LiC Ai − LiCi

]

, Bi :=

[

G 0 B
0 Li Bi

]

,

Ci := [−C Ci] , D := [0 −I 0] .

2

The above Corollary leads to an algorithm to compute the
sets Ωi consisting, for each i, of the set of actual parameters
θ ∈ R

l for which the corresponding parameter estimated
is θi. With a certain abuse of notation, we will refer to Ωi

as the regions of attraction of θi.

The following result establishes the convergence of the
state estimate x̂(t).

Theorem 5. Suppose that (1) is asymptotically stable and
that there exist positive constants δ1, δ2 ∈ (0,∞) such that

δ1I ≤ G(t)Q(t)G(t)′ ≤ δ2I. (8)

Then, if P remains uniformly bounded and condition (6)
holds for some i = i⋆ ∈ {1, . . . , N}, the state estimation
error x̃(t) := x̂(t) − x(t) satisfies the following properties:

L∞ to L∞
‖x̃(t)‖ ≤ ce−λt‖x̃(0)‖ + γw sup

τ∈[0,t)

‖w(τ)‖

+ γv sup
τ∈[0,t)

‖v(τ)‖ + γu sup
τ∈[0,t)

‖u(τ)‖ (9)

L2 to L∞

‖x̃(t)‖ ≤ ce−λt‖x̃(0)‖ + γw

∫ t

0

‖w(τ)‖2 dτ

+ γv

∫ t

0

‖v(τ)‖2 dτ + γu

∫ t

0

‖u(τ)‖2 dτ

(10)



L2 to L2
∫ t

0

‖x̃(t)‖2 dτ ≤ c‖x̃(0)‖ + γw

∫ t

0

‖w(τ)‖2 dτ

+ γv

∫ t

0

‖v(τ)‖2 dτ + γu

∫ t

0

‖u(τ)‖2 dτ

(11)

2

From Theorem 5 it follows that the state estimate x̂
converges exponentially fast to the true state x in the
absence of disturbance input ω, measurement noise ν,
and input signal u. However, when this is not the case,
x̂ converges to a neighborhood of the true state x. The
size of this neighborhood depends not only on the size
of the noise and disturbance (as expected) but also on the
input signal u. Furthermore, close examination of the proof
of the Theorem shows that the size of the neighborhood
depends also on the mismatch between the parameter used
to derive the local estimator and the real parameter.

The next Theorem gives conditions under which the above
dependence on u ceases to exist asymptotically, as t→ ∞.

Theorem 6. Let x̂θ, Pθ be the state variables of the min-
max filter (4) designed for the true parameter θ and ωθ

the corresponding error measuring function. Suppose that
θ belongs to the discrete set Θ and let iθ be the corre-
sponding index. If the following identifiability condition
holds

lim
T→∞

1

T

∫ T

0

(

ωθ(τ) + ǫ
)

dτ < lim
T→∞

1

T

∫ T

0

ωi(τ) dτ (12)

for all i ∈ Iθ := {1, . . . , N}\iθ and for some ǫ >
max{0, supt≥0(ln maxj∈Iθ

βj − lnβiθ
)}, then

lim
t→∞

θ̂(t) = θ, (13)

lim
t→∞

sup ‖x̃(t)‖ ≤ γw lim
t→∞

sup ‖w(t)‖ + γv lim
t→∞

sup ‖v(t)‖.

(14)
2

4. PROOFS

Theorem 2

Proof. From (5) we obtain for i = i⋆

pi⋆(t) = pi⋆(0) exp
(

∫ t

0

ψ(τ) dτ
)

, (15)

where ψ(t) := −λ
(

1 − βi⋆ e−ωi⋆

∑

N

j=1
pjβje−ωj

)

. To analyze the

evolution of pi⋆(t) we first verify that

ψ = λ
βi⋆e−ωi⋆ −

∑

j∈I⋆
pjβje

−ωj − pi⋆βi⋆e−ωi⋆

∑N
j=1 pjβje−ωj

≥ λ
(1 − pi⋆)βi⋆e−ωi⋆ − maxj∈I⋆

(βje
−ωj)

∑

j∈I⋆
pj

κ

=
λ

κ

(

βi⋆e−ωi⋆ − max
j∈I⋆

(βje
−ωj )

)

(1 − pi⋆)

where κ := maxt≥0

∑N
j=1 pjβje

−ωj is bounded and posi-
tive for every t ≥ 0.

Denoting w := minj∈I⋆
ωj and β := maxj∈I⋆

βj , applying
condition (6), and using the fact that ǫ > c we can conclude
that there exists δ > 0 such that

1

T

∫ t+T

t

(

w − ωi⋆

)

dτ > lnβ − lnβi⋆ + δ

and therefore

1

T

∫ t+T

t

(

− ωi⋆+ lnβi⋆

)

dτ − δ/2

>
1

T

∫ t+T

t

(

− w + lnβ
)

dτ + δ/2.

Because exp(·) is a monotonically increasing function, it
also follows that
( 1

T

∫ t+T

t

βi⋆e−ωi⋆ dτ
)

e−δ/2 >
( 1

T

∫ t+T

t

βe−w dτ
)

eδ/2

holds. Therefore, there exists ε > 0 such that

1

T

∫ t+T

t

βi⋆e−ωi⋆ dτ −
1

T

∫ t+T

t

βe−w dτ > ε.

Combining the previous results we further conclude that

1

T

∫ t+T

t

ψ(τ) dτ ≥
1

T

∫ t+T

t

λ
βi⋆e−ωi⋆ − βe−w

κ
(1 − pi⋆)dτ

≥
λε

κ

(

1 − max
t≥0

pi⋆

)

.

Examine now (15). Let t̄ := t − n̄T ≥ 0, where n̄ is the
largest integer that satisfies n̄ ≤ t

T . Then, we obtain

pi⋆(t) = pi⋆(0) exp
(

∫ t̄

0

ψ(τ) dτ +

∫ t

t̄

ψ(τ) dτ
)

= pi⋆(0) exp
(

∫ t̄

0

ψ(τ) dτ

+
n̄

∑

j=1

∫ t̄+jT

t̄+(j−1)T

ψ(τ) dτ
)

≥ pi⋆(0) exp
(

∫ t̄

0

ψ(τ) dτ

+ n̄
[λε

κ

(

1 − max
t≥0

pi⋆(t)
)]

T
)

, ∀t ≥ 0

From the definition of n̄ we conclude that n̄ ≥ t
T − 1 and

consequently

n̄
[λε

κ

(

1 − max
t≥0

pi⋆(t)
)]

T ≥
( t

T
− 1

)[λε

κ

(

1 − max
t≥0

pi⋆(t)
)]

T

=
[λε

κ

(

1 − max
t≥0

pi⋆(t)
)]

(t− T ).

Thus,

pi⋆(t) ≥ pi⋆(0) exp
(

∫ t̄

0

ψ(τ) dτ
)

exp
(λε

κ

(

1 − max
t≥0

pi⋆(t)
)

(t− T )
)

≥ αpi⋆(0) exp
(λε

κ

(

1 − max
t≥0

pi⋆(t)
)

(t− T )
)

,

for some α > 0, where we have used the fact that 0 ≤
t̄ < T and ψ(t) is bounded. By contradiction it is now
straightforward to conclude that pi⋆ → 1 as t → ∞.

2



Theorem 5

Proof. [Outline] First, it is shown that if (8) holds and
P remains uniformly bounded, then there exist positive

constants ci, λi, γ
w
i , γv

i , γφ
i such that

‖x̃i(t)‖ ≤ cie
−λit‖x̃i(0)‖ + γw

i sup
τ∈[0,t)

‖w(τ)‖

+γv
i sup

τ∈[0,t)

‖v(τ)‖ + γφ
i sup

τ∈[0,t)

‖φi(t, x(τ), u(τ))‖ (16)

∀t ≥ 0, where

φi(t, x, u) := ∆Aix+ ∆Biu− Li∆Cix,

Li := PiC
′
iR

−1
i is the observer gain, and ∆(·)i := (·)i − (·)

denotes the mismatch between the model used to derive
the ith local estimator and the true system (1). To prove
(9), we use the fact that

x̃ =

N
∑

i=1

pix̂i −

N
∑

i=1

pix =

N
∑

i=1

pix̃i. (17)

and therefore ‖x̃(t)‖ ≤ N‖x̃i(t)‖. It is now straightforward
to conclude (9) by observing that each x̃i can be viewed
as a cascade of two ISS systems: inequality (16) together
with

‖φi‖ ≤
(

‖∆Ai‖ + ‖Li∆Ci‖
)

‖x‖ + ‖∆Bi‖‖u‖

and system (1), which is ISS with respect to the inputs
u and w. Expressions (10) and (11) can then be easily
derived from the results above.

2

Theorem 6

Proof. From Theorem 2 and Corollary 3 we conclude
(13). From Theorem 2 it also follows that piθ

→ 1 as t →
∞. Thus, from (17), limt→∞ sup ‖x̃‖ = limt→∞ sup ‖x̃iθ

‖.
Using (16) for i = iθ and noticing that φiθ

= 0 we conclude
(14).

2

5. ILLUSTRATIVE EXAMPLE

The CT-MMAE with measuring functions ωi = ‖y −
ŷi‖Si

was tested and evaluated using the two-cart mass-
spring-damper (MSD) system shown in Fig. 2. The output
signal y is the position of cart m2 (i.e., x2) corrupted by
measurement noise v. The disturbance w only affects m2.
A state-space representation of the plant, including the
disturbances and noise inputs, is given by (1) with

A =







0 0 1 0 0
0 0 0 1 0

−k1
m1

k1
m1

−b1
m1

b1
m1

0

k1
m2

−(k1+k2)

m2

b1
m2

−(b1+b2)

m2

1
m2

0 0 0 0 −0.1






, B =





0
0
1

m1
0
0



 ,

G′ = [ 0 0 0 0 0.1 ] , C = [ 0 1 0 0 0 ] ,

where m1 = m2 = 1 Kg; k2 = 0.15 N/m; b1 = b2 =
0.1 Ns/m; and k1 is an unknown parameter that can as-
sume values in the interval [0.25, 1.75]. Using the results
in Corollary 4 we can infer the corresponding region of
attraction of each local observer and from this select a
convenient discrete parameter space Θ. Figure 3 illustrates
the procedure adopted with N = 4 local observers. We di-
vided uniformly the interval where k1 can leave into 4 sub-
intervals and from these we computed the nominal values

1
m

1
k

2
m
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2 4 2

2
k

2
b

Fig. 2. The two-cart MSD system. The spring-constant k1

is uncertain.

for k1 such that the region of attraction of each estimator
corresponds to the sub-intervals. We obtained the follow-
ing set Θ = {0.35, 0.76, 1.15, 1.53}. The y-axis corresponds

to the normalized pseudo-distance d(θ, k1) = log ‖·‖2,θ
‖·‖2,k1

,

where ‖ · ‖2,θ := ‖Cθ(sI − Aθ)
−1Bθ + D‖2. Figures 4–7

show the time evolutions of some representative signals for
deterministic and stochastic noise and disturbance signals
and with u = 0. In the deterministic case, v and w are a
sum of 10 sinusoidal signals (with different amplitude and
frequency). In the stochastic case, v and w are white noise
signals. To test the robustness to unstructured uncertainty,
in all the simulations, the measurements used by the local
estimators suffer from a delay of τ = 0.01 s.

The results show that the true model is always corrected
identified even when k1 is near the boundary between two
adjacent regions of attraction. (compare the values of k1

with the regions in Fig. 3).
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Fig. 3. Nominal values for estimators and their regions of
attraction Ωi.
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Fig. 4. Deterministic case: k1 = 0.76.
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Fig. 5. Deterministic case: k1 = 1.4.
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ỹ

Fig. 6. Stochastic case: k1 = 0.76.
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Fig. 7. Stochastic case: k1 = 1.05.

6. CONCLUSIONS

We presented and analyzed a class of CT-MMAE sys-
tem for state-affine MIMO systems with parametric un-
certainty. We showed that if some suitable persistent of
excitation like conditions hold, the model identified is the
one that exhibits less output error “power”. We derived a
distance like metric between the true plant and the iden-
tified model and also provided conditions for convergence
of the state estimation error and for L2 and L∞ stability.
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