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Abstract:

This paper discusses key implementation details required for computing the solution of a
continuous-time optimal control problem on a Lie group using the projection operator approach.
In particular, we provide the explicit formulas to compute the time-varying linear quadratic
problem which defines the search direction step of the algorithm. We also show that the
projection operator approach on Lie groups generates a sequence of adjoint state trajectories
that converges, as a local minimum is approached, to the adjoint state trajectory of the first
order necessary conditions of the Pontryagin’s Maximum Principle, placing it between direct

and indirect optimization methods.

As illustrative example, an optimization problem on SO(3) is introduced and numerical results
of the projection operator approach are presented, highlighting second order converge rate of

the method.
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1. INTRODUCTION

In (Saccon et al., 2010a), the Lie group projection operator
approach is introduced. The method is the extension to Lie
groups of the projection operator approach for optimiza-
tion of trajectory functionals developed in (Hauser, 2002).

Originally developed for unconstrained optimization prob-
lems, the strategy has been improved to handle optimal
state transfer problems in (Hauser, 2003) and state-control
constraints using a penalty function approach (Hauser and
Saccon, 2006). The method has been used, e.g., to obtain
a dynamic inversion procedure for the dynamics of rac-
ing motorcycles (Saccon et al., 2008, 2010b), to compute
feasible trajectories for control-constrained systems (No-
tarstefano et al., 2007), for motion planning and control of
automated marionettes, (Murphey and Egerstedt, 2007),
and to explore the capabilities of a tilt-rotor VT OL aircraft
(Notarstefano and Hauser, 2010).

The algorithm can be thought as a generalization of the
Newton’s method to the infinite dimensional setting and
exhibits second order convergence rate to a local minimum.
The method computes a search direction, at each step,
solving a linear quadratic problem obtained from first
and second derivatives of the incremental cost, terminal
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cost, and control system vector field. In this work, we
provide explicit formulas to compute the linear dynamics
and the quadratic incremental and terminal costs for the
Lie group projection operator approach. Those formulas
derive naturally from the theory descried in (Saccon et al.,
2010a).

A quite interesting property of the algorithm in the flat
case, is that it also generates a sequence of adjoint state
trajectories that converges, as a local minimum is ap-
proached, to the adjoint state trajectory of the first order
necessary conditions of the Pontryagin’s Maximum Prin-
ciple. In this work, we show that this property is retained
in the Lie groups Projection Operator Approach. Notably,
this fact places the algorithm between direct and indirect
optimization methods.

The paper is organized as follows. Section 2 discusses the
mathematical preliminaries and adopted notation. The
projection operator approach, both on flat spaces and
Lie groups, is reviewed in Section 3. Explicit formulas to
compute the search direction in the Lie group projection
operator approach are detailed in Section 4. As illustrative
example of these formulas, an optimal control problem on
the Lie group SO(3) is presented in Section 5, together
with numerical results. Conclusions are drawn in Section 6.

2. MATHEMATICAL PRELIMINARIES

In this section, we introduce standard definitions and
notation that will be used throughout the paper. We
assume that the reader is familiar with the theory of
finite dimensional smooth manifolds, matrix Lie groups,



covariant differentiation. We refer to the books (Boothby,
1986), (Abraham et al., 1988), (Lee, 1997) for a review on
differentiable manifolds and covariant differentiation and
to (Varadarajan, 1984), (Rossmann, 2002) for a review
of the theory of Lie groups and Lie Algebra. A smooth
manifold will be indicated with the letter M or N. A
point on the manifold will be denoted simply by z. T, M
and T'M denote, respectively, the tangent and cotangent
spaces of M at x. A generic tangent vector is usually
written as v, or w,, where the subscript indicates the
base point at which the tangent vectors are attached. The
tangent and cotangent bundles of M are denoted by T'M
and T* M , respectively. The natural bundle projection from
TM to M is denoted by m : TM — M, so that nv, = x.
A generic vector field on a manifold M is denoted by
X : M — TM. A vector field X is a section of the tangent
bundle TM, that is, it satisfies 7X (z) = .

Given a function f : M — N, its tangent map is
represented by Df : TM — TN (or also as Tf : TM —
TN). Tangent maps act naturally on tangent vectors.
Given a vector v, € T, M, Df(z) - vy € Ty N (or
T, f(vy)) is the evaluation of the tangent map of f in the
direction v, at x. Tangent maps act naturally on vector
fields as well. Given a vector field X : M — TM, the
writing Df-X : M — TN (or Tf(X): M — TN) denotes
at € M the tangent vector D f(z) - X(z) € TN (or
T, f(X(x))). Given an affine connection V on a manifold
M, we write VxY and D; to indicate respectively, the
covariant derivative of the vector field Y in the direction
X and the covariant differentiation with respect to the
parameter t. The parallel displacement along a curve (t),
t €I, fromt =ty tot =t of avector Vo € T, )M

is represented by PfY“_tOVo. We also adopt the notation
DY - X to mean VxY .

The symbol D?f(x) - (vy,w,) is the second geometric
derivative of a function f: M — N at x € M evaluated
in the directions v,, w, € TM (Saccon et al., 2010a).
Given two connections 'V and 2V defined on M and N,
respectively, the second geometric derivative is defined as

sz(x) (v, wg) =
lim 1/h (PPF)Df(v(h) - P00, = Df(1(0)) - va)
where v : (—g,e) — M, e > 0, is a differentiable curve
satisfying v(0) = 2 and 4(0) = w,, and ' P, and 2P, are
the parallel displacements associated to the connections
1V and 2V, respectively. Note that D?f(x) - (v, wz) €
Ty(a)N-

When f is a real valued function, f : M — R, then D?f
reduces to the second covariant derivative (Absil et al.,
2008, Sections 5.6 and 5.7).

A generic Lie group is denoted by G. The group identity
is denoted by e. Left and right translations of z € G
(a group element) by the group element g € G are
denoted by L,z and Rgx, respectively. When convenient,
we will adopt the shorthand notation gz, zg, gvs, vzg
for, in the same order, Lz, Ryx, Ty Ly(vy) and Ty Ry (vy).
A left-invariant vector field on G is a vector field such
that X (Lgx) = T,Ly(X(x)). Given a tangent vector at
the identity o € T.G, the symbol X, means the left-
invariant vector field defined by X,(g) := TeL,4(0). The Lie

algebra of GG is g. The Lie algebra g is identified with the
tangent space T, G endowed with the Lie bracket operation
[,-] : g x g — g, defined by [g,s] := [X,, X(](e), where the
latter bracket is the Jacobi-Lie bracket of the left-invariant
vector fields X, and X evaluated at the group identity.

The mapping I,(z) = gzg~! is called inner automorphism.

The adjoint representation of the Lie group G on the
algebra g is written as Ady : g — g and is the tangent
map obtained differentiating I,(x) with respect to x at
x = e. We recall that g = T.G. Furthermore, the adjoint
representation of the Lie algebra g onto itself is written
as ad, : g — g and it is obtained differentiating Ad, (<)
with respect to g at ¢ = e, in the direction o. We recall
that ad,s = [o,¢]. The exponential map is denoted by
exp : g — G and its inverse (in a neighborhood of the
identity) by log : G — g.

3. THE PROJECTION OPERATOR APPROACH

The projection operator approach on a flat space and on
a Lie group is reviewed in this section.

3.1 Flat space projection operator approach

The projection operator approach to the optimization of
trajectory functionals, developed in (Hauser, 2002), allows
one to perform local Newton optimization of the (integral
plus terminal) cost functional

T
h(z,w) :—/0 Ur,z(7),u(r))dr + m(z(T)) (1)

over the set 7 of trajectories (i.e., state and control pairs)
of a nonlinear system @ = f(x, u) subject to a fixed initial
condition xg.

Restricting our attention to the set 7 of exponentially
stabilizable trajectories, one can show that 7 has the
structure of a (infinite dimensional) Banach manifold
(Hauser and Meyer, 1998), allowing us to use vector space
operations (Luemberger, 1969) to effectively explore it.

To work on the trajectory manifold 7, one projects curves
¢ in the ambient Banach space onto the trajectory man-
ifold, giving n = P({) € T, by using a local linear
time-varying trajectory tracking controller. Suppose that
&(t) = (at),u(t)), t > 0, is a bounded curve (e.g., an
approximate trajectory of f) and let n(t) = (x(t),u(t)),
t > 0, be the trajectory of f determined by the nonlinear
feedback system

i(t) = f(z(t),u(t)), z(0) = a(0), 2)
u(t) = p(t) + K(t)(alt) —z(t)) .
Under certain (mild) conditions on f and K (Hauser and

Meyer, 1998), this feedback system defines a continuous,
nonlinear projection operator

P:&= () =»n=(zu).
It is straightforward to see that, independent of K, if
¢ is a trajectory of f, then ¢ is a fixed point of P,
& =P(&). Noting that the constrained and unconstrained
optimization problems

rgréi;l h(§) and mgin h(P(£))

are essentially locally equivalent, one may develop New-
ton and quasi-Newton descent methods for trajectory



optimization in an effectively unconstrained manner by
working with the cost functional h(£) := h(P(£)). By
saying that the problem are essentially locally equivalent,
we mean the following: If £* € T is a constrained local
minimum of A, then it is an unconstrained local minimum
of h. If £F is an unconstrained local minimum of h, then
& = P(¢1) is a constrained local minimum of 7. This
observation was the basis for the development of the fol-
lowing Newton algorithm for the optimization of h over T
(Hauser, 2002):

Algorithm (Projection operator Newton method)
given initial trajectory & € T
for 1 =0,1,2,...
redesign feedback K if desired/needed
(search direction)

@:a@ég%DM@»<+%D%@nwao (3)

~; = arg min ﬁ({i +7¢) (step size) (4)
~v€(0,1]
§iv1 = P(& +7iGi) (update) (5)

end

The local Newton update, valid in a neighborhood of a
second order sufficient local minimum, is given by (5)
where the search direction (; is the solution of the (finite
horizon, time-varying) linear quadratic (LQ) optimal con-
trol problem (3).

In the flat Banach space case, the usual chain rule applies
and one finds that

D?h(€)-(¢,¢) = D*A()- (¢, ¢) + Dh(€)- D*P(€) - (¢,¢)
(for £ € T, ¢ € T¢T) is a well defined object; see (Hauser
and Meyer, 1998) for some projection operator calculus.
The solution of the above LQ problem involves first
and second order approximations of the nonlinear system
about a given trajectory as well as the solution of the
associated Riccati equations.

3.2 Lie group projection operation approach

When the system evolves on a Lie group, a number of
interesting questions arise. What is the linearization of
the system? How do we define and compute a second
order approximation of the system? In (Saccon et al.,
2010a), the authors have shown how these questions can
be addressed, extending the Projection Operator approach
for a dynamical system defined on a Lie group G, that is

9= [flg,u,t) = gOAg(t), u(t), 1), (6)
where f : G XxR™ xR — TG and \(g,u,t) := g~ f(g,u,t)
is the left-trivialization of f. In this case, the projection
operator P is redefined as

9(t) = g()A(g(t), u(t), 1), g(0) = a(0), 1)
u(t) = u(t) + K(t)[log(g(t) " a(t))] ,
where K(t) : g — R™ is a linear operator, which can
be thought as a standard linear feedback as soon as a
basis is chosen for the Lie algebra g. The authors have
shown that given a trajectory £(t) = (g(t),u(t)) of the
closed-loop system (7) one can defined its (left-trivialized)
linearization as the curve (z(t),v(t)) € g x R™, ¢t > 0,
satisfying
(t) = A(E(t), )z(t) + B(E(E), t)v(t), (8)
v(t) = =K (t)z(t),

with A and B equal to
A(gv t) = Dl)‘(g7 u, t) o TL(] - ad)x(g,u,t) ) (9)
B(f,t) = DQ)\(gvuat)' (10)
Finally, the following Newton method is proposed:
Algorithm (Projection operator Newton method)
given initial trajectory & € T
for i=0,1,2,...
redesign feedback K if desired /needed
(search direction)

G=arg_min Dh(&)-&C + 3 DA(E) - (6:¢.6:¢) (1)

(12)
(13)

~; = arg min | ﬁ(ﬁl exp(v¢)) (step size)

~v€(0,1
&iv1 = P(& exp(7iGi))

end

(update)

In (Saccon et al., 2010a), the derivation of the above
Newton algorithm requires to define the concept of second
geometric derivative, which is related to the problem of
constructing a second order approximation of a function
between two smooth manifolds M; and Ms. The second
geometric derivative of a function f reduces to the second
covariant derivative when My = R (that is, when f is a
real function). See Section 2 for the definition of the second
geometric and covariant derivatives.

As detailed in (Saccon et al., 2010a), these derivatives
are computed using the (0) connection, whose parallel
displacement along a differentiable curve v : R — G for a
generic Lie group G is defined as

Pivtoyg=1/2 (z1ag Votvorg 'a1), v € ToyG, (14)
with to, t1 € R, ’Y(to) = Zo, 'Y(tl) = 1.

At each iterate, the search direction minimization (11) is
performed on the tangent space to the trajectory manifold
(that is, we search over the curves ((-) = (z(-),v(+))
that satisfies (8)). Then, the step size subproblem (12)
is considered. As in the flat space case, the classical
approximate solution obtained using backtracking line
search with Armijo condition (Nocedal and Wright, 1999.,
Chapter 3) can be used to compute 7;. Once ~; has been
computed, the update step (13) projects each iterate on to
the trajectory manifold and the process restarts as long
as termination conditions have not been met. Note that,
when G' = R", the algorithm is equivalent to the algorithm
introduced in (Hauser, 2002) and reviewed in Section 3.1.

In the next section, we discuss the details of the search
direction subproblem.

4. EXPLICIT FORMULAS TO COMPUTE THE
SEARCH DIRECTION

The search direction subproblem (11) requires the mini-

mization of the functional Dh(&) - £¢ + %]D)Qﬁ({) - (€¢,&0)
over the Banach space T¢7. In (Saccon et al., 2010a), the
authors have shown that when £ € T and £ € T¢7T, the

term D2A(€) - (£¢,&C) is equal to

D?h(€) - (6¢,€C) + DA(E) - D*P(E) - (€¢,£¢) . (15)

Let e;, i = 1,...,n + m, be a basis for g x R™. Each
(z,v) € g x R™ can be uniquely written as (z,v) = z'e; +



o+ 2"eptvie, 1 + oo ™€ . Given € € G x R™

define [;;(¢,t) € R as

lij(ﬁ,t) = D%l(& t) ) (geivgej) (16)
and \;;(€) € g as
Xij (€) :=D2A(E) - (e, Eey) (17)

=+ 1/2 (adwl(ei)D)\(f) -§ej + adwl(ej)D)\(f) . 591) , (18)
where @y : g Xx R™ — g, wi(z,v) = z. The following key
result can be proven using the same technique presented
in the proof of Proposition 3.2 in (Hauser, 2002), replacing
the flat space expressions with those presented in (Saccon
et al., 2010a).

Proposition 4.1. Given & € T and £ € T¢T, with £(t) =
(g(t),u(t), ¢ > 0, and C(t) = (2(t),v(D), t > 0, the
quadratic form (15) can be computed as

[ o) W ) ar+ arpis,

where P; is the symmetric n X n matrix representing

D?*m(g(T)) - (9(T)(-), 9(T)(-)) and W (t) = [wi;(t)] is the
bounded symmetric (n+m)x (n+m) matrix with elements
given by

(19)

wis(t) = L (600 8) + D pe(DA (), (20)
k=1

where 1;;(£(t),t) is given by (16), )\fj(g(t)) is the k-th
component of \;; in (17), and p¥(¢) is the k-th component
of the adjoint state trajectory p(t) € g*, t > 0, defined
below, relative to the dual basis of e;, ¢ = 1,...,n. The
adjoint state p(t) € g* satisfies the differential equation

—p(t) = Aa(t)"p(t) +a(t) - K®)Tb(t),  (21)

p(T) = ax, (22)
where Ay (t) := A(£(t)) — B(&(t)) K (t), and a(t), b(t) and
ay are the vector representation of the pairings (a(t), z) =
D.i(g(t), u(t), t)-g(t)z, (b(t),v) = Dal(g(t), u(t),t)-v, and
(a1, 2) = Dm(g(T)) - g(T)z.

Remark. Equation (21) is a “stabilized” version of the
adjoint equation associated to the left-trivialized pre-
Hamiltonian H™ (g, p,u) = I(g,u) 4+ (p, A(g,u)), which is
naturally associated to the optimal control problem of our
interest. Indeed, the necessary conditions for optimality of
the (left-trivialized) Pontryagin Maximum Principle are

OH
_1 . *
979 =3, (@pu(gp) (23)
. * *8ﬁ_ *
p=adg;p— (TLg) 5~ (9:p.u"(g:p)  (24)
u*(g,p) = argmin -~ (g,p, u), (25)

with boundary conditions g(0) = go and p(T) = a1 (see,

g., (Jurdjevic, 1997, Chapter 12, Corollary 1)). Recall-
ing the definition of A(£(t)) and a(t), it is straightfor-
ward to verify that (24) equals —p = AT(£(¢)) p + a(t).
Note that (21), instead, is equal to —p = AT(&(t))p +
a(t) — KT(t)(b(t) + B(£(t))Tp). The necessary condi-
tion (25) implies 9H (g, p, u*(g,p))/0u = 0, i.e., bT(t) +
pT(t)B(£(t)) = 0. Therefore, approaching a (local) optimal
solution, p(t) in (21) converges to the solution of (24), since
bT(t) + pT'(t)B(£(t)) tends to zero.

We can now write the subproblem (11) in matrix form.
Since DA(E) - £C is equal to

T
/0 a(T)Tz(T) + b(T)Tv(T) dt + asz(T) ,

the subproblem (11) is equivalent to solving the optimal
control problem

min) /OT a(t) T z2(r) + b(r)Tu(r) + % [ig:ﬂ TW(T) [52:;] dt

(26)

(z0)(:

+al2(T) + %Z(T)TPlz(T) , (27)
subject to the dynamic constraint

(t) = A(E()z(t) + B(E()v(t), (28)

2(0)=0. (29)

The above linear quadratic optimal control problem is
solvable by standard techniques (see, e.g., (Anderson and
Moore, 1989)) and it amounts to solving a Riccati differen-
tial equation backward in time, from which a time-varying
affine state feedback can be derived.

5. OPTIMAL CONTROL ON SO(3)

This section presents an optimal control problem for
a system evolving on the nonabelian Lie group SO(3),
together with the numerical results obtained by using the
algorithm detailed in Section 3.2 to solve it. In particular,
we show how to form the linear quadratic optimal control
problem (27), giving explicit formulae to compute the
matrices A, B, W, and P; and the vectors a, b, and a;.
Also, we show that the algorithm exhibits second order
convergence rate.

5.1 Problem formulation

Let | M| p denotes, with M and P € R3*3 and P =
PT > 0, the weighted Frobenius matrix norm defined as

Vir(MTPM). Let (ga(t),ua(t)) € SO(3) x R, t € [0, 7],

be a desired (approxunate) state-control curve. Let Q, R,
and Pf € R3*3 be symmetric positive define matrices
and go and gy two elements of SO(3). We define the hat
operator A : R3 — R3*3 as the Lie algebra isomorphism

R3 >

X1 0 —I3 X2
To| — | X3 0 —z1| € 50(3) . (30)
I3 —T2 X1 0

The goal is to minimize the integral plus terminal cost

/0 (g, u,7)dr +m(g(T)),

with incremental cost

(31)

1 _ 1
g u7) = 5 lle =957 (1) gl + 5 llu —wa(MI (32)

and terminal cost
1 _
m(9) = 3l — g5 ol (33)

over the set of curves (g(t),u(t)) € SO(3) x R3, t € [0, 7],
subject to the dynamic constraint

9(t) = g(t)a(t),
9(0) =go .

(34)
(35)



Since (34) is already in the left-trivialized form (6) with
Mg, u) = u, given a trajectory &£(t) = (g(t),u(t)), t €
[0, T, its left-trivialized linearization is

A(E(1)) == D1A(g(t),u(t)) o T Lgy — ada(g(e),u(t))
= —ady@) = —a(t), (36)
B(£(t)) := Da(g(t),u(t)) = 1. (37)

The expression for the vectors a(t), b(t) and ay are
a(t)"z = Dal(g(t), u(t).t) - g(t)z = —tx(Qgq (t)g(t)%),
b(t)"v = Dal(g(t), u(t),t) - v = (u(t) — ua(t))" Ru,

aiz =Dym(g(T)) - 9g(T)2 = —tx(Prgs " g(T)2).

The matrices W (¢) and P; can be computed once the
second covariant derivative of the function

1 _
Flg) = 3lle— g oll3. (3%)

with g1 € SO(3) and P = PT > 0, is known. Note
how the function F(g) appears in the expressions of
the incremental and terminal costs. The first and second
covariant derivatives of F'(g) are given by

DF(g) - gz = —tr(Pg{ g2),

D*F(g) - (921, 9%2) =

(39)
_p Z9Z1 4 212
A Tt )

In principle, one could obtain the vector and matrix repre-
sentations of the above derivatives by using the identities
tr(2TA) = 2T (A—-AT)Y and tr(2T Ag) = yT (trA)I—A)z,
valid, as direct calculation shows, for each =,y € R? and
A € R3*3 (the vee operator v is just the inverse of the
hat operator * defined in (30)). However, we found that a
simpler and more elegant expressions for those derivatives
can be obtained by using unit quaternions. Define the
matrix P according to the transformation

P=(trP)I - P, (41)
with inverse

= (1/2trP)I — P, (42)

and let ¢ € R* be one of the two umit quaternions
corresponding to the rotation matrix gflg. Let ¢ € R
and ¢, € R3 denote, respectively, the scalar and vector

parts of the unit quaternion ¢ = (gs,q?)%. Remarkably,
the following identity holds
1
Flg) = 3 (24.)"P(24,). (13)

Note that the formula is, as it has to in order to be a
function defined on SO(3), invariant under the antipodal
symmetry (gs,qv) + (—gs, —qv). From (43), DF(g) - g2
and D2F(g) - (921, g%2) equal respectively

2q7 P(qsI + Gy)z (44)

and

Z2T((qsl + ‘jv)TP(qsI +qv) — (quqv)l)zl (45)
Due to space limitations, we will not provide a formal proof
of these formulas. They can be easily checked numerically
against the equivalent expressions (39) and (40).

Equations (44) and (45) provide immediately the vector
and matrix representations that we need to compute the
matrices W (t), t € [0,T], and P;. Define @ = Q7 > 0 from
@ according to (41). Using (20), we see that W (t) equals

(s + 40)" Qs + Gv) — (qf Qqu)I —1%13(0

1/25(t 1o

where ¢ = (gs,¢l)7 is the unit quaternion representation
of ga(t)~1g(t). Equation (46) has been obtained as follows.
Let ¢1,x and (o5, k=1,...,7n + m be the components of
¢1 = (z1,v1) and (o = (22,v2) € g x R™, with respect the
basis eg, k = 1,...,n+m. The diagonal entries of W (¢) in
(46) derive from the matrix representation of D21(£(t), ) -
(&(t)C1,&(t)C2) = 135 (&(t),1)C1,iCa, 5, which is obtained, con-
cerning the state part, from (452. The off diagonal terms
are obtained computing py(t)Af;(£(t),1)C1,i¢2,; which is
equal to (p(t),1/2 (ad.,v2 + ad.,v1)), because DZX(&) =
0. Finally, P, = (qSI+Ljv)TPf(QSI+(jU)_ (qufqv)j, where
(¢s, gv) is the unit quaternion representation of g;l g(T).

5.2 Numerical results

In Figure 1, we show the optimal solution obtained by
applying the descent algorithm detailed in Section 3.2 to
the problem (31)—(35). The following set of parameters
is chosen. The time horizon is 77 = 20s and the ini-
tial condition g¢ is the rotational matrix corresponding
to the unit quaternion [0.7986,0.2457 , —0.2457 ,0.4914]7.
The desired trajectory £4(t) = (ga(t),ua(t)), t € [0,T7,
appearing in the incremental cost (32), is the trivial tra-
jectory (e,0), t € [0,T]. The weighting matrix @ is equal
to @ = (1/2tr@Q)I — @, the inverse of the transforma-
tion (41), with @ = diag(2,5,3). The weighting matrix
R is equal to diag(1l,6,3). The rotational matrix gy in
the terminal cost (33) corresponds to the unit quaternion
qr = [0.2673,0.5345,0,0.8018]7, while the weighting ma-
trix Py is obtained from P; = diag(20, 20, 20), in the same
way @ is obtained from Q.

The initial trajectory £(t) = (g(t),u(t)), t € [0,T], is the
constant trajectory (go, 0), t € [0, T]. At each iteration, the
projection operator feedback K (t), t € [0,T], is designed
solving a standard LQR problem (with diagonal weighting
matrices, both equal to the identity).

To integrate the differential equations required at each
iteration of the algorithm, we used the function ode45
of Mathworks Matlab, storing all the trajectories with
a sampling period of 0.01s. The absolute and relative
tolerances of the ODE solver is set to 10~® and 1076,
respectively. The termination condition is DA(&) - £k =~
h(€ks1) — h(&) < 1078, The backtracking line search
algorithm parameters (see Section 3.2), are set to ¥ = 1,
c¢=0.4, and p = 0.7. The algorithm takes about 2 seconds
to run on a laptop equipped with a Intel Core 2 Duo CPU
P8600 2.40 GHz. The algorithm is coded as a main m-
function which calls a series of S-functions written in C.

Figure 2 shows that the algorithm takes 5 steps to con-
verge. In the first iteration, we have observed that the
backtracking line search takes 5 iterations as the quadratic
approximation of the functional does not approximate
accurately the cost functional in the optimal search direc-
tion (k. However, starting from the second iteration, full
lengths steps are taken (75 = 1) and the algorithm shows
a quadratic convergence rate. Quadratic convergence rate
in the neighborhood of a local minimum satisfying second
order sufficient conditions has been formally proven for the
flat space case in Proposition 5.1 in (Hauser, 2002). For Lie
groups, the proof is under development, but we suspect it
to be a straightforward extension.
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Fig. 1. Optimal state-control trajectory. Part (a) shows
the optimal state trajectory versus time. The state is

represented using unit quaternions (the scalar part is
in blue). Part(b) shows the optimal control.
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k (iteration number)

Fig. 2. Quadratic convergence rate. The plot shows

logyo DR(&r) - ExCr = logig(h(Ekt1) — h(&k)) as a
function of the number of iterations.

6. CONCLUSION

In this paper, we have shown how to compute the linear
dynamics and the linear-plus-quadratic incremental and
terminal costs that defines the search direction in the Lie
group projection operator approach. A numerical example
on the Lie group SO(3) has been presented, highlighting
implementation details and demonstrating the expected
second order convergence rate of the method.
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