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Abstract: In this paper we address the pursuing or target tracking problem where an
autonomous robotic vehicle is required to move towards a maneuvering target using range-
only measurements. A new switched based control strategy is proposed to solve the pursuing
problem that can be described as comprising a continuous cycle of two distinct phases: i) the
determination of the bearing, and ii) following the direction computed in the previous step
while the range is decreasing. We provide conditions under which the switched closed-loop
system achieves convergence of the relative distance error to a small neighborhood around zero.
Simulation results are presented and discussed.
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1. INTRODUCTION

The problem of tracking a moving target, which can be
another robotic vehicle, by an autonomous robotic vehicle
has received special attention in the literature. Particular
examples can be found in the area of wheeled mobile
robots (e.g., [D’Andrea-Novel et al. 1995, Dixon et al.
2001, Lawton et al. 2003]), aircraft vehicles (e.g., Hauser
and Hindman [1997], Kaminer et al. [1998], Al-Hiddabi
and McClamroch [2002]), and marine vehicles (Godhavn
[1996], Encarnação and Pascoal [2001], Behal et al. [2002],
Do et al. [2002], Aguiar and Hespanha [2003], Pettersen
and Nijmeijer [2003], Aguiar and Hespanha [2007]).

In spite of the wide range of applications and the large
number of control strategies developed, most of them rely
on the assumption that both the bearing (line-of-sight
angle) and the range (relative distance between the vehicle
and the target) are known for navigation, guidance and
control purposes.

In this paper, we are interested in the problem when the
only information available about the target is the range.
This type of problems appears in several application do-
mains, e.g., wireless networks, surveillance, marine appli-
cations, localization (Arora et al. [2004], Crepaldi et al.
[2006], Dil et al. [2006], Gadre and Stilwell [2004]). In
our particular case, the practical motivation arises from
applications to autonomous underwater vehicles (AUVs),
where the range is obtained by measuring the time-of-flight
of an acoustic pulse. An interesting and attractive scenario
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is the case when a surface craft is performing a maneuver
along a predefined path, while an AUV in a configuration
master/slave is required to follow the surface craft. Note
that the surface craft can use GPS for localization, but the
AUV cannot because electromagnetic waves do not propa-
gate well underwater. The idea to localize the AUV is that
both vehicles carry an acoustic modem, and from these
the AUV is able to compute the range and send/receive
commands.

The target tracking problem using range-only measure-
ments has been recently addressed in [Matveev et al. 2009],
where the authors propose a sliding mode control law to
steer a Dubins-like wheeled robot towards a target that
moves with a constant speed while preserving a predefined
range margin from the target. The proposed strategy ulti-
mately makes the robot to move around the target along
a circular trajectory. The radius of circle or the preserved
margin from the target is predefined with a control pa-
rameter. Equiangular Navigation Guidance algorithms for
approaching and following both steady and moving targets
with range-only measurements are proposed in [Teimoori
and Savkin 2010]. With constant robot linear velocity,
the robot-target range variation is used as a measure for
the angle at which the robot approaches the target. The
proposed guidance methods have the property that the
trajectory of the controlled robot is close to a certain
curve called an equiangular spiral. A different strategy is
described in [Zhang et al. 2007, Cochran and Krstic 2009,
Ghods and Krstic 2010] where the problem of seeking the
source of a scalar signal (stopped target) using a non-
holonomic vehicle with no position information, was solved
using an extremum seeking approach.



This paper addresses the pursuing or target tracking
problem in 2D, where an autonomous robotic vehicle
is required to move towards a steady or maneuvering
target. The robotic vehicle does not have the capability
of sensing its position or the position of the target. The
only available information about the target is the range
(relative distance) between the pursuer and the target.
We propose a switched based control strategy that can
be described as comprising a continuous cycle of two
distinct phases: i) the determination of the bearing, and
ii) following the direction computed in the previous step
while the range is decreasing. In the first phase, inspired
by the extremum seeking approach, the control strategy
is to keep the forward velocity constant and actuate on
the angular velocity so that the vehicle will move in a
“persistence of excitation” mode to obtain the bearing
of the target. The bearing is obtained by averaging the
measurements of vehicle heading. In the second phase,
the main idea is to actuate on the linear and angular
velocities so that the vehicle will follow the direction of
the bearing computed in the first phase and converge
to a neighborhood of the target. A supervisor switching
control law coordinates which phase, and when, of these
two modes are enabled. The stability of the overall closed-
loop switched system is analyzed and conditions for the
convergence of the relative distance error are described.
To illustrate the effectiveness and performance of the
proposed control scheme, we present simulation results
where the target is required to move in a straight line and
also to perform an arc maneuver.

This paper is organized as follows: Section 2 formulates the
target tracking problem and describes the vehicle model.
Section 3 presents the switched control algorithm and in
Section 4, the stability of the overall closed-loop system is
analyzed. Simulation results and conclusions are included
in Sections 5 and 6, respectively. Due to space limitations,
some of the proofs are omitted. These can be found in
Namaki-Shoushtari and Aguiar [2011].

2. PROBLEM FORMULATION

Consider an autonomous robotic vehicle moving in hori-
zontal plane (see Figure 1) and let (x, y, θ) ∈ SE(2) denote
the configuration of an inertial coordinate frame {U} with
respect to a body-fixed frame {B} that satisfies

ẋ = u1 cos θ, (1a)

ẏ = u1 sin θ, (1b)

θ̇ = u2, (1c)

where (x, y)T is assumed to be the position of the center of
mass of the vehicle, θ is its orientation, and u1 and u2 are
the body-fixed linear and angular velocities, respectively.

Consider also a second vehicle (the target vehicle) with the
following associated equations of motion

ẋt = Vt cos θt, (2a)

ẏt = Vt sin θt, (2b)

θ̇t = ωt, (2c)

where the position (xt, yt)
T , the orientation θt, and the

velocities Vt and ωt are unknown to the first vehicle.

Suppose that the first vehicle is equipped with a set of
sensors that provide a measurement of the angle θ and

the distance (range) from the sensor position located at R
away from the center of mass

(

xs

ys

)

=

(

x
y

)

+ R

(

cos θ
sin θ

)

, (3)

to the position of the target vehicle, that is, r :=
√

(xt − xs)
2
+ (yt − ys)

2
. See Figure 1.
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Fig. 1. Setup for the pursuing control problem.

The control problem considered in this paper can be
formulated as follows:
Using as only measurements the orientation θ and the
range r, derive a feedback law for u = (u1, u2) such that
for any initial condition in a predefined set J ⊂ SE(2) the
vehicle’s center of mass (x, y) converges to a predefined
ball Bǫ(xt, yt) with center (xt, yt) and radius ǫ > 0.

3. SWITCHED CONTROL DESIGN

This section presents a control strategy to solve the chal-
lenging pursuing problem stated above. The proposed so-
lution consists of a continuous cycle of two distinct phases:
Phase 1: The determination of the bearing, so that the
vehicle will be able to point to the target. Note that in
this stage, the vehicle will have to move in a “persistence
of excitation” mode.
Phase 2: Follow the direction computed in the previous
step while the (estimated) rate of change of the range r
is greater than some acceptable value. Switch to step (1)
when this does not hold.

3.1 Phase 1: The determination of the bearing

In this stage the goal is to compute, using as measurements
the range r and the heading θ, the (correct) bearing so
that the vehicle will be able to point to the target. To
accomplish this task, we propose a feedback law that
acts on the angular velocity u2 while keeping the forward
velocity u1 constant. Inspired by the Extremum Seeking
(ES) approach (Cochran and Krstic [2009]) we consider
the control law

u1 = Vc, (4a)

u2 = k1ω cos(ωt) + k2ξ sin(ωt), (4b)

where ξ satisfies the dynamics,

χ̇ = −λ (χ + r2), (5a)

ξ = −(χ + r2), (5b)



and k1, k2 , λ, Vc and ω are parameters to be tuned. To
compute the bearing at time t = T , we propose to average
θ(t), that is,

θ̄ =
1

T

∫ T

0

θ(s) ds. (6)

Note that in (4b) we are forcing the angular velocity of
the vehicle to have an oscillation of frequency ω. This
excitation signal will consequently lead to an oscillation
on the vehicle’s heading. In Section 4 we show that after
a few oscillations, the average heading can be used as a
desired orientation to steer the vehicle towards the target.

3.2 Phase 2: Following a constant direction

In this phase the feedback law is given by

u1 = k3 r (7a)

u2 = −k4(θ − θ̄). (7b)

where θ̄ is the desired direction computed at the end of
phase 1. Notice that, since θ̄ is constant in this stage the
vehicle is following “blindly” the target. It may be possible
that during this stage the target may change its direction
so that θ̄ may not be a good measure of the bearing. To
detect this situation, we estimate the rate of change of
r and compare with a given threshold that depends on
the linear velocity u1. To estimate ṙ, we propose a simple
Kalman filter designed according to the linear model

ṙ = Vr + w1, (8a)

V̇r = w2, (8b)

y = r + v (8c)

where (r, Vr) is the state, y is the measured output, and
w1, w2 and v are assumed to be mutually independent
stationary, Gaussian, zero mean white noise processes.

Remark 1: For simplicity, the feedback laws are derived
without taking into account the problem of input satura-
tion. However, it can be shown that the saturated feedback
laws

u1 = ka
3 tanh(kb

3 r)

u2 = −ka
4 tanh

(

kb
4 (θ − θ̄)

)

instead of (7) would also work by selecting the proper
gains.

3.3 Switched Controller

Let σ : [t0,∞) → {1, 2} be a piecewise constant switch-
ing signal that is continuous from the right and evolves
according to

σ(t) =

{

1 , t ∈ [ti−1 , ti) , i odd , i ∈ N

2 , t ∈ [ti−1 , ti) , i even, i ∈ N
(9)

In (9), {t0, t1, t2, t3, ...} is a sequence of strictly increasing
infinite switching times in [t0,∞) and t0 = 0 is the initial
time. The switching controller is given by

u = ασ(θ, r),

where α1(·) corresponds to the control law (4)-(5) and
α2(·) to the control law (7). In (9), when i is odd (σ =1)
we set

ti = ti−1 + nT , T =
2π

ω
.

for some given n ∈ N. For i even (σ =2) we set ti as the
time t such that

ti = max
{

ti−1 + ∆, min
t

{t ≥ ti−1 : V̂r(t) ≥ −δ }
}

(10)

where δ > 0 is a given threshold, V̂r is the estimate of ṙ
using the Kalman filter described in Section 3.2, and ∆ > 0
is a dwell time to enforce that the second controller will be
enabled at least ∆ seconds. It is important to stress that
the only input signals of the overall control law (as it can
be seen from (4-5) and (7)) are only the range r and the
heading of the vehicle θ. The controller does not need the
rate of r neither the bearing angle.

4. STABILITY ANALYSIS

In this section, we analyze the stability of the closed-loop
system. To this effect, we first introduce the following
variables. Let e (see Figure 1) denote the position error
between (x, y) and (xt, yt), that is,

e =

√

(x − xt)
2
+ (y − yt)

2

and β the angle between the vector xB and the vector
defined by (x, y) and (xt, yt). From Figure 1, it follows
that

x − xt =−e cos(θ + β)

y − yt =−e sin(θ + β)

where θ+β = tan−1
(

−(y−yt)
−(x−xt)

)

. From the above equations

and computing the time derivative of e and β it can be
shown that e and β satisfy the dynamics

ė = −u1 cosβ + Vt cos(β + θ − θt) (11)

β̇ =
u1

e
sin β − u2 −

Vt

e
sin(β + θ − θt) (12)

We now provide conditions for the convergence of θ̄ defined
in (6) to the correct bearing θ̄⋆, which satisfies (see Fig. 1)

θ̄∗ = θ + β.

Theorem 1. Let Σ1 denote the closed-loop system that
results from the feedback interconnection of (1) with (4).
Let e∗ > 0 and ǫ > 0 be given allowable tolerant position
and orientation errors, respectively, and D[0,tf ] the largest

set in R3 such that for every initial condition (x, y, θ)(0) ∈
D[0,tf ], the solution of Σ1 is well defined for all t ∈ [0, tf ]
with e(t) ≥ e∗. Let k2 > 0 be a sufficiently large gain such
that the following holds

Vc ≤
J1(k1)

J0(k1)
k2 R e∗ − γ (13)

with Vc > 0 and γ > Vt. In (13), J0(k1) and J1(k1) denote
the Bessel integral equalities (Abramowitz and Stegun
[1964])

J0(k1) =
1

2π

∫ 2π

0

ejk1 sin(t) dt

J1(k1) =
−j

2π

∫ 2π

0

ejk1 sin(t) sin(t) dt

and k1 > 0 is selected such that J0(k1) and J1(k1) are
positive.



Then, there exist a sufficiently large ω > 0 and a positive
natural number n such that for every initial condition in
D[0,tf ] with tf = nT = n 2π

ω
,

|θ̄(tf ) − θ̄∗(tf )| ≤ ǫ. (14)

Now we examine the stability of the closed loop system
when the second stage (following a constant direction) is
enable.

Theorem 2. Let Σ2 denote the closed-loop system that
results from the interconnection of (1), (3) with the control
law (7). Let e⋆ > R be a given allowable tolerant position
error, and D[0,tf ] the largest set in R3 such that for every
initial condition (x, y, θ)(0) ∈ D, the solution of Σ2 is well
defined for all t ∈ [0, tf ] with e(t) ≥ e⋆ and the error

between the real bearing θ̄⋆ and θ̄ defined as ˜̄θ = θ̄⋆ − θ̄

remains bounded by some ǫ > 0, that is, sup0≤t≤tf
| ˜̄θ| ≤ ǫ.

Let k4 be a positive gain such that the following holds:

2
k3

k4
+ ǫ +

Vt

e⋆ k4
<

π

2
. (15)

Then, for sufficiently large gain k3 the position error e
converges to a neighborhood around zero with ultimate
bound e ≤ e⋆.

Proof. The proof is organized as follows. First, it will
be shown that β is ultimately bounded with the ultimate
bound less than π

2 . Using this fact, we then prove the
convergence of e. Consider the dynamics of β (see (12)),
which in closed-loop satisfies

β̇ =
k3 r

e
sin β − k4(θ − θ̄) −

Vt

e
sin(β + θ − θt) (16)

From Figure 1 it follows that

r2 = e2 + R2 − 2Re cosβ,

which implies that r can be written in the form

r = e + f(e, R, β), (17)

where f(e, R, β) is a bounded function with |f | ≤ R.
Now, consider the positive definite function V1(β) := 1

2β2.
Computing its time derivative along the trajectories of

(16), using (17) and the fact that θ − θ̄ = −(β + ˜̄θ), one
obtains

V̇1 ≤ −k4(1 − α)β2, ∀ |β| ≥
2k3 + k4 ǫ + Vt/e⋆

k4α

where α is any scalar that satisfies 0 ≤ α < 1. It is clear
that if the gain k4 is selected as in (15), β will be ultimately
bounded with the ultimate bound less than π

2 .

We are now ready to prove the convergence of e. From
(11), with u1 = k3 r (7a), and using (17) the dynamics of
e satisfies

ė = −k3 (e + f) cosβ + Vt cos(β + θ − θt).

Let V2(e) := 1
2e2. Its time-derivative satisfies

V̇2 ≤ −k3(1 − α)e2 cosβ, ∀ |e| ≥
Vt

k3α cosβ
+

R

α cosβ
(18)

for 0 ≤ α < 1. From (18) we can conclude that for any
finite time t ≥ 0, e(t) is bounded (that is, there is no
finite escape) and furthermore, after a finite time t1 with
|β(t1)| < π

2 , e(t) will converge to a neighborhood around

zero of size less than e⋆, provided that k3 is sufficiently
large and e⋆ > R.

We can now conclude that according to the switching
rule described in Section 3.3 and resorting to Theorems
1 and 2, if the switching between these two phases is
slowed down by a sufficiently large dwell time τD such that
min(nT, ∆) ≥ τD, based on the results in (Liberzon [2003]
and Hespanha and Morse [1999]) the switched closed-loop
system is bounded (that is all the states are bounded)
and there exists an ǫ > 0 such that while e(t) > ǫ
the vehicle will converge towards the target and will
remain afterwards around the target. This behavior will
be illustrated in the next section.

5. SIMULATION RESULTS

This section illustrates the performance of the proposed
control scheme through computer simulations. In the fol-
lowing simulations, the initial configurations of the pur-
suer and the target vehicles are respectively (x, y, θ)(0) =
(0, 0, 0) and (xt, yt, θt)(0) = (10m, 10m, 0) (for the 1st
simulation) and (xt, yt, θt)(0) = (20m, 20m, 0) (for the
2nd simulation). The target linear velocity was set to
Vt = 0.2m/s. The control parameters were selected as
follows: ω = 0.5rad/sec, R = 0.5m, k1 = 1, k2 = 1,
k3 = 0.2, k4 = 10, λ = 1, e⋆ = 1m, and Vc = 0.2m/s.

5.1 The target moves along a straight line

Figures 2- 5 show the simulation results when the target
vehicle moves along a straight line.
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Fig. 2. Simulation paths for the pursuer and the target
vehicles. The target moves on a straight line.

Figure 2 displays the resulting trajectories of the vehicles
where it can be seen that the pursuer moves towards the
target. Notice also that the pursuer vehicle is constantly
switching between the two modes. This behavior is clearly
seen in Fig. 3 that shows the ”steady-state” trajectories
of the last 20 seconds of the simulation. It is important
to point out that the pursuer cannot perform for all time
a straight-line motion because in this mode the system is
not observable.

5.2 The target performs a lawn mowing maneuver

Figures 6-8 show the results of another simulation where
the vehicle is required to track a target vehicle that is
performing a lawn mowing maneuver composed by straight
lines and arcs.
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Fig. 3. Zoom in of the last 20 seconds of the pursuer and
target vehicles maneuvers shown in Fig. 2 (steady-
state trajectories).
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Fig. 4. Time evolution of the pursuer vehicle forward
velocity.
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Fig. 5. Time evolution of the components of the error
vector e = (ex, ey)′ expressed in the body fixed frame.
The target vehicle moves on a straight line.
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Fig. 6. Simulation paths for the pursuer and the target
vehicles. The target is performing a lawn mowing
maneuver.

From the figures, it can be seen that the vehicle is capable
to converge to the target and follow it. However, as it is
expected, the distance error increases when the target is
on the arc phase.
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Fig. 7. Time evolution of the pursuer vehicle forward
velocity.

6. CONCLUSION

In this paper, we addressed the target tracking problem
where an autonomous robotic vehicle is required to move
towards a maneuvering target using range-only measure-
ments. We proposed a switched based control strategy to
solve the pursuing problem that unfolds in two distinct
phases: i) the determination of the bearing, and ii) follow-
ing the direction computed in the previous step, while the
range is decreasing. We provided conditions under which
the switched closed-loop system achieves convergence of
the relative distance error to a small neighborhood around
zero. The simulation results showed the good performance
of the proposed solution.
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Fig. 8. Time evolution of the components of the error
vector e = (ex, ey)′ expressed in the body fixed frame.
The target is performing a lawn mowing maneuver.
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