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SUMMARY

This paper considers the pursuing or target tracking problem where an autonomous robotic vehicle is

required to move towards a maneuvering target using range-only measurements. We propose a switched

logic-based control strategy to solve the pursuing problemthat can be described as comprising a continuous

cycle of two distinct phases: i) the determination of the bearing, and ii) the steering control of the vehicle

to follow the direction computed in the previous step while the range is decreasing. We provide guaranteed

conditions under which the switched closed-loop system achieves convergence of the relative distance error

to a small neighborhood around zero. Simulation results arepresented and discussed. Copyrightc© 2011

John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of tracking a moving target, which can be anotherrobotic vehicle, by an autonomous

robotic vehicle has received special attention in the literature. Particular examples can be found in

the area of wheeled mobile robots (e.g., [1–3]), aircraft vehicles (e.g., [4–6]), and marine vehicles

(e.g. [7–13]).
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In spite of the wide range of applications and the large number of control strategies developed,

most of them rely on the assumption that both the bearing (line-of-sight angle) and the range

(relative distance between the vehicle and the target) are known for navigation, guidance and control

purposes.

In this paper, we are interested in the problem when the only information available about the

target is the range. This type of problems is motivated by applications in several domains, e.g.,

wireless networks, surveillance, marine applications, localization [14–17]. In our particular case, the

practical motivation arises from applications to autonomous underwater vehicles (AUVs), where the

range is obtained by measuring the time-of-flight of an acoustic pulse. An interesting and attractive

scenario is the case when a surface craft is performing a maneuver along a predefined path, while an

AUV in a configuration master/slave is required to follow thesurface craft. Note that the surface craft

can use GPS for localization, but the AUV cannot because electromagnetic waves do not propagate

well underwater. To overcome this problem, an alternative but challenging solution (compared with

the costly traditional methods) is to make both the vehiclesto carry on-board an acoustic modem

and with this setup being able to compute the range between them. From a theoretical point of

view the control problem is challenging because the overallsystem is nonlinear and there exist

conditions that make the system unobservable. One well known example is when both the target

and the pursuer vehicles are moving in a straight line. In this case, it can be seen that there exist

several initial conditions that lead to the same output signal (in this case the same range).

The target tracking problem using range-only measurementshas been recently addressed in [18],

where the authors propose a sliding mode control law to steera Dubins-like wheeled robot towards

a target that moves with a constant speed while preserving a predefined range margin from the

target. The proposed strategy ultimately makes the robot tomove around the target along a circular

trajectory. The radius of circle or the preserved margin from the target is predefined with a control

parameter. Equiangular Navigation Guidance algorithms for approaching and following both steady

and moving targets with range-only measurements are proposed in [19]. With constant robot linear

velocity, the robot-target range variation is used as a measure for the angle at which the robot

approaches the target. The proposed guidance methods have the property that the trajectory of

the controlled robot is close to a certain curve called an equiangular spiral. A different strategy

is described in [20–22] where the problem of seeking the source of a scalar signal (stationary target)

using a non-holonomic vehicle with no position informationwas solved using an extremum seeking

approach.

It is important to stress that the few solutions described inthe literature are in many cases not

suitable for the surface-craft/AUV application scenario because the resulting trajectories are “not

natural” in the sense that it would make the AUV to deviate toomuch from the surface craft.

This paper addresses the pursuing or target tracking problem in 2D, where an autonomous robotic

vehicle is required to move towards a steady or maneuvering target. The robotic vehicle does not

have the capability of sensing its position or the position of the target. The only available information
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about the target is the range (relative distance) between the pursuer and the target. We propose

a novel switched logic-based control strategy that can be described as comprising a continuous

cycle of two distinct phases: i) the determination of the bearing, and ii) the steering control of the

pursuer to follow the direction computed in the previous step while the range is decreasing. In the

first phase, inspired by the extremum seeking approach, the control strategy is to keep the forward

velocity constant and actuate on the angular velocity so that the vehicle will move in a “persistence

of excitation” mode to obtain the bearing of the target. The bearing is obtained by averaging the

measurements of vehicle heading. In the second phase, the main idea is to actuate on the linear and

angular velocities so that the vehicle will follow the direction of the bearing computed in the first

phase and converge to a neighborhood of the target. A supervisor switching control law coordinates

which phase and when, of these two modes are enabled. Resorting to Lyapunov and averaging

theory, the stability of the overall switched system is analyzed and conditions for the convergence

of the relative distance error are derived. The key novel contribution of this work with respect to the

references above is the fact that the proposed control strategy guarantees convergence of the relative

distance error for moving targets and the resulting trajectories are more suitable to be applied in the

AUV scenario. To illustrate the effectiveness and performance of the proposed control scheme, we

present simulation results for the following three scenarios: the target is stationary, the target moves

in a straight line and the target performs a lawn mowing maneuver.

This paper is organized as follows: Section2 formulates the target tracking problem and describes

the vehicle model. Section3 presents the switched control algorithm and in Section4, the stability

of the overall closed-loop system is analyzed. Simulation results and conclusions are included in

Sections5 and6, respectively.

2. PROBLEM FORMULATION

Consider an autonomous robotic vehicle moving in horizontal plane (see Figure1) and let(x, y, θ) ∈

SE(2) denote the configuration of an inertial coordinate frame{B} with respect to a body-fixed

frame{U} that satisfies

ẋ = u1 cos θ, (1a)

ẏ = u1 sin θ, (1b)

θ̇ = u2, (1c)

where(x, y)T is the position of the center of mass of the vehicle,θ its orientation, andu1 andu2 are

the body-fixed linear and angular velocities, respectively. Consider also a second vehicle (the target

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)

Prepared usingrncauth.cls DOI: 10.1002/rnc
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vehicle) with the following associated equations of motion

ẋt = Vt cos θt, (2a)

ẏt = Vt sin θt, (2b)

θ̇t = ωt, (2c)

where the position and orientation(xt, yt, θt) ∈ SE(2), which are defined with respect to{U}, and

the velocitiesVt andωt are allunknown signalsto the first vehicle.

Suppose that the first vehicle is equipped with a set of sensors that provide the measurement of

the angleθ and the distance (range) from the sensor position located atR away from the center of

mass




xs

ys



 =





x

y



 + R




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to the position of the target vehicle, that is,r :=

√

(xt − xs)
2

+ (yt − ys)
2 . See Figure1.
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Figure 1. Setup for the pursuing control problem.

The control problem considered in this paper can be formulated as follows:

Using as only measurements the orientationθ and the ranger, derive a feedback law foru =

(u1, u2) such that for every initial condition in a predefined setJ ⊂ SE(2) the vehicle’s center of

mass(x, y) converges to a predefined ballBǫ(xt, yt) with center(xt, yt) and radiusǫ > 0.

3. SWITCHED LOGIC-BASED CONTROL DESIGN

This section presents a control strategy to solve the challenging pursuing problem stated above. The

proposed solution can be described as comprising a continuous cycle of two distinct phases:

Phase 1:The determination of the bearing, so that the vehicle will beable to point to the target.

Note that in this stage, the vehicle will have to move in a “persistence of excitation” mode.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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A SWITCHED BASED CONTROL STRATEGY FOR TARGET TRACKING USINGROM 5

Phase 2:The steering control of the vehicle to follow the direction computed in the previous step

while the (estimated) rate of change of the ranger is greater than some acceptable value. Switch to

step(1) when this does not hold.

3.1. Phase 1: The determination of the bearing

In this stage the goal is to compute, using as measurements the ranger and the headingθ, the

(correct) bearing so that the vehicle will be able to point tothe target. To accomplish this task,

we propose a feedback law that acts on the angular velocityu2 and keeps the forward velocityu1

constant. To this effect, inspired by the extremum seeking approach, we propose the control law

u1 = Vc, (4a)

u2 = k1ω cos(ωt) + k2ξ sin(ωt), (4b)

whereξ is the output of the following system

χ̇ = −λ (χ + r2), (5a)

ξ = −(χ + r2), (5b)

andk1, k2 , λ, Vc, andω are positive control parameters. To compute the bearing at time t = T , we

propose to averageθ(t), that is,

θ̄ =
1

T

∫ T

0

θ(s) ds. (6)

Note that in (4b) we are forcing the angular velocity of the vehicle to have anoscillation of

frequencyω. This excitation signal will consequently lead to an oscillation on the vehicle’s heading.

In Section4 we show that after a few oscillations, the average heading can be used as a desired

orientation to steer the vehicle towards the target.

3.2. Phase 2: Following a constant direction

In this phase, we propose the feedback law

u1 = k3 r (7a)

u2 = −k4(θ − θ̄), (7b)

whereθ̄ is the desired direction computed at the end of phase 1 andk3, k4 are positive gains to be

chosen properly. Notice that, sinceθ̄ is constant in this stage, the vehicle will follow “blindly”the

target. It may be possible that during this stage the target may change its direction so thatθ̄ may not

be a good measure of the bearing. To detect this situation, weestimate the rate of change ofr and

compare it with a given threshold that depends on the linear velocityu1. To estimatėr, we propose

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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6 O. NAMAKI-SHOUSHTARI, A. PEDRO AGUIAR AND A. KHAKI SEDIGH

a Kalman filter designed according to the linear model

ṙ = Vr + w1, (8a)

V̇r = w2, (8b)

y = r + v (8c)

where(r, Vr) is the state,y is the measured output, andw = (w1, w2) andv are assumed to be

mutually independent stationary, Gaussian, zero mean white noise processes.

Remark 1: For simplicity, the feedback law (7) was derived without taking into account the

problem of input saturation. However, in Appendix we show that the saturated feedback laws

u1 = ka
3 tanh(kb

3 r) (9)

u2 = −ka
4 tanh

(

kb
4 (θ − θ̄)

)

instead of (7) would also work by selecting the proper values for the gainska
i , kb

i > 0, i = 3, 4.

2

3.3. Switched Controller

Let σ : [t0,∞) → {1, 2} be a piecewise constant switching signal that is continuousfrom the right

and evolves according to

σ(t) =







1 , t ∈ [ti−1 , ti) , i odd, i ∈ N

2 , t ∈ [ti−1 , ti) , i even, i ∈ N

(10)

In (10), {t0, t1, t2, t3, ...} is a sequence of strictly increasing infinite switching times in [t0,∞) and

t0 = 0 is the initial time. The switching controller is given by

u = ασ(θ, r),

whereα1(·) corresponds to the control law (4)-(5) andα2(·) to the control law (7). In (10), wheni

is odd (σ =1) we set

ti = ti−1 + nT , T =
2π

ω

for some givenn ∈ N. For i even (σ =2) we setti as the timet such that

ti = max
{

ti−1 + ∆, min
t

{t ≥ ti−1 : V̂r(t) ≥ −δ }
}

(11)

whereδ > 0 is a given threshold,̂Vr is the estimate oḟr using the Kalman filter described in Section

3.2, and∆ > 0 is a dwell time ( [23] and [24]) to enforce that the second controller will be enabled

at least∆ seconds. It is important to stress that the only input signals of the overall control law (as it

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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can be seen from (4-5) and (7)) are only the ranger and the heading of the vehicleθ. The controller

does not need the rate ofr neither the bearing angle.

4. STABILITY ANALYSIS

In this section, we analyze the stability of the closed-loopsystem. To this effect, we first introduce

the following variables. Lete (see Figure1) denote the position error between(x, y) and(xt, yt),

that is,

e =

√

(x − xt)
2

+ (y − yt)
2
, (12)

andβ the angle between the vectorxB and the vector defined by(x, y) and(xt, yt). From Figure1,

it follows that

x − xt = −e cos(θ + β), (13a)

y − yt = −e sin(θ + β), (13b)

whereθ + β = tan−1
(

−(y−yt)
−(x−xt)

)

. Using the above equations, one can compute (see Appendix) the

dynamics fore andβ to arrive to

ė = −u1 cosβ + Vt cos(β + θ − θt), (14)

β̇ =
u1

e
sinβ − u2 −

Vt

e
sin(β + θ − θt). (15)

We now provide conditions for the convergence ofθ̄ defined in (6) to the correct bearinḡθ⋆, which

satisfies (see Figure1)

θ̄⋆ = θ + β.

Theorem 1

Let Σ1 denote the closed-loop system that results from the feedback interconnection of (1) with (4).

Let e⋆ > 0 andǫ > 0 be given allowable tolerant position and orientation errors, respectively, and

D[0,tf ] the largest set inR3 such that for every initial condition(x, y, θ)(0) ∈ D[0,tf ], the solution of

Σ1 is well defined for allt ∈ [0, tf ] with e(t) ≥ e⋆. Let k2 > 0 be a sufficiently large gain such that

the following holds

Vc ≤ 2
J1(k1)

J0(k1)
k2 R e⋆ −

γ

J0(k1)
(16)

with Vc > 0 andγ > Vt. In (16), J0(k1) andJ1(k1) denote the Bessel integral equalities (Bessel

functions of the first kind, see e.g., [25]) given by

J0(k1) =
1

2π

∫ 2π

0

ejk1 sin(t) dt

J1(k1) =
−j

2π

∫ 2π

0

ejk1 sin(t) sin(t) dt

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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8 O. NAMAKI-SHOUSHTARI, A. PEDRO AGUIAR AND A. KHAKI SEDIGH

andk1 > 0 is selected such thatJ0(k1) andJ1(k1) are positive.

Then, there exist a sufficiently largeω > 0 and a positive natural numbern such that for every

initial condition inD[0,tf ] with tf = nT = n 2π
ω

,

|θ̄(tf ) − θ̄⋆(tf )| ≤ ǫ. (17)

Proof

To prove (17) we will show thatβ = θ̄⋆ − θ converges in average to a small neighborhood around

zero. From (15) and using (4), we obtain

β̇ =
Vc

e
sin β − k1 ω cos(ωt) − k2ξ sin(ωt) −

Vt

e
sin(β + θ − θt).

Introducing the following variables

τ := ωt, (18)

β̂ := β + k1 sin(τ), (19)

θ̂ := θ − k1 sin(τ), (20)

ê :=
e

e⋆
, (21)

and changing the time scale, it follows that

dβ̂

dτ
=

1

ωe⋆

[Vc

ê
sin(β̂ − k1 sin τ) − k2e

⋆ξ sin(τ) −
Vt

ê
sin(β̂ + θ̂ − θt)

]

. (22)

We now resort to averaging theory. Since the right-hand sideof (22) is periodic inτ with period

2π, applying the average operator1
T

∫ T

0 (·) dτ , one obtains the averaged system

dβ̂avg

dτ
=

1

ωe⋆

[VcJ0(k1)

êavg
− 2Rk2e

⋆êavgJ1(k1)
]

sin(β̂avg) −
Vt

ωe⋆

sin(β̂avg + θ̂avg − θavg
t )

êavg
.

Resorting to Proposition1 in Appendix with a1(t) = − 1
ωe⋆

[

VcJ0(k1)
êavg − 2Rk2e

⋆êavgJ1(k1)
]

and

a2(t) = − Vt

ωe⋆

sin(β̂avg+θ̂avg−θ
avg
t )

êavg and using (16) and the fact that̂e > 1, we can conclude that if the

initial conditionβ̂avg
0 satisfies|β̂avg

0 | ≤ cos−1(a) (mod 2π), with a =
√

γ−Vt

γ
, thenβ̂avg converges

to a neighborhood around zero (mod 2π) and satisfies

lim
t→∞

sup |β̂avg(t)| ≤ cos−1(a) ( mod 2π).

Using the results in [26] and noticing that the averaged system is a strong average system (see

Definition 2 in [26]) we can conclude that for sufficiently largeω, β̂(τ) satisfies

β̂(τ) − β̂avg(τ) = O
( 1

ωe⋆

)

, ∀τ ≥ 0 (23)

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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A SWITCHED BASED CONTROL STRATEGY FOR TARGET TRACKING USINGROM 9

From (23) and the fact that̄θ = 1
T

∫ T

0 (θ̄⋆ − β(τ)) dτ = θ̄⋆ − 1
T

∫ T

0 β̂(τ) dτ , the result follows.

Remark 2: Note that in this phase, the distance error between(x, y) and (xt, yt) satisfies the

dynamics

ė = −Vc cosβ + Vt cos(β + θ − θt).

Using (18)-(21), it follows that

dê

dτ
=

1

ωe⋆

{

−Vc cos(β̂ − k1 sin τ) + Vt cos(β̂ + θ̂ − θt)
}

.

By resorting to the method of averaging, we can conclude thatthe averaged error satisfies

dêavg

dτ
=

1

ωe⋆

[

− VcJ0(k1) cos(β̂avg) + Vt cos(β̂avg + θ̂avg − θavg
t )

]

. (24)

Therefore, in a finite period of time (nT seconds),̂eavg and consequentlye is bounded because the

right hand-side of (24) is bounded. Furthermore, sincêβavg converges to a neighborhood around

zero, it can be seen thatêavg will also decrease its value whenVc > Vt/(J0(k1) cos(β̂avg)).

2

Next, we examine the stability of the closed loop system whenthe second stage (following a constant

direction) is enable.

Theorem 2

Let Σ2 denote the closed-loop system that results from the interconnection of (1), (3) with the

control law (7). Let e⋆ > R be a given allowable tolerant position error, andD[0,tf ] the largest set

in R3 such that for every initial condition(x, y, θ)(0) ∈ D, the solution ofΣ2 is well defined for

all t ∈ [0, tf ] with e(t) ≥ e⋆ and the error between the real bearingθ̄⋆ andθ̄ defined as̃̄θ = θ̄⋆ − θ̄

remains bounded by someǫ > 0, that is,sup0≤t≤tf
| ˜̄θ| ≤ ǫ. Let k4 be a positive gain such that the

following holds:

2
k3

k4
+ ǫ +

Vt

e⋆ k4
<

π

2
. (25)

Then, for sufficiently large gaink3 the position errore converges to a neighborhood around zero

with ultimate bound less or equal thane⋆.

Proof

The proof is organized as follows. First, it will be shown that β is ultimately bounded with the

ultimate bound less thanπ2 . Using this fact, we then prove the convergence ofe. Consider the

dynamics ofβ (see (15)), which in closed-loop satisfies

β̇ =
k3 r

e
sin β + k4(θ − θ̄) −

Vt

e
sin(β + θ − θt). (26)

From Figure1 it follows that

r2 = e2 + R2 − 2Re cosβ,

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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10 O. NAMAKI-SHOUSHTARI, A. PEDRO AGUIAR AND A. KHAKI SEDIGH

which implies thatr can be written in the form

r = e + f(e, R, β), (27)

wheref(e, R, β) is a bounded function with|f | ≤ R. Now, consider the positive definite function

V1(β) := 1
2β2. Computing its time derivative along the trajectories of (26), using (27) and the fact

thatθ − θ̄ = −(β − ˜̄θ), one obtains

V̇1 = β

[

k3
e + f

e
sin β − k4(β − ˜̄θ) −

Vt

e
sin(β + θ − θt)

]

≤ −k4β
2 + |β| [2k3 + k4 ǫ + Vt/e⋆]

= −k4(1 − α)β2 − αk4β
2 + |β| [2k3 + k4 ǫ + Vt/e⋆] ,

≤ −k4(1 − α)β2, ∀ |β| ≥
2k3 + k4 ǫ + Vt/e⋆

k4α

whereα is any scalar that satisfies0 ≤ α < 1. From this it follows that if the gaink4 is selected as

in (25), β will be ultimately bounded with the ultimate boundβa less thanπ
2 .

We are now ready to prove the convergence ofe. From (14), with u1 = k3 r, see (7a), and using

(27) the dynamics ofe satisfies

ė = −k3 (e + f) cosβ + Vt cos(β + θ − θt).

Let V2(e) := 1
2e2. Its time-derivative satisfies

V̇2 ≤ −k3e
2 cosβ + |e| (Vt + k3R),

= −k3(1 − α)e2 cosβ − αk3e
2 cosβ + |e| (Vt + k3R),

≤ −k3(1 − α)e2 cosβ, ∀ |e| ≥
Vt

k3α cosβ
+

R

α cosβ
(28)

for 0 ≤ α < 1. From (28) we can conclude that for any finite timet ≥ 0, e(t) is bounded (that

is, there is no finite escape) and furthermore, after a finite time t1 with |β(t1)| < π
2 , e(t) will

converge to a neighborhood around zero of size less thane⋆, provided thatk3 is sufficiently large

ande⋆ > R/ cos(βa).

We can now conclude that according to the switching rule described in Section3.3and resorting to

Theorem 1 and 2, if the switching between these two phases is slowed down by a sufficiently large

dwell time τD such thatmin(nT, ∆) ≥ τD, based on the results in ( [23] and [24]) the switched

closed-loop system is bounded (that is all the states are bounded) and there exists anǫ > 0 such that

while e(t) > ǫ the vehicle will converge towards the target and will remainafterwards around the

target. This behavior will be illustrated in the next section.

Copyright c© 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control(2011)
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A SWITCHED BASED CONTROL STRATEGY FOR TARGET TRACKING USINGROM 11

5. SIMULATION RESULTS

This section illustrates the performance of the proposed control scheme through computer

simulations. We present three scenarios:i) stationary target,ii) the target moves along a straight

line, andiii) the target performs a lawn mowing maneuver. The initial configurations of the pursuer

and the target vehicles are respectively(x, y, θ)(0) = (0, 0, 0) and(xt, yt, θt)(0) = (50m, 50m, 0).

The target linear velocity was set toVt = 0.2m/s. The control parameters were selected as follows:

ω = 0.5rad/sec, R = 0.5m, k1 = 1, k2 = 1, ka
3 = 1.6, kb

3 = 0.02, k4 = 10, λ = 1, e⋆ = 1m, and

Vc = 0.2m/s. The criteria used to select them was based on the following procedure:i) for phase

1 (extremum seeking control based algorithm),k1 andω are the amplitude and frequency of the

probing signal that is injected to the system to get a measureof the gradient information of−r2. It

was noted that the vehicle will make sharper turns as the parameterk1 is increased. The parameter

ω should be also sufficiently large as it is required in Theorem1. The signal−r2 is filtered by a

high pass filter of the form s
s+λ

to remove the DC (and low frequency) components, whereλ is the

cut-off frequency of the filter. The parameterk2 can be seen as an adaptation gain and should satisfy

(together withk1) the conditions of Theorem 1;ii) In phase 2,ka
3 , kb

3, andk4 are used to tune the

convergence behavior ofe andθ − θ̄ to zero. In the simulation, we consider the realistic case that

the vehicle has dynamics (to capture the effect that the velocities cannot change instantaneously)

and input saturations. To take into account those effects weinclude a first-order filter with input

saturation that emulates the dynamics of the vehicle in closed-loop with an inner-loop controller

that is responsible to drive the actual velocity of the vehicle to the desired one.

5.1. Stationary target
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]

Figure 2. Simulation path of the pursuer vehicle (stationary target).
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Figure2 illustrates the path of the vehicle for a stationary target.It can be seen that the vehicle

converges to and stay in a neighborhood of the target. This iscorroborated in Figure4, where both

the components of the position errore converge to a neighborhood of zero. Figure3 shows the time

evolution of the forward velocity and the control inputu1.
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Figure 3. Time evolution of the forward velocity and the velocity command of the pursuer vehicle for the
stationary target case.
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Figure 4. Time evolution of the components of the error vector (x − xt, y − yt) for the stationary target case.

5.2. The target moves along a straight line

In this scenario the target vehicle moves along a straight line withVt = 0.2 m/s. Figure5 displays

the resulting trajectories of the vehicles where it can be seen that the pursuer moves towards the

target. Notice also that the pursuer vehicle is constantly switching between the two modes. This

behavior is clearly seen in Figure6 that shows the “steady-state” trajectories of the last 40 meters

of the vehicles in the simulation. It is important to point out that the pursuer cannot perform for all

time a straight-line motion because in this mode the system is not observable.
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Figure 5. Simulation paths of the pursuer and the target vehicles for the case that the target vehicle moves
on a straight line.
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Figure 6. Zoom in of the last 40 meters of the pursuer and target vehicles maneuvers shown in Figure
5(steady-state trajectories).

5.3. The target performs a lawn mowing maneuver

Figures9-11 show the simulation results when the pursuer vehicle is required to track a target

vehicle that is performing a lawn mowing maneuver composed by straight lines and arcs. From the

figures, it can be seen that the vehicle is capable to convergeto the target and follow it. However,

as it is expected, the distance error increases when the target is on the arc phase. In this simulation,

in the last straight line (after the curve) the target velocity Vt is changed abruptly from 0.2 to 0.1

m/s. In order to attenuate the oscillation in speed of the vehicle when the proposed strategy switches

again to phase 1,Vc was set to beu1(t
−
i ), whereu1(t

−
i ) denote the velocity of the vehicle before

switch to phase 1. Note that the pursuer vehicle still has a good tracking performance even without

knowing that the target has changed its speed.
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Figure 7. Time evolution of the forward velocity and the velocity command of the pursuer vehicle for the
case that the target vehicle moves on a straight line.
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Figure 8. Time evolution of the components of the error vector (x − xt, y − yt) for the case that the target
vehicle moves on a straight line.
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Figure 9. Simulation paths of the pursuer and the target vehicles for the case that the target is performing a
lawn mowing maneuver.
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Figure 10. Time evolution of the forward velocity and the velocity command of the pursuer vehicle for the
case that the target is performing a lawn mowing maneuver.

6. CONCLUSION

In this paper, we addressed the target tracking problem where an autonomous robotic vehicle is

required to move towards a maneuvering target using range-only measurements. We proposed a

switched based control strategy to solve the pursuing problem that unfolds in two distinct phases: i)

the determination of the bearing, and ii) following the direction computed in the previous step, while

the range is decreasing. We provided guaranteed conditionsunder which the switched closed-loop

system achieves convergence of the relative distance errorto a small neighborhood around zero.
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Figure 11. Time evolution of the components of the error vector (x − xt, y − yt) for the case that the target
is performing a lawn mowing maneuver.

The simulation results showed the good performance of the proposed solution. An issue for future

research is the integration of an obstacle avoidance systemin the proposed tracking algorithm. A

promising strategy is to follow some of the ideas in [19].

APPENDIX

Proposition 1

Consider the following scalar system

β̇ = −a1(t) sin(β) + a2(t), β(0) = β0 (29)

wherea1(t) anda2(t) are assumed to be bounded piecewise continuous signals witha1(t) ≥ a1,

|a2(t)| ≤ ā2, ∀t ≥ 0, anda1 > ā2 > 0. Then for every initial condition

|β0| ≤ cos−1(a), a =

√

a1 − ā2

a1

, ( mod 2π)

β(t) converges to a neighborhood around zero (mod 2π) and satisfies

lim
t→∞

sup |β(t)| ≤ cos−1(a) ( mod 2π). (30)
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In particular, ifa2(t) is identically zero, then for almost every initial condition, β(t) converges to

zero (mod 2π).

Proof

Consider the Lyapunov function candidate

V = 1 − cosβ

whose time derivative along (29) satisfies

V̇ = −a1(t) sin2 β + a2(t) sin β

= −a1(t)(1 + cosβ)(1 − cosβ) + a2(t) sin β

≤ −a1(2 − V )V + ā2

Thus, by noticing that0 ≤ a < 1 it can be verified that ifV0 < 1 + a, then limt→∞ sup V (t) ≤

1 − a, which implies (30).

Derivation of equations (14) and (15)

According to Figure1 the position error between(x, y) and(xt, yt) is given by (12) and the angle

β + θ satisfies (13). Using (1), (2) and (13), the time derivative ofe can be obtained as follows:

ė = [(ẋ − ẋt)(x − xt) + (ẏ − ẏt)(y − yt)] /e

= − cos(θ + β) (u1 cos θ − Vt cos θt) − sin(θ + β) (u1 sin θ − Vt sin θt) ,

which yields (14) by resorting to simple trigonometric equalities. To obtain (15) note thatθ + β =

tan−1
(

−(y−yt)
−(x−xt)

)

. Taking its time-derivative yields

θ̇ + β̇ =

(ẏ−ẏt) (x−xt)− (ẋ−ẋt) (y−yt)

(x−xt)
2

1 + (y−yt)
2

(x−xt)
2

Using (1), (2), and (13) it follows that

θ̇ + β̇ =
1

e2

(

− e cos(θ + β) (u1 sin θ − Vt sin θt) + e sin(θ + β) (u1 cos θ − Vt cos θt)
)

,

where from this, after some algebraic manipulation, it can be concluded (15).

2
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Analysis of the closed loop system in phase 2 with the controllaw (9)

The analysis is organized similar to what was done in the proof of Theorem 2. First, it will be

shown thatβ is ultimately bounded with ultimate bound less thanπ
2 by appropriate choice of the

gains. Using this fact, we then show the convergence ofe.

Consider the dynamics ofβ (see (15)), which in closed-loop with the control law (9) satisfies

β̇ =
ka
3 tanh(kb

3 r)

e
sinβ + ka

4 tanh
(

kb
4 (θ − θ̄)

)

−
Vt

e
sin(β + θ − θt), (31)

and the positive definite functionV1(β) := 1
2β2. Computing its time derivative along the trajectories

of (31) and using the fact thatθ − θ̄ = −(β − ˜̄θ), one obtains

V̇1 = β

[

ka
3 tanh(kb

3 r)

e
sin β − ka

4 tanh(kb
4 (β − ˜̄θ)) −

Vt

e
sin(β + θ − θt)

]

.

Using the fact thatsup0≤t≤tf
| ˜̄θ| ≤ ǫ and applying the following trigonometric equality,

tanh(z1 − z2) = (tanh z1 − tanh z2)/(1 − tanh z1 tanh z2)

we can conclude that for|z2| ≤ ǫ

−z1 tanh(z1 − z2) ≤ −a1z1 tanh(z1) + a2|z1|

wherea1 = 1
1+tanh ǫ

, anda2 = tanh ǫ
1−tanh ǫ

. Thus, it follows that there exist constantsα ∈]0, 1[ and

γ ∈]0, 1[ such that

V̇1 ≤ −ka
4

1

1 + tanh(kb
4ǫ)

(1 − α)β tanh(kb
4β), ∀ tanh |kb

4β| > γ

and from this it can be concluded thatβ will be ultimated bounded with ultimate boundβa < π
2 by

suitable choice of the gains.

Now, the convergence ofe will be examined. From (14), with u1 as in (9), and using (27) the

dynamics ofe satisfies

ė = −ka
3 tanh(kb

3(e + f)) cosβ + Vt cos(β + θ − θt).

UsingV2(e) := 1
2e2, we obtain

V̇2 ≤ −ka
3

1

1 + tanh(kb
3R)

e tanh(kb
3e) cosβ + |e|(

tanh(kb
3R)

1 − tanh(kb
3R)

cosβ + Vt)

≤ −ka
3

1

1 + tanh(kb
3R)

e(1 − α) tanh(kb
3e) cosβ, ∀ tanh |kb

3e| > γ
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for some constants0 < α, γ < 1. Thus, for any finite timet ≥ 0, e(t) is bounded (with no finite

escape) and moreover, after a finite timet1 with |β(t1)| < π
2 , e(t) will converge to a neighborhood

around zero.
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