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Abstract— This paper addresses the problem of observability
of the relative motion of two AUVs equipped with velocity and
depth sensors, and inter-vehicle ranging devices. We start by
exploiting nonlinear observability concepts to analyze, using
observability rank conditions, some types of relative AUV mo-
tions. Because rank conditions only provide binary information
regarding observability, we then derive a specific observability
index (metric) and study its dependence on the types of relative
motions executed by the vehicles. In particular, it is shown that
the degradation of observability depends on the range and angle
between the relative velocity and position vectors. The problem
addressed bears affinity with that of single beacon localization.
For this reason, the results derived are validated experimentally
in a equivalent, single beacon navigation scenario.

I. INTRODUCTION

The problem of Autonomous Underwater Vehicle (AUV)

localization is of paramount importance in the execution of

commercial and scientific operations at sea. For this reason,

this topic has been the object of intensive research effort

in recent years. As is well known, localization devices such

as GPS are ineffective underwater due to the attenuation of

electromagnetic radiation, and can therefore only be used

when the vehicles come to the surface. For this reason, a

large class of underwater localization systems relies strongly

on the propagation of sound waves in water. In many of

them, the core principle of operation is the measurement

of the time of flight of an acoustic signal between an

emitter and a receiver to obtain an estimate of the distance

between the two. Among the acoustic positioning systems

that are available commercially, Long, Short, and Ultra-

Short Baseline have found widespread use. More recently,

a different method for AUV positioning that uses a simple

transponder(beacon)/transducer couple has come to the fore.

With this set-up, the position of the AUV can be obtained by

complementing on-board available motion data (e.g., inertial

velocity measured with a Doppler unit) with information on

the range between the AUV and a transponder moored at a

known location. This concept can be extended to address the

problem of relative positioning between two AUVs, which

motivated the study undertaken in the present paper.

The increasing attention paid to the problem of absolute

(single vehicle) or relative (inter-vehicle) localization using

ranging sensors is patent in a number of papers recently
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available in the literature. Among them, [3] and [4] present

a discrete-time localization approach that, at each sampling

instant, enumerates possible solutions to the localization

problem and selects the most appropriate by minimizing an

appropriate cost function. A generalization of this approach,

complemented with experimental tests with an autonomous

surface vessel (equipped with GPS) and an underwater

vehicle are presented in [8]. The work reported makes ample

use of the Woods Hole Oceanographic Institution (WHOI)

acoustic modem [24], configured as a range measuring

device.

In [18], a Synthetic Long Base Line (SLBL) localization

system that uses a single transponder and multiple range

measurements taken by an AUV at different locations along

its trajectory is presented. In [10], a navigation algorithm

based on an extended Kalman filter is proposed and the

analysis of the observability conditions for the linear time-

varying system obtained by linearizing the nonlinear system

about a nominal trajectory is performed. The work in [19]

describes how both bandwidth constraints and latency can be

addressed in a Kalman filter framework. The observability

study of planar single beacon navigation for AUVs in the

presence of ocean current is presented in the PhD thesis

in [9]. In [23], a solution to the problem of estimating an

underwater vehicle position in the presence of unknown

ocean currents is presented; in the proposed approach, at

each sampling instant, the relative position of the vehicle

w.r.t an underwater transponder is firstly computed using

a multilateration-based approach, and then a Kalman filter

is used to refine both the position and the current velocity

estimates. In a recent paper [6], an approach to deal with

the distortions effects of the sound-ray propagation in order

to get accurate range measurements is presented, and its

application to multi-robot underwater relative localization is

discussed.

Observability issues for the problem of single beacon

localization of autonomous vehicles are addressed in [5]. In

the adopted set-up, the vehicle is equipped with a standard

Inertial Measurement Unit (IMU), and range measurements

with respect to a single source are available in addition to

angular velocity readings. A state augmentation technique

is used to derive a linear time-varying system that mimics

the dynamics of the nonlinear system. A study on the

observability of both the linear time-varying and non linear

systems is presented, and analytical properties that make the

system observable are derived. As a case study, numerical

simulations are done with a model of a quadrotor.

The PhD thesis of Hartsfield [12] gives a summary of the



state of the art on single beacon localization. Observability

properties are not studied formally, but the concept of un-

observable movements is heuristically discussed, e.g. radial

motion.

In [14] the authors analyze the observability of a Global

Positioning System/Inertial Navigation System and study

the relations among observability, observability measures,

estimation error covariance, and the information matrix as-

sociated with the problem at hand. It is shown that the

observability measures have direct connections with the sin-

gular value decomposition of a properly defined information

matrix. In contrast to what happens with the error covariance,

the measures are determined by the system model and

independent of the initial error covariance.

In [17] two tools, the local unobservability index and the

local estimation condition number are introduced to measure

the degree of observability or unobservability of autonomous

systems (that is, systems with no inputs). Both measures are

defined based on the singular values of the local observability

Gramian of a conveniently defined linear model derived

from the original nonlinear system. In order to simplify the

computations, the paper shows how to build an approxi-

mate, empirical local observabilty Gramian. Reference [16]

exploits the use of dynamical optimization and associated

computational methods to define and quantitatively measure

the observability of a nonlinear system.

On a different yet related vein, the stochastic approach

introduced in [7] exploits the concept of a informational

correlation coefficient inherited from signal theory to study

the degree of observability of a discrete-time, stochastically

autonomous system. The Fisher Information Matrix is used

in [15] as a tool to obtain binary information about the

observability of a nonlinear mapping. The results point to the

possibility of using the singular values of the matrix to define

a measure of observability. In [21], the problem of finding

optimal maneuvers for bearings-only tracking systems is

addressed, and a solution based on the Fisher Information

Matrix is proposed.

In this paper, motivated by the above circle of ideas, we

address observability issues related to the general problem

of relative positioning of two underwater vehicles equipped

with velocity and depth sensors and inter-vehicle ranging

devices. We extend the work reported in [1] and [2], which

built on the results available in [22]. We derive a specific

observability index (metric) and study its dependence on

the types of motion imparted to the vehicles. In particular,

it is shown that the degradation of observability depends

on the range between vehicles and the angle between the

relative velocity and position vectors. The problem addressed

bears affinity with that of single beacon localization. For this

reason, to bridge the gap between theory and practice and

validate some of the conclusions obtained, field tests were

done with an autonomous surface vehicle equipped with with

an acoustic ranging device capable of measuring its distance

to a moored underwater transponder. The paper describes

the results of the experiments and discusses plans for future

research.

II. OBSERVABILITY STUDY

A. System model

Let ΣI : {OI−XIY IZI} be a inertial, earth-fixed, refer-

ence frame defined according to the North East Down (NED)

convention and let Σv,i : {Ov,i − Xv,iY v,iZv,i}; i = 1, 2
be a frame with its origin fixed in the i-th vehicle centroid

and parallel to ΣI (see Fig. 1). In what follows, xv,1 ∈ IR3

and xv,2 ∈ IR3 denote the positions of the two vehicles with

respect to ΣI . Let vv,1 = dxv,1/dt and vv,2 = dxv,2/dt be

the inertial velocities of vehicles 1 and 2, respectively and

define their relative velocity as v = vv,2 − vv,1. Further,

define the state x = xv,2 − xv,1. Assume it is possible

to measure the distance between the vehicles as well as

their velocities and depths. With this notation, a first order

kinematic model that captures the relative motion of the

vehicle is simply given by











ẋ = v

y =

[

1
2x

Tx

x3

]

(1)

where x is the state, v is the input, and y is the measurable

output vector consisting of the distance between the two

vehicles and their depth difference x3.

xv,1

xv,2

x

ΣI

Σv,1

Σv,2

Fig. 1. Reference systems.

In the literature, the range-based localization problem is

normally studied in 2D. Here, we include explicitly a third

dimension (depth) to fully capture maneuvers that include

diving. Notice also that because the above model is defined

in terms of relative motion, it captures the kinematics of both

single beacon as well as relative vehicle localization.

B. Observability of nonlinear systems

The concept of local weak observability was introduced

by Hermann and Krener in [13] and discussed, e.g., in [20],

for the general class of continuous-time, nonlinear dynamic

systems described by
{

ẋ = f(x,u)

y = h(x)
, (2)

where x ∈ IRn, u ∈ IRp, and y ∈ IRm are the state, input,

and output respectively, f is the state vector field, and h is

the output measurement equation. For an abridged overview

of the important concepts of observability, Lie derivatives



and observability rank condition, the reader may wish to

consult the presentation in [25] in the context of relative

localization.

Define the Lie derivatives of the scalar output hj as

L0
fhj = hj

L1
fhj = ∇hj · f =

∂hj

∂x
· f =

3
∑

i=1

∂hj

∂xi

· fi

L2
fhj =

∂

∂x

[

L1
fhj

]

· f (3)

· · ·
Ln
fhj =

∂

∂x

[

Ln−1
f hj

]

· f

where ∇ denotes the gradient operator. An important result

on observability is given by the observability rank condi-

tion [13], [20, th. 3.32, p. 95], that states that the system (2)

above is locally weak observable at state xo ∈ IRn if the

matrix

O =











∇L0
fhj

∇L1
fhj

...

∇Lk
fhj











, (4)

computed at xo, is full rank for some index k ∈ IN; in the

above, Lα
f hj is the set of the α-order Lie derivatives for any

j ∈ {1, . . . ,m}.

C. Observability and metric of observability

For the system (1) it is possible to verify that it is always

possible to select a velocity input v that allows satisfaction of

the observability rank condition for all x ∈ IR3. In particular,

it is easy to verify that system (1) is characterized by null

∇L1
fh2 and null gradients of k-order Lie derivatives for

k ≥ 2. Since full rank of matrix O implies local weak

observability and only a finite (and small) number of row are

different from zero, it is appropriate to exploit the possibility

of building a candidate observability submatrix O obtained

from O by keeping the 3 first rows. This yields

O =





∇L0
fh1

∇L0
fh2

∇L1
fh1



 =





xT
[

0 0 1
]

vT



 =





x1 x2 x3

0 0 1
v1 v2 v3



 , (5)

where the notation x = [x1, x2, x3]
T and v =

[v1, v2, v3]
T was used.

Notice that the above matrix is singular when

x1v2 = x2v1, (6)

that is, when the projections of the relative position and

velocity vectors x and v, respectively in the horizontal plane

are parallel.

It is important to notice that failure of the observability

rank condition at a point does not necessarily imply local

unobservability [20]. This statement is supported by our

findings concerning what we later define as radial movement,

i.e., for the case where relative position and velocity in the

horizontal plane are aligned. Nevertheless, we propose to

consider the numerical balance of the matrix involved in the

observability rank condition as a metric for observability.

As expected, the vertical component of the state, being

directly measured, does not influence the observability rank.

A null determinant implies a singular matrix; however, it is

important to bear in mind that the determinant of a matrix

does not give a good measure of how close that matrix

is to being singular. In fact, the distance of a matrix to

the closest singular matrix (as evaluated by the Euclidean-

induced matrix norm) is given by its minimum singular

value [11, p. 82].

In the following we neglect the vertical components that

is given by the depth measurements, and we study the

2D problem obtained by projecting all the vectors in the

horizontal plane. With an obvious abuse of notation, we write

the resulting equations as
{

ẋ = v

y = 1
2x

Tx
(7)

where x,v ∈ IR2 contain the first two components of the

vectors defined in (1). The matrix O ∈ IR2×2 becomes

O =

[

xT

vT

]

, (8)

and its determinant is still null for x1v2 = x2v1. To study the

numerical characteristic of the matrix, it is useful to represent

the relative position and velocity vectors in polar coordinates

as follows:

x = x
[

cosα sinα
]T

v = v
[

cosφ sinφ
]T

.

Let θ = φ− α, i.e., the vectors are parallel when θ = 0. By

further defining

γ =
x

v
(9)

it follows that

O = v

[

γ cosα γ sinα
cosφ sinφ

]

. (10)

From the above, the condition number C ≥ 1 of O is

obtained as

C =
max{σ1,2}
min{σ1,2}

=
γ2 + 1 +

√

γ4 + 2γ2 cos(2θ) + 1

2γ |sin(θ)|
(11)

where σ1,2 are the two singular values of O which, defined

as functions of γ and θ, are given by

σ1,2 = v

√
2

2

√

γ2 + 1±
√

γ4 + 2γ2 cos(2θ) + 1. (12)

The condition number gives information about how well

the matrix O is conditioned (the matrix is well conditioned

when C is close to 1). Figure 2 shows the inverse of the

condition number C−1 as a function of γ and θ.

It is interesting to notice that C−1 has a maximum for
{

γ = 1 (i.e., x = v)
θ = ±π

2

(13)
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Fig. 2. Different views of the inverse of the condition number w.r.t θ

(in radians) and k in Cartesian (top) and Polar (bottom) coordinates. The
variable θ is the angle between relative velocity and position vectors, while
the parameter k is the ration between their norms.

which corresponds to the situation where the relative position

and velocity vectors are orthogonal and have the same

magnitude. Notice also that C−1 is null for θ = 0, or γ = 0,

or γ → ∞, the latter condition being observed when the

ratio between the norms of v and x grows unbounded. The

optimum condition (maximum of C−1) can also be derived

by noticing that, for a fixed γ, the determinant of O has a

maximum for θ = ±π/2. This follows from

∂

∂θ
det(O) = 0 ⇒ cos θ

γ
= 0 (14)

which corresponds to θ = ±π/2.

The following table shows how the ratio between x and v,

defined as the parameter γ, plays an important role as a

metric to assess the quality of observability.

minimum sing. value condition number

θ = 0 0 ∞
θ = ±π/2 min{x, v} max{xv , vx}
An interesting observation that can be done by analyzing

the proposed metric is that, assuming a constant relative

speed, the observability conditions and therefore the expected

performance of any position observer degrade when the

distance between two AUVs (or between an AUV and

a transponder in the case of single beacon localization)

increases. This fact has been experimentally acknowledged

by several researches (see e.g. [18]) but not formally proven.

Notice also that the computation of the index given by the

condition number of O requires knowledge of x, v and θ;

while the first two are actually available to the vehicle, the

angle θ can not be measured/imposed if the AUV does not

exactly know x. Thus, to use the index for on-line path

planning, θ can be imposed w.r.t the only currently estimated

relative position.

In addition to what is presented in this paper, the sensitivity

of the radial movement was also symbolically and numeri-

cally verified by resorting to the tools given in [17]. Finally,

using a linearization approach or working with distances

instead of the squares of distances yield results coherent with

those presented in this paper; the discussion is omitted due

to space limitations.

III. EXPERIMENTAL TESTS

In order to validate the results, field tests were planned

and executed using an Autonomous Surface Vehicle (ASV)

equipped with an acoustic modem and a GPS, while the

second vehicle was actually an acoustic transponder fixed

in a known position on the sea floor. The goal of the ASV

was to estimate the transponder position by measuring its

own velocity by resorting to the GPS, the transponder depth,

and the relative range measured by the time of flight of

the acoustic message exchange between the ASV and the

transponder. The tests where performed in November 2010

at the Expo Area of Lisbon, Portugal (Lat: 38.766 Long:

-9.03).

A. Experimental set-up

Fig. 3. The Medusa autonomous surface vessel

The ASV used in the experiments, named Medusa, was

developed at the Laboratory of Robotics and Systems in

Engineering and Science (LARSyS) of the Instituto Superior

Técnico of Lisbon (see Fig. 3). The vehicle has two side

thrusters that can be independently controlled to yield mo-

tions in surge and yaw. The vehicle is equipped with an IMU,

a GPS, and a compass, and it can communicate with other

devices via wifi or an underwater acoustic modem (Tritech

Micron Modem, see Fig. 4-right). The transponder, installed

at a known position underwater at 2m depth, is essentially

a Tritech Modem unit (Fig. 4-left) configured to respond to

queries from the surface modem. Upon receiving a reply,

the latter computes the round-trip travel time between the

surface and the underwater units and, by knowing the speed

of sound in the water measured before the tests, it estimates

the corresponding distance. For powering and debugging

purposes, the transponder was connected via a cable to a

surface support system that was properly moored.



Fig. 4. Fixed transponder (left) and acoustic modem on the Medusa nose
cone (right).

In each of the tests, the ASV was commanded to perform

different paths specifically designed for the observability

study: a set of parallel/orthogonal segments (some of which

radial w.r.t the transponder) or circular paths (centered at

the transponder). The stored data were post-processed to

test the performance of an extended Luenberger observer.

The filter was designed ready to be implemented on-board

an autonomous marine robot and to take explicitly into

account the low update frequency of the range measurement

(one sample every few seconds) or even in the absence of

the range signal: when no range information is available,

the observer is updated by considering only the velocity

measurement (a standard dead-reckoning approach).

Referring to eq. (2), the basic filter equation is of the form:

˙̂x = f(x̂,u) +K (y − h(x̂)) (15)

where K is a proper filter gain matrix.

We do not provide further details about the filter used

because it is a standard solution and filtering is not the main

contribution of this paper; in fact, the emphasis is on the

evaluation of the filter performance by taking into account

the observability metric adopted.

B. Experimental results

Several tests were run and the data were processed,

leading to coherent results among them. Due to space

constraints, only one case study is reported here. A video

with additional case studies can be downloaded from

http://webuser.unicas.it/lai/robotica/video.html.

The ASV is commanded to follow a set of parallel

and orthogonal segments in an area of about 100m×100m.

Figure 5 shows the path of the ASV during the mission. In

the background it is worth noticing the Transponder position

(marked with the blue star), and the remote base station

(Medusa Base) in charge of receiving and storing data from

the ASV; the black squares represent the estimated position

of the transponder during different mission steps.

Figure 6 shows the main data concerning the observability

study. The top plot shows the inverse of the condition of the

observability matrix of eq. (8) computed considering both

real (in blue) and estimated (in green) relative displacement.

As a ground truth data, the real displacement x is obtained

using GPS readings of the ASV and the exact positioning

of the transponder; the estimated displacement x̂ is given

by the extended Luenberger observer. The second plot of

Fig. 6 shows the estimation error of the observer. The filter
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Fig. 5. Path of the robot during the case study.

is initialized so that the initial estimated position of the

transponder is on a circle centered at the ASV and with

radius equal to the range measurement, at a distance of 10m

from the real transponder position. The third plot of Fig. 6

shows the range measured with the acoustic modem (in

blue) and obtained from GPS data (in red). It is important

to notice that the modem measurement is quite accurate

but the update frequency is slow and there are some time

windows with temporary communication losses (which is

expected, in view of the adverse conditions of acoustic

propagation in extremely shallow waters). The last plots of

Fig. 6 respectively show the values of k, sin(θ), and cos(2θ)
(referring to eq. (11)).

At this point, it is important to identify in Figs. 5 and 6

some noteworthy mission segments. Notice that when the

ASV is moving closer to the transponder (during the [80s

180s] time window) the filter error decreases faster than

when the vehicle is far from it. Notice also that when no

range measurements are available the filter error is kept low

using dead-reckoning data. Finally, Fig. 7 shows the linear

velocity and heading of the ASV (computed using a GPS and

IMU/compass data) while the multimedia attachment shows

an animation of the ASV motion and the filter dynamics.

IV. CONCLUSION

The paper addressed observability issues in the context of

the relative localization of autonomous underwater vehicles.

By exploiting nonlinear observability concepts, a specific

metric was proposed to study how the observability depends

on the relative vehicle motions. Experimental results validate

the considerations done. Future research will address the

study of other types of observers, optimal real-time trajectory

planning and multiple vehicle observability issues.
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