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Abstract—This paper describes a decentralized coordination
strategy for multi robot patrolling missions. To this effect,
the theory of Gaussian Processes (usually used for estimation
purposes) is suitably adapted to tackle the problem of harbour
patrolling. The introduction of a time varying dependency in
the probabilistic formulation (thus allowing for the sampled
field to be dynamic, i.e., changing in time) makes the proposed
solution suitable for the type of mission considered. Moreover,
the advantages of Voronoi tessellations are exploited to automat-
ically distribute the vehicles over the environment. The resulting
algorithm takes into account several constraints and can be
tailored based on the communication and computational capa-
bilities of the robots, thus making it suitable for heterogeneous
systems. Numerical simulations and experiments involving three
autonomous marine surface vehicles in a harbour scenario at
the Parque Expo site in Lisbon are discussed.

I. INTRODUCTION

Among the multitude of tasks requiring the use of multi-

robot systems, the following are worth stressing; environ-

mental exploration and sampling, terrain coverage, air and

ocean monitoring, and patrolling. Examples of these tasks

can be found in [5], [19], [13]. These tasks have one key

factor in common: they require that the robots be dynami-

cally positioned so as to meet some optimality criterion in

the presence of specific, application-related constraints.

In particular, the problem of sampling amounts to devising

a strategy to move a group of sensors in the environment and

have them visit a number of locations so as to maximize

the amount of information available to characterize a given

phenomenon. Stated in more detail, in the case of a scalar

field (eg., salinity, temperature, etc.), the objective for the

mobile robots is to carry the sensors to locations that

better (according to some metric) allow for the prediction

of the value of the field even in points where no direct

measurements are made in such a way as to reduce the global

prediction uncertainty.

To formally study this problem, an appealing mathematical

tool emerges out of the theory of Gaussian processes [17]

mostly used for sampling fields that allows for the prediction

of the values of a physical variable at spatial points of interest

and, at the same time, to compute the uncertainty involved

in that prediction [14]. This methodology can be extended to

deal with dynamical fields, the evolution of which depends
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explicitly on time as shown, for example, in [8]. In this case,

the vehicles in charge of mapping the field may have to

revisit previously sampled locations in order to capture the

time-varying characteristics of the phenomenon of interest.

The above framework, developed with sampling applica-

tions in mind, yields naturally in this paper a methodology

for patrolling in 2D or 3D environments. In fact, the frame-

work adopted allows us to address in an elegant fashion the

concept of sensor range of the vehicles and the frequency

at which a given location should be visited. Furthermore, in

real scenarios, some locations require to be visited at higher

frequency (e.g., the entrance of an harbour) and a suitable

solution for this requirement is naturally provided with the

methodology adopted.

Because we will be dealing with multi-robot systems in

order to obtain decentralized architectures, in the problem

formulation one must explicitly address the constraint that

each vehicle will only communicate with neighbour vehicles.

See for example [15] for interesting work along these lines.

In this work, mobile sensors move on structured tracks

that have been optimized over a minimal set of parameters

based on a given metrics in order to sample a given field.

In addition, practical issues were also addressed. Ground-

breaking work on ocean sampling is described in [16],

where autonomous vehicles carrying environmental sensors

are coordinated in order to efficiently sample the ocean.

In this paper, the main objective is the study of the

patrolling problem. The strategy adopted exploits recent

results in [8], is distributed and optimal according to a

well defined criteria, and takes explicitly into account the

communication capabilities of the robots.

In the work presented, use is made of the properties of

Voronoi tessellations which effectively endow the vehicles

with the capability to automatically spread themselves over

the environment according to a defined criteria. See [12], [9]

or [11] for examples of recent application of Voronoi tes-

sellations mainly related to the coverage problem. With

this set-up, each vehicle builds its only partition of the

area to be covered in reaction to the perceived position

of the neighbour vehicles without requiring access to the

state of the entire team of vehicles. The proposed approach

was also tested on a real setup with three marine surface

vehicle. Good performance has been observed, together with

robustness and consequently applicability of the algorithm

in real applications in the presence of external disturbances

(e.g., ocean currents) and faults in the communications.

The paper is organized as follows. Section II describes

briefly the key mathematical tools and background results

exploited in this work. Section III introduces the patrolling



strategy, including implementation aspects. Finally, Sec-

tion IV contains the results of simulation and experimental

results. As stated above, the latter were obtained in the

course of an actual mission motivated by a harbour patrolling

scenario. To this effect, three Medusa autonomous surface

vehicles designed and assembled by the robotic team of the

IST/ISR (Instituto Superior Técnico/Institute for Systems and

Robotics) were operated simultaneously to perform a one-

hour patrolling mission at the Parque EXPO site in Lisbon.

II. MATHEMATICAL BACKGROUND

This section summarizes some background material and

the main mathematical tools adopted in this paper. In partic-

ular, brief descriptions of Gaussian Processes and of Voronoi

tessellations are provided.

A. The Gaussian Processes

Gaussian Processes have been widely used to sample

fields modeled as stochastic phenomenons [17]. An im-

portant problem that has been studied in the past and is

currently receiving new interest from a practical point of

view, especially in marine scenarios, is the task of estimating

the spatial distribution of a scalar field over a region of

interest. In oceanographic application the variable of interest

might be the temperature or salinity distribution over the

domain space [14].

To this aim, Gaussian modeling is an appealing tool given

its interesting properties. A Gaussian process can be defined

as a collection of a finite number of random variables, where

each one is characterized by a joint Gaussian distribution. In

the sequel we will consider random processes of the form

f(x, t) = µ(x, t) + ζ(x, t), (1)

where x ∈ IRl (l = 2, 3) denotes the position of a point in the

2D or 3D domain, µ is the mean of the process at position

x and time t, which is supposed to be known, and ζ is a

second-order stationary random process with zero mean and

known covariance function K.

We will assume that the covariance function K is generi-

cally defined as

K(f1, f2) = K(f(x1, t1), f(x2, t2))

= C(‖x2 − x1‖ , |t2 − t1|)
(2)

with C : IR+
0 × IR+

0 → IR+. It is important to stress that

the spatio-temporal process f depends both on the location

x and time t in order to explicitly take into account also

the case of time-varying scalar fields. Furthermore, eq. (2)

implicitly assumes that the process is homogeneous, second

order stationary and isotropic, which basically implies that

the covariance only depends on the distance between two

generic points x1 and x2 and on the absolute value of the

time difference t2 − t1. Clearly, other models can be used

that takes into account anisotropic sensor models.

In the following, given a set of points and instants of time

S = {(x1, t1), (x2, t2), . . . , (xn, tn)}, the symbol ΣS ∈

IRn×n represents the symmetric non-negative covariance

matrix whose elements (i, j) is K(fi, fj).
Moreover, given a single element (x, t), ΣSx ∈ IRn is a

column vector whose i-th element is K(f(x, t), f(xi, ti)).
In the case of a multivariate normal distribution over a

set S of random variables associated at n pairs of position,

instants of time, the joint probability distribution is given by

p(f ) =
(2π)−n/2

|ΣS |1/2
e
−
1

2
(f − µS)

TΣ−1

S (f − µS)
(3)

where:

f =
[

f1 f2 · · · fn
]T

∈ IRn

is the vector of the random variables at the given elements

of the set S,

µS =
[

µ(x1, t1) µ(x2, t2) · · · µ(xn, tn)
]T

∈ IRn

is the corresponding column vector of means, and ΣS ∈
IRn×n is the covariance matrix.

B. Inferring the information from the acquired samples

One of the advantages of using Gaussian processes is that

marginalization is not complex. Consider again the set S,

where each element (xi, ti) contains the position and the

instant of time that sample yi of the scalar field represented

by eq. (1) has been measured.

Let y =
[

y1 y2 . . . yn
]T

be the column vector of the

acquired samples.

Given a single element (x, t), we denote by p(ŷ|y) the

distribution of the predicted measurement ŷ of f(x, t) given
the acquired samples.

It is possible to demonstrate that for multivariate Gaussian

processes this conditional distribution is still a Gaussian

distribution with the following synthetic representation [17]:

µ̂ =µ(x, t) +ΣSx(x, t)
T
Σ−1

S (y − µ) (4a)

Σ̂ =K(f(x, t), f(x, t))−ΣSx(x, t)
T
Σ−1

S ΣSx(x, t) (4b)

where:

• µ̂ ∈ IR is the predicted mean given the acquired samples

(mean of the posterior probability);

• y =
[

y1 y2 · · · yn
]T

∈ IRn is the column vector

collecting the acquired samples of the scalar field of the

random variables at the point of the set S;

• µ =
[

µ(x1, t1) µ(x2, t2) · · · µ(xn, tn)
]T

∈ IRn

is the column vector collecting the means of the random

variables at point of the set S;

• ΣSx is a column vector representing the covariance

matrix between f(x, t) and the random variables at the

points in the set S;

• ΣS ∈ IRn×n is the covariance matrix relative to random

variables at the points in set S.

In the above, the matrices ΣS and ΣSx are completely

defined once the function C in eq. (2) has been specified.



According to [17] and [20], one possible choice for this

function is the Square Exponential Covariance Function:

C(‖x2 − x1‖ , |t2 − t1|) = φ2e
−
‖x2 − x1‖

2

2τ2s
−

(t2 − t1)
2

2τ2t ,

(5)

where φ is a weighting scalar parameter that will be selected

to be unitary and the parameter τs and τt are positive scalars

used to affect the space and time scales, respectively; the

latter need to be properly designed [20]. In addition, it is

worth noticing that the choice in eq. (5) refers to isotropic

domains and known constant τs and τt. The case of adaptive

parameter estimation as also been addressed in the literature;

see for example [18] and the references therein.

Matrix ΣS(x, t), is the covariance between a measure-

ment taken at xi at ti and one at an unknown location x

at time t. The meaning of eq. (5) is intuitive: the more the

samples are spatially and temporally distant the more they

are independent.

C. Application to the patrolling mission

From eq. (4b), the covariance of the conditional distribu-

tion at a position x and current time t takes the form

Σ̂(x) = C(0, 0)−ΣSx
TΣ−1

S ΣSx. (6)

From eq. (4b) it turns out that minimizing the uncertainty,

which corresponds to minimizing the positive definite right-

hand side of eq. (6), is the same as maximizing (given the

available degrees of freedom) the function

ξ(x) = ΣSx
TΣ−1

S ΣSx. (7)

Note also that due to the time dependency of the covariance

function in (5), a point that has been visited too far in the

past (with respect to the time parameter τt) is candidate to

be visited again. This feature makes the approach suitable

for the patrolling task as explained in the next section, but

it can also be exploited for other tasks like sampling.

The function in eq. (7) has several features that can be

inherited by a the patrolling algorithm. In detail:

• the parameter τs in (5) can be used to model the

visibility range of the on board sensors (as intruder

detection sensors). Note that eq. (5) also models the

growing uncertainty of the sensor readings with the

distance from the sensor. In addition, by setting τs as a

function of the position x, we can take into account that

the visibility range of vehicles’ sensors could depend on

the environment (operating conditions);

• the parameter τt in (5) can be used to model the desired

frequency visit of the various locations. In fact, lower

values of this parameter causes the function in eq. (7)

to decrease faster with time thus making more uncertain

the corresponding points;

• by setting τt = ∞ in eq. (5) a static field is obtained.

This feature could be used to perform a coverage

mission;

• the parameter τt in eq. (5) might be a function of the

location x. By setting this parameter lower in some

locations with respect to others, it is possible to increase

the frequency of visits in sensible locations;

• the function in eq. (7) can be used for 2D and 3D

environment.

D. The Voronoi partition

The Voronoi tessellation has been used as a useful tool to

achieve coordination among robots. It allows for a partition

of the domain to patrol in a distributed manner. The Voronoi

partitions (or diagrams) are subdivisions of a set D charac-

terized by a metric with respect to a finite number of points

belonging to the set.

Let x be a generic point of IRl, l = 2, 3. The i -th robot

position is denoted as xr,i ∈ IRl. The vector xr ∈ IRln

collects the positions of all the n robots.

Given a set or robots’ positions {xr,1, xr,2, . . . , xr,n}
with xr,i ∈ IRl, the corresponding n Voronoi

cells, V or(xr,i), are given by

V or(xr,i) = {x ∈ D | ‖x− xr,i‖ ≤ ‖x− xr,j‖ , ∀j} .

It is interesting to highlight that the computation of

the Voronoi cells is structurally distributed: each robot at

point xr,i can compute the corresponding cell V or(xr,i) by
simply knowing its position and the neighbors’ positions.

III. PROPOSED COORDINATION STRATEGY

Several aspects and constraints might affect the execution

of a patrolling mission, e.g., occurrence of robot faults,

large number of patrolling robots, limited communication

range and computational capabilities. For these reasons, the

following aspects need to be investigated:

• Distribution. The control architecture needs to be fully

distributed.

• Communication. The vehicles should be able to commu-

nicate. In particular, it is considered that each vehicle

can exchange information only with its neighbors as

will be clear in the following sections.

• Collision avoidance. It is obvious to require that each

patrolling robot must avoid collisions with other team-

mates or obstacles, even in the case of a large number

of robots.

• Experimental validation. Because of the practical inter-

est of the patrolling mission, an important feature of the

desired strategy is that it must be implementable in a

real setup.

The architecture of the proposed scheme is depicted in

Figure 1. The architecture shown refers to the single robot.

At the top level, there is the robot’s planner that is in

charge of deciding the robot motion commands. This level

will be described in Section III-A. At the middle level,

the Null-Space-based-Behavioral (NSB) control allows to

properly handle eventually conflicting tasks. The NSB has

been widely used in the past. The interested reader can find

in [6], [7], the details of this strategy and its properties. In this

paper, it is used only to allow the robot to reach the desired

goal while avoiding eventually present obstacles. Finally, the

lower level comprises the computing hardware/software and



the mechanical features of the single robot; the structure of

this layer depends on the robotic platform being used and is

primarily concerned with the available sensors and actuators.

The setup used in this work is detailed in Section IV.

Planner

NSB

Actuators Sensors

Robot Simulator

Higher Layer

Middle Layer

Lower Layer

Fig. 1. Sketch of the control architecture.

A. The top level: algorithm description

In this section, the motion commands generation for the

vehicles are described.

At the core of the algorithm is the non-linear function ξ(x)
expressed in eq. (7). Several approaches may be considered

as, for example, maximization of its integral or maximization

of its minimum, depending on the specific application.

To enforce a distributed algorithm, each robot computes

locally the next via point to visit in the corresponding

Voronoi cell in order to decrease the amount of uncovered

area. To this effect, whenever possible each robot exchanges

information with neighbours to compute the Voronoi par-

tition and to maintain an estimate of the function ξ(x)
that depends on the state of the whole system [8]. Details

about the required information exchange are provided in

the Section III-B. The use of the Voronoi tessellation is

particularly useful because it also allows to avoid conflicts

among the vehicles.

The strategy designed for each robot is the following:

Algorithm 1 Harbor patrolling.

loop

1) build V or(xr,i) based on local information

2) request updating data to local neighbors

3) properly choose inside its own partition the next point

xi to reach, based on the function ξ(x)
4) command the robot toward the point xi while avoid-

ing obstacles

end loop

With regards to step 1, it has been assumed that each vehi-

cle is capable of estimating the position of its neighbours (in

the Delaunay sense). It is worth noticing that this hypothesis

could not be verified in large environments or short-range

vehicles. Representative work in this direction is described

in by [10]. Regarding step 3, the following strategy is

implemented by each vehicle for the choice of the next point

xi to visit. Each robot choices the next point to visit inside

its own Voronoi partition V or(xr,i). Inside V or(xr,i), the

most uncertain points are represented by the lowest values of

the function ξ(x). Because ΣS a symmetric positive matrix,

the lower bound of the quadratic form ξ(x) is obviously 0.
Notice also from (4b) that its upper bound is φ2. This means

that, being φ = 1, ξ(x) is upper-bounded by 1. A proper

threshold, θ, in the range [0, 1] can be chosen and the set

Su(θ) considered: Su(θ) = {xu ∈ V or(xr,i) | ξ(xu) < θ}.
Among the points belonging to Su the next point to visit

is chosen according to some criteria (for example, furthest

point from the actual vehicle position, the point characterized

by the lowest value of the function ξ, etc.). In this work,

we propose the following strategy. Let x = f(s) be a

parametrization of the segment joining the actual position

xr,i of the vehicle and a generic point xu ∈ Su, being

s ∈ [0, 1] the curvilinear abscissa; the point in Su that

minimizes the index
∫ 1

0
ξ(f (s))ds

‖xr,i − xu‖
(8)

is chosen as the next target. The heuristics behind the

strategy (8) is that, among the unvisited points in the set Su,

the one characterized by the most unvisited path (normalized

by the path length) is chosen.

B. Implementation issues

The strategy described in Algorithm (1) requires each

robot to calculate the function ξ(x) only inside its own

Voronoi partition. Nevertheless, the knowledge of the set

S that contains the samples acquired by all the robots in

the different locations and at different time instants is still

needed. In [8], it is explained how each robot could estimate

ξ(x) in its Voroni partition by information exchange.

IV. SIMULATION AND EXPERIMENTS

A. Simulation results

Numerical simulations were performed in order to illus-

trate the performance of the proposed algorithm. In the

simulations, three vehicles cooperated in a patrolling mission

at a maximum speed of 3 km/h. Different videos were created

to clearly show some important features of the proposes

approach:

• Video [3] shows the movements of the vehicles in the

case of a static field, i.e. τt = ∞ and τs = 0.3Km in

eq. (5);

• Video [2] shows the movements of the vehicles in the

case of a dynamic field with τt = 0.5 h and τs =
0.3Km;

• Video [1] shows the movements of vehicles in the

case of a dynamic field with τs = 0.3Km but τt is

configuration dependent. In particular, the time constant

τt that sets the decay rate of the function (7) is smaller

in the sea region further away from the coast to simulate

the fact that intruders might come from the open sea;

as a consequence, the vehicles should patrol that region

more frequently.

A dynamic obstacle is present moving randomly in the

environment.



Four approaches to the problem of cooperative patrolling

were tested for comparison purposes. In the simulation set-

up, 3 vehicles evolve across a field characterized by τt =
0.9 h, τs = 0.2 km. A dynamic obstacle moves randomly in

the region of operation, a square with side length equal to

4 km. The approaches considered are listed below.

• The lawnmower approach. The environment is divided

in three equal rectangular slices. Inside each slice the

vehicle moves repeatedly up and down as an automatic

lawn mower would do.

• The approach proposed in this paper.

• The random approach. The vehicles moves randomly in

the field without any communication

• The deployment approach. The vehicles are coordinated

according to the algorithm described in [9] with the

density function in eq. (7).

Figure 2 shows the integral of the function ξ(x) over

the domain of operation, as function of time. Notice that

the deployment approach causes the vehicles to reach a

static configuration, yielding large amount of the region

unexplored. The random approach gives, obviously, better

performance than the deployment approach, but worse than

the lawn mower-like approach where the vehicles’ paths

causes the performance index to increase but also to oscillate.

This is in striking contrast with the superior performance ob-

tained with the approach proposed in this paper, as Figure 2

clearly shows.

 

 
Comparison between different approaches
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Random

Deployment0.25
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Fig. 2. Normalized Performance index for the lawnmower-type motion
(blue), proposed approach (green), random motion (red) and deployment
(cyan).

B. Experiments

Experiments were done with the three autonomous surface

vehicles shown in Figure 3 (red, black, and yellow vehicles).

Fig. 3. The three Medusa surface vehicles setup (the red, black and yellow
vehicles).

Each vehicle, named Medusa, was entirely designed and

assembled by the staff of the Dynamical Systems and Ocean

Robotics Laboratory (DSOR-Lab) of the ISR/IST of Lisbon.

They consist of two identical bodies, an upper body and a

lower body with diameters and lengths of 0.15m and 1m,

respectively. The distance between the two bodies is 0.45m.

The lower underwater body contains a lithium polymer

battery pack together with the actuator electronics. The upper

part contains the processing unit together with navigation

sensors (mainly, IMU and GPS). For control, navigation, and

mission control systems implementation, each vehicle runs a

standard Linux operative system on a 2GHz Intel Core Duo-
1GB RAM platform. The architecture adopted allows for

seamless implementation and hardware-in-the-loop testing of

solutions developed in the MatLab environment. The vehicles

are equipped with a GPS localization system. Inter-vehicle

and vehicle/underwater target communications are enabled

via Wi-Fi and acoustic modem networks, respectively. At the

nominal speed of 1.0m/s, the vehicles have an autonomy

of 6 hours. The autonomy can be doubled by adding an

extra battery pack. The maximum rated speed of the vehicles

is 2.0m/s. At the moment no sensor is mounted on the

vehicle to detect intruders in an harbour patrolling scenario:

the uncertainty map is updated based only on the vehicles’

positions.

The experiments were run in the Summer of 2011 at

the Parque Expo site, Lisbon, Portugal. A video of the

experiments can be found in [4]. Figure 4 shows the map of

the site, with the robots moving in a 60m×70m rectangular

map. An obstacle consisting of a buoy is placed inside the

patrolling region (the green dot in Figure. 4). The position

of the buoy is fixed and known in advance by the vehicles.

The maximum vehicles speed was limited to 0.7m/s. In what

follows we summarize the results of an experiment that run

for approximately 1 hour.

The vehicles exchanged information via WI-FI network.

The τs and τt parameters were set to 3.7m and 200 s,
respectively; the constant θ in Section III-A was set to 0.2.

Red Vehic.

Black Vehic.

Yellow Vehic.

Buoy

Fig. 4. The map of the Parque Expo site in Lisbon with the paths described
by the vehicles in a typical experiment. The vehicles (red, black and yellow)
are restricted to move in a 60m×70m rectangular environment.

In Figure 5, the sequence of steps performed by the

vehicles is shown. In each frame, on the left are shown

the Voronoi cells with the vehicles and the current targets

(big bullets) while, on the right, the plot of function (7) is

shown. The red color is representative of higher values of



the function while the blue color of lower ones. Focusing

the attention on the black vehicle, the following steps are

shown:

1) the vehicle moves toward the current target as gener-

ated by the algorithm described in Section III,

2) the vehicle reaches the current target,

3) the vehicle chooses the next target inside its own

Voronoi cell,

4) the vehicle moves toward the new target.

1 2

3 4

Fig. 5. Frames of the experiments. In each frame, on the left are
shown the Voronoi cells with the vehicles and the current targets (big
bullets) while, on the right, the plot function ξ(x) in eq. (7) is shown
(red color is representative of high values of the function, blue color of low
values). Frame#1. The black vehicle is approaching the corresponding target.
Frame#2. The black vehicle has approached the target. Frame#3. After the
black vehicle has reached the target, the next one is generated inside its
own cell. Frame#4. The black vehicle moves toward the new target.

Finally, in Figure 6 the integral of the function in ξ(x)
normalized to the maximum value obtained over the en-

vironment is plotted with respect to time. Notice how the

function almost reaches a steady value as confirmed by the

simulations in Section IV-A.
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0.5

0.75

1

500 1000 1500 2000 2500 3000 3500

Integral of the ξ(x) function

0

[
]

s
Fig. 6. The normalized integral of the function in eq. (7) over the
environment.

V. CONCLUSIONS

A distributed approach for multi-robot patrolling was pro-

posed. The strategy adopted exploits a probabilistic frame-

work to define the vehicle’s motion strategy.

Based on Voronoi tessellation techniques, each vehicle

chooses the next point to reach inside its Voronoi cell in

order to reduce the unexplored locations. As an added value

with respect to related work, experiments were run using

three autonomous marine vehicles available at the ISR/IST

of Lisbon. As future work, the case of one or more intruder

vehicle entering the patrolled area will be considered. In

addition, also the case of limited range communications will

be addressed explicitly.
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