
Underwater Localization and Mapping:

Observability Analysis and Experimental Results

Mohammadreza Bayat 1 and A. Pedro Aguiar 1,2 ∗

Abstract

Purpose - We investigate the observability properties of the process
of simultaneous localization and mapping of an Autonomous Underwater
Vehicle (AUV), a challenging and important problem in marine robotics,
and illustrate the derived results through computer simulations and ex-
perimental results with a real AUV.

Design/methodology/approach - We address the single/multiple
beacon observability analysis of the process of simultaneous localization
and mapping of an Autonomous Underwater Vehicle (AUV) by deriving
the nonlinear mathematical model that describes the process; then apply-
ing a suitable coordinate transformation, and subsequently a time-scaling
transformation to obtain a Linear Time Varying (LTV) system. The AUV
considered is equipped with a set of inertial sensors, a depth sensor, and
an acoustic ranging device that provides relative range measurements to
a set of stationary beacons. The location of the beacons do not need to be
necessarily known and in that case, we are also interested to localize them.
Numerical tests and experimental results illustrate the derived theoretical
results.

Findings - We show that, if either the position of one of the beacons
or the initial position of the AUV is known, then the system is at least
locally weakly observable, in the sense that the set of indistinguishable
states from a given initial configuration contains a finite set of isolated
points. The simulations and experiments results illustrate the findings.

Originality/value - In the single and multiple beacon case and for
manoeuvres with constant linear and angular velocities both expressed in
the body-frame, known as trimming or steady-state trajectories, we derive
conditions under which it is possible to infer the state of the resulting
system (and in particular the position of the AUV). We also describe
implementation of an advanced continuous time constrained minimum
energy observer combined with multiple model techniques. Numerical
tests and experimental results illustrate the derived theoretical results.

Keywords: Observability analysis, Minimum energy observers, Range mea-
surements, Localization, Marine robotics.

∗This work was supported in part by projects MORPH (EU FP7 under grant agree-
ment No. 288704), CONAV/FCT-PT (PTDC/EEA-CRO/113820/2009), and the FCT [PEst-
OE/EEI/LA0009/2011]. The first author benefited from a PhD scholarship of the Foun-
dation for Science and Technology (FCT), Portugal. 1Institute for Systems and
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1 Introduction

The localization of an Autonomous Underwater Vehicle (AUV) is a challeng-
ing and important problem in marine robotics. Since electromagnetic signals
do not propagate well below the sea surface, a variety of different approaches
has been developed that make use of acoustic signals. Ultra Short BaseLine
(USBL), Long BaseLine (LBL), and GPS Intelligent Buoy (GIB) are examples
of underwater navigation and positioning systems where all use the concept of
beacons, transponders, and range measurements taken from relative/absolute
time of flight of acoustic signals (Kinsey et al. 2006).

Another promising and interesting approach is to use only one beacon for
localization. One of the very first works on single beacon acoustic navigation
can be traced back to (Scherbatyuk 1995), where a least-squares algorithm is
proposed to find the unknown initial position and constant-velocity of an AUV
moving in horizontal plane while affected by unknown constant current. In
(Larsen 2000), the author describes a Synthetic Long Base-Line (SLBL) naviga-
tion algorithm, which makes use of a single LBL in combination with a high per-
formance dead-reckoning navigation system. In (Casey & Hu 2007) the authors
describe an Extended Kalman Filter (EKF) for localization of an AUV using
a single beacon, and in (Saude & Aguiar 2009) combining the dead-reckoning
information with multiple range measurements taken at different instants of
time from the vehicle to a single beacon, a robust estimation algorithm was
proposed for vehicle localization in the presence of unknown ocean currents. In
(Olson et al. 2006), a range only beacon localization algorithm is presented,
which assumes no prior knowledge of beacons’ locations. A pure range only
sub-sea Simultaneous Localization and Mapping (SLAM) has been designed in
(Newman & Leonard 2003). Cooperative AUV navigation using a single ma-
noeuvrings surface craft has been studied in (Fallon et al. 2009). Recently,
the authors in (McPhail & Pebody 2009) describe a post-processing method
for positioning a deep diving AUV using a set of acoustic ranges from a single
beacon on a surface ship while the AUV executes a closed path under the ship.
The approach was validated through experimental results. In (Webster et al.
2009), the authors present a formulation and evaluation of a centralized EKF
navigation system for underwater vehicles, which employs Doppler sonar, depth
sensors, synchronous clocks, and a single moving acoustic reference beacon. In
(Webster et al. 2012), the readers can find a more extensive review of previous
works in the area of single-beacon navigation.

Regarding the observability problem for single beacon AUV localization,
one of the first works is reported in (Song 1999), where resorting to the Fisher
information concept, a necessary and sufficient condition for local system ob-
servability is presented for two-dimensional manoeuvring target tracking with
range-only measurements from a single observer. More extensively in (Gadre
& Stilwell 2005, Gadre 2007), the authors have investigated the observability
of the linearized single beacon navigation system. Another interesting study
that reformulates the problem to a Linear Time Varying (LTV) system is re-
ported in (Batista et al. 2010, 2011), where necessary and sufficient conditions
on the observability are provided. In (Arrichiello et al. 2011), the authors inves-
tigated the nonlinear observability concepts of a nonlinear inter-vehicle ranging
system using observability rank conditions. The results obtained are validated
experimentally in an equivalent single beacon navigation scenario.
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This work addresses the single/multiple beacon observability analysis of the
process of simultaneous localization and beacon mapping for an AUV that uses
range measurements to stationary beacons for navigation and with also the pos-
sibility of using depth measurements. To this effect, we first apply a coordinate
transformation similar to the one presented in (Aguiar & Hespanha 2006) and
then a time-scaling transformation to obtain a LTV system. Then, we inves-
tigate for the case that the motion of the AUV corresponds to constant linear
and angular velocities expressed in the body-frame, (also known as trimming or
steady-state trajectories), under which conditions it is possible to reconstruct
the initial state of the resulting system (and in particular the position of the
AUV). Comparing to the works mentioned above, there are two main differ-
ences in this paper: i) we focus on obtaining conditions expressed in the body
frame of the AUV, which usually are more meaningful, and ii) we address the
multiple beacon case. We show that if either the position of one of the beacons
or the initial position of the AUV is known, then the system is at least locally
weakly observable, in the sense that the set of indistinguishable states from a
given initial configuration contains a finite set of isolated points. Numerical
tests and experimental results illustrate the results derived. To this end, the
implementation of an advanced continuous time constrained minimum energy
observer combined with multiple model techniques is described.

The paper is organized as follows: Section 2 formulates the process model
of single/multiple beacon system. The observability analysis of the proposed
system is investigated in Section 3. In Section 4 we present the structure of the
observer used to estimate the state of the system followed by simulations and ex-
perimental results conducted with the Medusa underwater vehicle. Concluding
remarks are given in Section 5.

2 Process Model

In this section we investigate the observability conditions of the problem of
computing in real time an estimate of the position of an AUV and simultaneously
constructing a map of beacons in its surrounding. The map whose building
process is based on ranging measurements obtained from stationary acoustic
modems (beacons) contains an estimate of the location of the beacons. To
formulate the process model we consider two coordinate frames: fixed earth
or inertial coordinate frame {I}, and body fixed coordinate frame {B} that is
attached to the AUV, which moves with respect to the coordinate frame {I}.
Let (IpB,

I
BR) ∈ SE(3) be the configuration of the frame {B} with respect to

{I}, where IpB indicates the position of the AUV in frame {I}, and IBR the
rotation matrix from {B} to {I}. The equations of motion can be written as

IṗB = IBRν (1)

I
BṘ = IBRS(ω) (2)

where the linear and angular velocities (ν,ω : [0,∞)→ R3) are viewed as input
signals to the system (1)-(2). In (2), S(·) is a function from R3 to the space of
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skew-symmetric matrices S := {M ∈ R3×3 : M = −M ′} defined by

S(a) :=




0 −a3 a2
a3 0 −a1
−a2 a1 0




In what follows we will use the Euler angles η = [φ, θ, ψ] to parametrize the ro-
tation matrix. Consider now n stationary beacons located at unknown positions
Iqi, i ∈ {1, 2, ..., n}, but assumed to be stationary, that is

I q̇i = 0 (3)

For each i ∈ {1, 2, ..., n} let ri(t) be an acoustic ranging measurement acquired
at time t from the ith beacon. In this case, the measurement or output model
is given by

ri =
∥∥Iqi −IpB

∥∥ (4)

zi = [0, 0, 1]Iqi (5)

z0 = [0, 0, 1]IpB (6)

where z0 is the depth of the AUV that is assumed to be available (we consider
the practical situation that the AUV is equipped with a depth sensor). We also
consider that the location of the beacons qi are only unknown in the horizontal
plane, that is, we assume that we know the depth zi. This is a reasonable
assumption if each beacon is attached to a buoy that is at the surface or the
depth information is sent via the acoustic channel.

Equations (1)-(6) represent the process model of the problem of simultane-
ous localization and beacon mapping of the AUV. From the nonlinear system
(1)-(6) we will now construct a new LTV system and derive under what condi-
tions the new system is equivalent to (1)-(6). Note that once we have an LTV
system we can apply the powerful tools of linear estimation theory for observ-
ability analysis. The strategy to obtain an LTV system does not follow the
ones described in (Krener & Isidori 1983, Plestan & Glumineau 1997) but it is
specific tailored for our application. The idea is to view the beacons qi in body
frame {B} and introduce a virtual beacon, q0, located at the origin of {I} (see
Figure 1). Following this strategy and resorting to some of the ideas in (Aguiar
& Hespanha 2006), we first express q0 in {B} as

Bq0 = IBR′ Iq0 − IBR′ IpB

and compute its dynamic equation given by

Bq̇0 = IBṘ′ (Iq0 − IpB) + IBR′ Iq̇0 − IBR′ IṗB
= −S(ω)Bq0 − ν

where we have used (3). To obtain the dynamics of the position of the other
beacons qi in body frame, we introduce the vector pi that connects the virtual
beacon q0 to qi. Note that Ipi is a stationary vector while Bpi is in general a
time dependent vector (with the same magnitude of Ipi but rotated by IBR′).
Therefore,
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Figure 1: Illustration of representative state vectors in 2D space.

Bpi = Bqi − Bq0 (7)
Bṗi = −S(ω)Bpi

From (4), (7), and using the fact that Iqi = IpB + I
BR Bqi the measurement

model can be written as

ri =
∥∥Iqi −IpB

∥∥ =
∥∥IBR Bqi

∥∥ =
∥∥Bpi + Bq0

∥∥

where we have used, in the last equality, the fact that R is a orthogonal matrix.
Defining the scalar state variable χi =

∥∥Bpi + Bq0
∥∥, i ∈ {1, 2, ..., n}, the output

equation (4) becomes ri = χi where χi satisfies

χ̇i =

(Bpi + Bq0
)′
S(ω)

(Bpi+Bq0
)
− ν′

(Bpi + Bq0
)

χi

=
−ν′(Bpi + Bq0)

ri

Using the equalities Iqi = I
BR Bpi and IpB = −IBR Bq0 we can write the output

equation (5) and (6) as

zi = [0, 0, 1]IBR Bpi
z0 = −[0, 0, 1]IBR Bq0

In summary we obtain an LTV system described by

{
ẋ(t) = Au,y(t)x(t) + bu(t)
y(t) = Cu(t)x(t)

(8)
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where

x :=
[ Bq′0, Bp′1 . . . Bp′n, χ1 . . . χn

]′

y :=
[
r1 . . . rn, z0, z1 . . . zn

]′

u :=
[
ν′ ω′ η′

]′

s :=
[

1
r1

1
r2

... 1
rn

]′

Au,y :=−




S(ω) 0 0
0 In ⊗ S(ω) 0

s⊗ ν′ diag(s)⊗ ν′ 0




bu :=
[
−ν′ 0 0

]′

Cu :=




0 0 In
− [0, 0, 1] IBR(η) 0 0

0 In⊗
(
[0, 0, 1] IBR(η)

)
0




and it should satisfy the algebraic constraint:

χ2
i =

∥∥Bpi + Bq0
∥∥2 (9)

In the above model, given two matrices Mi ∈ Rmi×ni , i ∈ {1, 2} and a vector
v ∈ Rn, we denote by M1⊗M2 ∈ Rm1n1×m2n2 the Kronecker product of M1 by
M2 , and by diag(v) the diagonal n × n matrix with the elements of v on the
main diagonal. Moreover, 0 and In denote appropriate dimension matrix with
all elements zero and n× n identity matrix respectively.

We remark that (8) is not defined when ri = 0, which corresponds to the
particular case that the position of the AUV coincides with the location of the
ith beacon. Notice also that we have introduced the equality constraint (9) on
the states of the derived LTV system, and this fact has to be considered in the
subsequent observability analysis.

3 Observability Analysis

SLAM is a technique to build an estimate of the environment map (within a
complete unknown environment or with some a priori knowledge of the environ-
ment), while simultaneously compute an estimate of the position of the vehicle.
Unless there is an anchor that relates the relative localization with the global
(inertial) position, the process in (8), where Bq0 can be viewed as the position
of the AUV and the rest of the states correspond to beacons positions, is not
observable. In fact the idea is to use a priori knowledge of one of the states and
estimate the other unknown ones. For example, one assumption is to consider
that the initial condition of the location of the AUV is known (which can be
done in practice if the AUV starts at the surface and there is GPS).

Using the above argument and considering at this stage only one beacon,
n = 1, from (8) we obtain the single beacon system with squared range state
χ2
1 and output r21 plus depth measurements, as follows

{
ẋ(t) = ν(t) (Au(t)x(t) + b)
y(t) = Cu(t)x(t)

(10)
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where

x :=
[ Bq′0 Bp′1 χ2

1

]′

y :=
[
r21 z0 z1

]′

u :=
[
ν′ ω′ η′

]′

Au :=−



S(ω)/ν 0 0

0 S(ω)/ν 0
[2, 0, 0] [2, 0, 0] 0




b :=−
[

1 0
]′

Cu :=




0 0 0 0 0 0 1
sinθ − sinφ cosθ − cosφ cosθ 0 0 0 0

0 0 0 − sinθ sinφ cosθ cosφ cosθ 0




with ω=[ω1, ω2, ω3]′, ν=[ν, 0, 0]′, and Bq0 =[Bq0,x, Bq0,y, Bq0,z]′.

At this point we introduce the following definitions adopted from (Hermann
& Krener 1977, Nijmeijer & van der Schaft 1990).

Definition 1. Given system (10), we say that two initial conditions z, z′ are
indistinguishable if the output-time histories y, for a given admissible input u
time series and satisfying the initial conditions x(0) = z and x(0) = z′ are
identical. For every z, let I{z} denote the set of all initial conditions that are
indistinguishable from z. The system (10) is observable at z if I(z) = {z}, and
is observable if I(z) = {z} for every possible z in the state space. The system
(10) is locally weakly observable at z if z is an isolated point of I(z) and is
locally weakly observable if it is locally weakly observable for every possible z in
the state space.

Remark 1. In (10) we have considered squared ranging measurement to simplify
the observability analysis. This does not change the observability results. In fact
if we conclude that (10) is observable with a given input u∗ in the sense that
for every pair of distinct initial conditions (x0, z0) there exists a time interval
t ∈ [t∗, tf ], t∗ ≥ 0 such that the corresponding squared range outputs are different

y(t;u∗,x0) :=r21(t;u∗,x0) 6= y(t;u∗, z0) :=r21(t;u∗, z0)

Then it also follows that r1(t;u∗,x0) 6= r1(t;u∗, z0), which implies that the initial
conditions (x0, z0) for the original system (using ranges) will produce different
outputs. The same can be concluded for local weak observability. �

Remark 2. For observability analysis we can consider without loss of gener-
ality that the linear velocity ν does not include any non null term in y and z
components. If this is not the case (e.g., there is side-slip in steady state), then
instead of using the body fixed frame {B} to obtain the process model (10) we
use the flow frame {F}, which its origin coincides with {B} but the orientation
is such that the linear velocity expressed in {F} is ν(t) = [ν(t), 0, 0]′. Note that
in this case the orientation η is with respect to {F}. �

Returning to the single beacon system, we start to re-write (10) in a standard
LTV system by applying a time scale transformation with τ̇ = ν(t), assuming
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ν(t) 6= 0. In this case, we obtain

dx(τ)

dτ
= Au(τ)x(τ) + bu(τ)

y(τ) = Cu(τ)x(τ) (11)

where τ =
∫ t
t0
ν(s)ds. Since (11) is a time scaled version of (10), then both

systems are equivalent in the observability sense. Furthermore, without loss of
generality we can set ν(t) = 1 (only for observability analysis purposes) and
work again with (10).

We are now ready to study the observability of the single beacon case. We
will consider the case that the vehicle is in steady state motion, that is, the
linear and angular velocities are constant. Moreover, we consider the case that
the initial condition of the beacon Bp1(0) is known. Later we will investigate
the dual case where the initial location of the AUV Bq0(0) is known but the
position of the beacons are unknown.

Theorem 1. Consider system (10) but with C = [0, 1], which means that there
are no depth measurements available, and suppose that

‖ω‖ > |ω1| > 0 (12)

Then, the system is observable. Moreover, if instead

‖ω‖ > |ω1| = 0 (13)

holds, then system (10) together with the algebraic constraint (9) is locally weakly
observable with set of indistinguishable initial conditions consisting of only two
isolated points:

Ir(x0)=



x0,x0−




2ωω′

ω′ω

(Bq0(0) + Bp1(0)
)

0
0





 (14)

Proof. Since we are assuming that the linear and angular velocities are constant,
it turns out that system (10) without depth measurements is an LTI system. In
this case, the first 4 rows of the associated observability matrix has the following
form:

Or =




0 0 0 0 0 0 1
2

−1 0 0 −1 0 0 0
0 −ω3 ω2 0 −ω3 ω2 0

ω2
2 + 2ω2

3 −ω1ω2 −ω1ω3 ω2
2 + ω2

3 −ω1ω2 −ω1ω3 0


 (15)

Note that the other rows are combinations of the first 4, and therefore it
follows that (15) has rank 4 if (12) holds. Notice also that the first three
columns are a combination of the second three columns, meaning that an initial
anchor is required for observability of the system. Since we know the initial
condition of the beacon, the set of indistinguishable initial conditions for Bq0
shrinks to only Bq0(0) and thus the system is observable.
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Now, if additionally ω1 = 0, meaning that condition (13) holds, the null
space associated to the observability matrix is given by Null(Or) = Nα, where

N =




−1 0 0 0
0 −1 0 0
0 0 −1 0
1 0 0 0
0 1 0 ω2

0 0 1 ω3

0 0 0 0




(16)

and α = [α1, . . . , α4]′ ∈ R4. Thus, for a given input u time series and an initial
condition x0 ∈ R7, all the points x̆0 = x0 + Nα ∈ R7 are indistinguishable
from x0. Since the initial condition of the beacon is known Bp̆1(0) = Bp1(0),
it implies that α1 = α2 = α3 = 0. Moreover, notice that x̆0 should satisfy the
constraint (9), resulting that

α4 ∈
{

0,−2ω′
(Bq0(0)+Bp1(0)

)

ω′ω

}

and therefore it can be concluded that Ir(x0) is the set defined in (14). Thus,
system (10) combined with constraint (9) is locally weakly observable.

We remark that the fact of introducing a new output to the system (in
this case the depth measurement) will not change the observability results of
Theorem 1 implying that if (12) holds then the system is observable with range
and depth measurements. The following theorem shows that it is possible to
shrink the set of indistinguishable points in (14) and achieve a less conservative
result if we have also depth measurements.

Theorem 2. Consider system (10) and suppose that

ω3 cosφ0 6= −ω2 sinφ0 (17)

holds. Then the system is observable.

Proof. Using (2) we can confirm that [0, 0, 1] IBṘ(η0) = [0, 0, 1] IBR(η0)S(ω),
which implies that the Observability matrix in this case takes the form

Oz =

[
−
[
0 0 1

] I
BR(η0) 0 0

0
[
0 0 1

] I
BR(η0) 0

]

where all the other rows are zero. Since (17) implies that (12) or (13) holds and
in Theorem 1 we have computed the observability matrix of system (10) with
range only measurement, we can now intersect the null space (16) with the null
space of Oz. It can be seen that if the condition (17) holds, the intersection of
the null spaces contains only the origin, implying that α4 = 0, Irz(x0) = {x0},
and consequently the system is observable. This completes the proof.

In Theorem 1 we provided necessary conditions (12) for observability and
local weak observability of range only system combined with constraint (9). By
introducing depth measurements we have shown that we can achieve observ-
ability if condition (17) is satisfied. However if condition (17) does not hold,
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the depth information does not add any information to drop the ambiguity of
indistinguishable initial conditions. This leaves us to the following question: If
condition (17) is not satisfied, what are the observability properties for system
(10) with range (and depth) measurements? The next result discusses this case,
which complements all the other cases that are not covered by the conditions
introduced in Theorems 1-2.

Theorem 3. Consider system (10) and suppose that

ω3 cosφ = −ω2 sinφ (18)

holds. Then, the system combined with constraint (9) is locally weakly observable
with

Irz(x0)=




x0,x0−




2




0 0 0
0 c2φ0 − cosφ0sφ0
0 − cosφ0sφ0 s2φ0


(Bq0(0) + Bp1(0)

)

0
0








(19)

describing the set of indistinguishable points.

Proof. Condition (18) is a particular case. In fact, in this case the Euler angles
rates satisfy

[
φ̇ θ̇ ψ̇

]
=
[
ω1

ω2

cosφ 0
]

(20)

Notice also that from the assumption of ω being constant, using (18) we can
conclude that either ‖ω‖ = |ω1| or φ is constant. The later implies that φ̇ =
0 and consequently from (20) that ω1 = 0. In this case, the corresponding
observability matrix is

Orz=




0 0 0 0 0 0 1
2

−1 0 0 −1 0 0 0
0 −ω3 ω2 0 −ω3 ω2 0

ω2
2 + ω2

3 0 0 ω2
2 + ω2

3 0 0 0
− sinθ0 sinφ0 cosθ0 cosφ0 cosθ0 0 0 0 0

0 0 0 − sinθ0 sinφ0 cosθ0 cosφ0 cosθ0 0




Since (18) holds, the 3rd and 4th rows are combination of the other rows. The
associated null space is Null(Orz) = Nα where

N =




0 −sφ0 − cosφ0
− cosφ0 −sφ0 − cosφ0
sφ0 0 0
0 sφ0 cosφ0
0 sφ0 0
0 0 sφ0
0 0 0




which does not depend on ω1 and α = [α1, . . . , α3]′ ∈ R3. Imposing the con-
straint of knowing the initial condition of the beacon leads to α2 = α3 = 0.
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Now, we have a first order linear subspace x̆ = x0+α1[0,− cosφ0, sφ0, 0, 0, 0, 0]′

and the algebraic state constraint described in (9). Solving the corresponding
algebraic equation we find that

α1 ∈
{

0, 2[0, cosφ0,−sφ0]
(Bq0(0) + Bp1(0)

)}

This implies that the set of indistinguishable points is restricted to only two
isolated points defined in (19), thus the system is locally weakly observable.

Until this point we have investigated the case where it is assumed that the
initial location of the beacon, Bp1(0), is known and the initial position of the
AUV, Bq0(0), is unknown. We now consider the dual case, that is, Bq0(0) is
known but not the initial position of the beacon. The following result holds.

Theorem 4. The system (10) with the assumption that Bq0(0) is known, has
the same observability properties as the case where Bp1(0) is known in Theorems
1-3 but with the following set of indistinguishable points:

Case of range only measurements:

Ir(x0)=



x0,x0−




0
2ωω′

ω′ω

(Bq0(0) + Bp1(0)
)

0





 (21)

Case of range and depth measurements:

Irz(x0)=




x0,x0−




0

2




0 0 0
0 c2φ0 − cosφ0sφ0
0 − cosφ0sφ0 s2φ0


(Bq0(0)+Bp1(0)

)

0








(22)

Proof. The proof for the case of range only measurements follows the same
guidelines of Theorem 1 with the difference that we use the assumption Bq̆0(0) =
Bq0(0). This concludes to Ir(x0) as presented in (21), which is a set of isolated
points and thus the same results of Theorem 1 holds with the set defined in (21).
Now by adding the depth measurement and taking into account condition (17),
it follows that the intersection of (21) with the null space of Oz contains only
x0 meaning that the system is observable and the results of Theorem 2 holds.
Moreover, with the same reasoning as in Theorem 3, but with the assumption
Bq̆0(0) = Bq0(0), we can conclude that the set of indistinguishable points consists
of isolated points defined in (22). Thus, the system is locally weakly observable
in this case. This completes the proof.

We are now ready to state the observability result for system (8) which
extends to the case with more than one beacon.

Theorem 5. Consider system (8) with constant linear velocity ν 6= 0 and
angular velocity ω. Suppose that there is an anchor, that is, the initial con-
dition Bq0(0) or the position of one of the beacons Bpi(0) is known. Then
the initial condition of other states can be reconstructed from the observed in-
put and output pair {u(t),y(t)}, t ∈ [0, tf ), provided that (12) holds when
range measurements are available or (17) holds while range and depth measure-
ments are available. Otherwise, the initial condition of each unknown vector in{Bq0,Bpi; i ∈ {1, 2, ..., n}

}
has two possible solutions.
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Proof. For only one beacon the result follows from Theorems 1-4. Consider
now more than one beacon. In this case it can be concluded from (8) that
the dynamic equations of each pair {Bpi, χi} does not depend on the other
pairs. This means that the observability of the multiple beacon system can be
investigated by analysing the observability of each single beacon system and
therefore the result follows from Theorems 1-4.

4 Simulation and Experimental Results

This section illustrates the observability results derived in the previous section.
To this end, we present a high-performance observer of multiple model adap-
tive type and compare its behaviour both in simulation and by carrying out
experimental tests with a real marine robotic vehicle.

4.1 Multiple Model Constrained Minimum Energy Ob-
server

The observer used to test the observability results was introduced in (Bayat &
Aguiar 2013) and the design methodology is inspired by (Aguiar & Hespanha
2003, 2006). Basically, the goal is to obtain an estimate of the state vector which
minimizes the energy of the estimated noise and disturbance, while satisfying
the equality algebraic constraint (9). More precisely, consider a continuous
time system corrupted with additive deterministic but unknown bounded state
disturbance d(t) and measurement noise n(t), where only discrete samples of
observations are available:

{
ẋ(t) = Au,y(t)x(t) + bu(t) +Gu(t)d(t)
y(tk) = Cu(t)x(tk) + n(tk)

(23)

The implemented multiple model Constrained Minimum Energy Estimator
(CME) is composed by the following blocks:

Minimum Energy Estimator (ME)

The block depicted in Figure 2, solves the estimation problem for system (23) us-
ing the minimum energy estimation approach (Aguiar & Hespanha 2006, 2003),
which is given by the following equations:
• For tk−1 ≤ t < tk, k = 1, ..., k∗, the ME continuous block computes

predicted ˙̄x(t), Q̇(t)

Q̇(t) =−A′u,yQ(t)−Q(t)Au,y −Q(t)GuRdG
′
uQ(t) (24)

˙̄x(t) =Au,yx̄(t) + bu (25)

• At t = tk, k = 1, ..., k∗, the ME discrete block resets the integrators with

Q(tk) =Q(t−k ) + C ′uR
−1
n Cu

x̄(tk) =x̄(t−k )−Q(tk)−1C ′uR
−1
n

(
Cux̄(t−k )− y(tk)

)

where Rd > 0 and Rn > 0 are weighting parameters on disturbance and mea-
surement noises and the ME satisfies the initial conditions Q(0) = Q0 > 0,
x̄(0) = x̄0, with x̄0 denoting an initial estimate.
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ME

Continuous

ME

Discrete

∫

∫

ŷ(t)

y(tk)

u(t)

ẋ(t)

Q̇(t)

x̄(t)

Q(t)

x̄(tk)

Q(tk)

˙̄x(t)

Q̇(t)

x̄(t)

Q(t)

x̄(t)

u(t)

ŷ(t)

Q(t)

˙̄x(t)

Q̇(t)

x̄(t−k)

y(tk)

Q(t−k)

x̄(t−k)

Q(t−k)

x̄0

Q0

x̄(tk)

Q(tk)

Figure 2: Block diagram of the ME used in the design of the CME observer.

IOP ∫
x̄(t)

u(t)

y(tk)

ŷ(t)

ŷ(t)

u(t)

x̄(t)

˙̂y(t)

ŷ(t)

˙̂y(t)

ŷ0

Figure 3: Block diagram of the IOP used in the design of the CME observer.

Inter-sample Output Predictor (IOP)

Notice that the observation y(t) used in (24)-(25) requires the assumption that
the output of the system is a piecewise continuous signal in time, while in
practice y is a discrete signal, which is available at times tk, k = 1, ..., k∗. Thus,
we use the concept of IOP, depicted in Figure 3, to reduce the model mismatch
by predicting y(t) for tk−1 ≤ t < tk. For a general nonlinear system

ẋ = f(x,u), y = h(x,u)

the idea consists of using the predicted output computed by integrating

˙̂y(t) =
∂h(x̂,u)

∂x̂
f(x̂,u) ∀t ∈ [tk−1, tk)

and reset at time tk.

ŷ(tk) = y(tk)
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PF

Continuous

PF

Discrete

∫

∫

Q̇(t)

x̄(t)

˙̄x(t)

Q(t)

x̄(tk)

Q(tk)

λ(t)

x̂(t)˙̂x(t)

λ̇(t)

x̂(t)

λ(t)

x̄(t)

˙̄x(t)

x̂(t)

λ(t)

Q(t)

Q̇(t)

˙̂x(t)

λ̇(t)

x̄(tk)

x̂(t−k)

Q(tk)

λ(t−k)

x̂(t−k)

λ(t−k)

x̂0

λ0

x̂(tk)

λ(tk)

Figure 4: Block diagram of the PF used in the design of the CME observer.

Projection Filter (PF)

Since the solution obtained from the unconstrained state estimation problem,
x̄(t), does not necessarily satisfy the equality algebraic constraint (9), we use
a PF, depicted in Figure 4, which acts as a weighted projection (with weight-
ing matrix Q) from the state space of the system (8) (x̄(t)) to the space in
which constraint (9) holds (x̂(t)). Notice that (9) can be written in a quadratic
algebraic constraint form z′Siz = 0. The PF is formulated as a constrained
optimization problem with the Lagrangian function defined as

L(x̂,λ) = (x̂− x̄)′Q(x̂− x̄) +

n∑

i=1

λi(x̂
′Six̂)

where λ ∈ Rn is the Lagrange multiplier vector. Thus, the idea is to compute x̂
such that the sufficient KKT conditions for optimality of x̂ hold asymptotically
in [tk−1, tk) with

[
˙̂x

λ̇

]
=

[
Q̄ S̄(x̂)

S̄(x̂)′ 0

]−1([−Q̇x̂+Q ˙̄x+ Q̇x̄
0

]
−µ
[
Q(x̂− x̄) + S̄(x̂)λ

1
2 S̄(x̂)′x̂

])

computed by the PF continuous block. At tk, the PF discrete block (see Figure
4) resets λ and x̂ with

[
x̂(tk)
λ(tk)

]
=

[
Q̄−1(tk)Q(tk)x̄(tk)
λ∗(tk)

]
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Figure 5: Block diagram of the designed MMAE.

Here λ∗(tk) is given by solving f(λ, tk) = 0 using the iterative generalized
Newton’s method, with

fi(λ, tk) =x̄′QQ̄−1SiQ̄
−1Qx̄, i ∈ {1, 2, ..., n}

Q̄ =Q+

n∑

i=1

λiSi

S̄(x̂) =[S1x̂, . . . , Snx̂]

Multiple Model Adaptation

Notice that from the results in Section 3, we know that the process model (8)
constrained by (9) is locally weakly observable in [t0, tf ] for some classes of
inputs. In this case, the proposed CME initialized with x̄(0) converges to the
closest element of I(x0) in (14). However, as soon as the system becomes observ-
able, the set of possible solutions consists of only one of them. This means that
the observer initialized with any initial condition converges to a neighbourhood
close the true initial condition, but notice that the time of convergence depends
on how far is the initial estimate from the true initial condition (‖x̂(0)− x(0)‖).
In this case, to reduce the convergence time, a Multiple Model Adaptive Esti-
mator (MMAE) scheme is proposed, see (Bayat & Aguiar 2013). To this effect,
each CME is an observer initialized with a different initial condition and a
weight signal ps(t), s = 1, . . . , nm, assigned to it. The weights are evaluated
and updated at times tk according to a weighting matrix Ss(tk) and an error
measuring function ws(tk) that maps the observations of the system and the
states of the each local observer to a non-negative real value (See Figure 5).
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x̂(t) =

nm∑

s=1

ps(tk)x̂s(t), ∀t ∈ [tk, tk+1)

ps(tk) =
ps(tk−1)e−ws(tk)

nm∑
l=1

pl(tk−1)e−wl(tk)

, s ∈ {1, 2, ..., nm}

ws(tk) =
1

2

∥∥ŷs(t−k )− y(tk)
∥∥2

Ss(tk)−1

Ss(tk) = Cu(tk)Q−1(tk)C ′u(tk) +Rn

4.2 Simulation Results

To illustrate the derived observability results, we have simulated two scenarios:

• A 2D square type trajectory where the condition (18) holds except when
the AUV is turning;

• A 3D helix type trajectory given by a constant pitch θ = (−π10 ) and turning
rate ω = [tan(−π10 ) π50 , 0,

π
50 ]′, which means that conditions (12) and (17)

hold.

In both scenarios, we consider three stationary beacons located at [10, 10, 1]′,
[−10, 10, 1]′, [3− 10, 1]′ as shown in Figures 6 and 7 with the symbol (©). The
AUV is moving with a constant forward speed of 0.5[m/s] starting from initial
condition (�). To estimate the states of the undisturbed model introduced in (8)
we use the proposed hybrid CME combined with MMAE approach. The models
in the estimator are initialized with the same initial condition but different up
to a sign in initial condition Bqi,y(t0), i ∈ {1, 2, 3}.

As expected for the helix type trajectory the system is observable and there-
fore the estimate converges to the true value. In Figure 8 it can be seen that
the convergence time would decrease significantly when the depth measurement
is used. For the square type trajectory, there are two possible solutions for each
beacon, as long as the AUV is moving on a straight line. As soon as the AUV
turns, the observability condition (17) holds and the set of possible solutions for
the initial condition shrinks to the true value.

4.3 Experimental Results

In this section we present the experimental results that were recently done with
the three autonomous surface vehicles named Medusa vehicles (see Figure 9)
which were developed at the Laboratory of Robotics and Systems in Engineer-
ing and Science (LARSyS) of the Instituto Superior Técnico, Lisbon. Each
vehicle has two side thrusters that can be independently controlled. Based on
the commands sent to the thrusters and the thruster model, the forward veloc-
ity ν(t) of the vehicle is calculated and used as input in the model of the AUV.
Each vehicle is also equipped with an IMU and a compass which provide body
orientation η(t) and angular velocity ω(t) used for system model inputs. In the
experiments, a pre-evaluated constant current was considered to be summed
with forward velocity of the vehicle. The availability of GPS module allows
us to use it for ground truth comparison purposes. The Communications from
the remote console to the vehicles are done via WiFi. Moreover, each vehicle
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Figure 6: Evolution of the estimated position of the AUV and the beacons (left),
and the norm of state estimation error (right) for the square type motion.

is equipped with an acoustic modem. Acoustic modems are used for commu-
nication between the vehicles and also ranging by acoustic signals propagation
times.

To estimate the states of the model introduced in (23) we use the proposed
hybrid CME combined with MMAE approach. The models in the estimator are
initialized with the same initial condition but different up to a sign in initial
condition Bqi,y(0) , which means that one initial condition of beacon is on the
left hand side of the AUV and one at the right (see Figure 13 for an example
with weighted sum of initial condition shown by (�,�)). The reason for this
kind of initialization is based on the set of indistinguishable points introduced
in (21), (22).

During the mission, two of the Medusa vehicles are in hold position mode to
act only as stationary beacons. The moving Medusa has an average forward ve-
locity of 0.5[m/s] at the surface, which starts from the initial position at (�) and
interrogates with each beacon in cycles of 4 seconds. The range measurements
acquired by the modems is corrupted with an additive measurement noise where
after extensive trials have shown to have an standard deviation of 0.3[m]. The
moving AUV follows a lawn-mowing trajectory where observability conditions
are not satisfied initially. However, as soon as the AUV turns, the observability
condition (17) holds.

Figure 10 shows the Linear and angular velocities related to the mission.
The internal controller of the AUV, which is doing a path-following, tries to
maintain a constant speed on the track. The changes in the angular velocities
of the AUV is visible when the AUV is turning.

Figure 11 depicts the trajectory of the lawn-mowing mission together with
the locations of the beacons obtained by GPS (©,©). The estimation error
converges to a bound around zero, as soon as the vehicle turns and the system
becomes observable. Arbitrary chosen initial conditions do not have an effect on
the convergence, since the system becomes observable and the proposed observer
is globally convergent. This can also be verified from states propagation of
each model depicted in Figure 13. Notice that Model 1 converges to the true
locations of the beacons, while the other Models have converged to some or all
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Figure 7: Evolution of the estimated position of the AUV and the beacons for
the helix type motion.
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Figure 8: Evolution of the position estimation error for helix type motion with
(top) and without (bottom) depth measurements.

of the mirror points for each beacon. Moreover, we could also notice that the
models’ weights depicted in Figure 12, converge to the model with least error
function value after the observability condition is met.

In Figure 14 we compare the affect of disabling one or some of the designed
blocks for all three presented missions. We consider 5 observers: i) Full designed
observer consisting of the ME, PF, IOP, and MMAE; ii) Observer without the
IOP module; iii) Observer without using the PF module, which solves the un-
constrained problem. iv) Observer with only the ME and the MMAE module;
v) Plain ME observer. As expected, the fact of taking into account the al-
gebraic constraint together with the IOP and the MMAE along with the ME
observer improves significantly the convergence and behavior of the estimation
error during the transient time when compared with the unconstrained ME
observer. Also notice that after convergence of the ME observer, there is not
much difference between these observers. This shows that the output of the PF
x̂ converges to the output of ME x̄ meaning that x̄ satisfies constraint (9).

18



Figure 9: The three Medusa marine robotic vehicles.
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Figure 10: Linear and angular velocities of the AUV for lawn-mowing mission.
Filtered data is presented with black solid line.

5 Conclusions

We addressed the observability problem of the process of simultaneously map-
ping the beacons locations and localizing an AUV equipped with inertial sen-
sors, a depth sensor, and an acoustic ranging device to obtain relative range
measurements to stationary beacons. We presented a convergent observer to
estimate/reconstruct the states of the corresponding system (in particular ini-
tial location of the AUV). Several simulation and experimental scenarios were
conducted to illustrate the observability results presented in section 3. From
the derived results and experiments, it can be concluded that the observability
and more precisely the set of indistinguishable points I(x0) is independent of
the location of the beacons and it only depends on the motion of the AUV. Fur-
thermore, the type of the manoeuvres performed by AUV has a direct impact
on the quality of the state estimation of the system.
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