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This paper addresses the problem of steering a fleet of unmanned aerial vehicles along desired three-dimensional

paths while meeting stringent spatial and temporal constraints. A representative example is the challenging mission

scenario where the unmanned aerial vehicles are tasked to cooperatively execute collision-free maneuvers and arrive

at their final destinations at the same time. In the proposed framework, the unmanned aerial vehicles are assigned

nominal spatial paths and speed profiles along those, and then the vehicles are requested to execute cooperative path

following, rather than open loop trajectory trackingmaneuvers. This strategy yields robust behavior against external

disturbances by allowing the unmanned aerial vehicles to negotiate their speeds along the paths in response to

information exchanged over the supporting communications network. The paper considers the case where the graph

that captures the underlying time-varying communications topology is disconnected during some interval of time or

even fails to be connected at all times. Conditions are given under which the cooperative path-following closed-loop

system is stable. Flight test results of a coordinated road-search mission demonstrate the efficacy of the multi-vehicle

cooperative control framework developed in the paper.

I. Introduction

U NMANNED aerial vehicles (UAVs) are becoming ubiquitous
and have been playing an increasingly important role inmilitary

reconnaissance and strike operations, border-patrol missions, forest-
fire detection, police surveillance, and recovery operations, to name

but a few. In simple applications, a single autonomous vehicle can be

managed by a crew using a ground station provided by the vehicle

manufacturer. The execution ofmore challengingmissions, however,

requires the use of multiple vehicles working in cooperation to

achieve a common objective. Representative examples of coopera-

tive mission scenarios are sequential auto-landing and coordinated

ground-target suppression for multiple UAVs. The first refers to the

situation where a fleet of UAVs must break up and arrive at the

assigned glideslope point, separated by prespecified safeguarding

time intervals. In the case of ground-target suppression, a formation

of UAVs must also break up and execute a coordinated maneuver to

arrive at predefined positions over the target at the same time.
In both cases, only relative (rather than absolute) temporal

constraints are given a priori, a critical point that needs to be empha-
sized. Furthermore, the vehicles must execute maneuvers in close
proximity to each other. In addition, as pointed out in [1,2], the
flow of information among vehicles may be severely restricted,
either for security reasons or because of tight bandwidth limitations.
As a consequence, no vehicle might be able to communicate
with the entire formation, and the amount of information that can
be exchanged might be limited. Moreover, the topology of the
intervehicle communications network supporting the cooperative
mission may change over time. Under these circumstances, it is
important to develop cooperative motion-control strategies that can
yield robust performance in the presence of time-varying communi-
cations networks arising from temporary loss of communications
links and switching communications topologies.
Motivated by these and similar problems, there has been increasing

interest over the past few years in the study of multi-agent system
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networks with applications to engineering and science problems.
The range of topics addressed include parallel computing [3],
synchronization of oscillators [4], study of collective behavior and
flocking [5], multisystem consensus mechanisms [6], multivehicle
system formations [7–10], coordinated motion control [11–13],
cooperative path and trajectory planning [14–18], asynchronous
protocols [19], dynamic graphs [20], stochastic graphs [20–22], and
graph-related theory [2,23]. Especially relevant are the applications
of the theory developed in the area of multivehicle formation control:
spacecraft formation flying [24], UAV control [25,26], coordinated
control of land robots [11], and control of multiple autonomous
underwater vehicles and surface vessels [27–36]. In spite of sig-
nificant progress in the field, much work remains to be done to
develop strategies capable of yielding robust performance of a fleet of
vehicles in the presence of complex vehicle dynamics, communi-
cations constraints, and partial vehicle failures.
It is against this backdrop of ideas that this paper addresses the

problem of steering a fleet of UAVs along desired paths while
meeting stringent spatial and temporal constraints. The cooperative
missions considered here require that the UAVs follow collision-free
paths and that all vehicles arrive at their final destinations at the same
time (time-critical operations). In the adopted setup, the vehicles
are assigned desired nominal paths and speed profiles along them.
The paths are then appropriately parameterized, and the vehicles are
requested to execute cooperative path following, rather than open-
loop trajectory-tracking maneuvers. This strategy yields robust
performance in the face of external disturbances by allowing the
vehicles to negotiate their speeds along the paths in response to
information exchanged over the supporting communications
network. Moreover, as proven in [37], the path-following approach
is not subject to the fundamental performance limitations of
trajectory tracking in the presence of unstable zero dynamics. The
paper builds upon previous work by the authors on time-critical
cooperative path following and extends it to a very general frame-
work that allows for the consideration of complex vehicle
dynamics and time-varying communications topologies in a rigorous
mathematical setting. The reader is referred to [38–43] and the
references therein for an introduction to the subject and a general
perspective of the circle of ideas that are at the root of the present
work. From a technical point of view, the present paper departs
substantially from previous published work in two key aspects.
1) It puts forward a new algorithm for path following in three-

dimensional (3-D) space that uses the special orthogonal group
SO�3� in the formulation of the attitude-control problem. This
formulation avoids the geometric singularities and complexities
that appear when dealing with local parameterizations of the
vehicle’s attitude and thus leads to a singularity-free path-following
control law.
2) It offers a new proof of convergence of the relevant variables

involved in cooperative path following that significantly simplifies
the one summarized in [40] and extends it to the case where the
speed profiles of the different vehicles along their paths are arbitrary
but meet desired geometrical constraints. In the setup adopted, the
communications graph that captures the underlying communications
network topology is allowed to be disconnected during some interval
of time ormay even fail to be connected at all times. It is shown that, if
the connectivity of the communications graph satisfies a certain
persistency of excitation (PE)-like condition, then the UAVs “reach
consensus” in the sense that a conveniently defined cooperation error
converges to a neighborhood of the origin. The paper also derives
lower bounds on the convergence rate of the collective dynamics as a
function of the level of connectivity of the dynamic communications
graph.
To demonstrate the efficacy of the developed algorithms, the paper

also presents flight-test results of a coordinated road-search mission
that exploits the multi-UAV cooperative control framework devel-
oped. These experimental results build on the ones reported in [44] by
analyzing in greater detail the performance of the road-search
mission.
This paper is organized as follows. Section II formulates the time-

critical cooperative path-following problem, describes the kinemat-

ics of the systems of interest, and introduces a set of assumptions and
limitations on the supporting communications network. Section III
presents a path-following control algorithm for UAVs in 3-D
space. Section IV derives a strategy for time-critical cooperative path
following of multiple UAVs in the presence of time-varying
communications networks that relies on the adjustment of the desired
speed profile of each vehicle. Section V addresses the stability and
convergence properties of the combined coordination and path-
following systems. Section VI presents actual flight-test results
performed in Camp Roberts, CA. Finally, Sec. VII summarizes the
key results and contains the main conclusions.
The following notation is used throughout the paper. fvgF is used

to denote the vector v resolved in frameF ; fegF represents the versor
e resolved in frame F ; ωF1∕F2 denotes the angular velocity of frame
F1 with respect to frame F2; the rotation matrix from frame F1 to
frame F2 is represented by RF2F1; and _v�F indicates that the time-
derivative of vector v is taken in frameF .Moreover, unless otherwise
noted, k · k is used for both the 2-norm of a vector and the induced
2-norm of a matrix. Finally, SO�3� denotes the special orthogonal
group in Euclidean 3-space, while so�3� represents the set of 3 × 3
skew-symmetric matrices over R.

II. Time-Critical Cooperative Path Following:
Problem Formulation

This section provides a rigorous formulation of the problem of
time-critical cooperative path-following control for multiple UAVs
in 3-D space, in which a fleet of UAVs is tasked to converge to
and follow a set of desired feasible paths so as to meet spatial and
temporal constraints. The section also introduces a set of assumptions
and limitations on the supporting communications network.
The problem of cooperative trajectory generation is not addressed

in this paper. In fact, it is assumed that a set of desired 3-D time
trajectories pd;i�td�∶ R → R3, conveniently parameterized by a
single time variable td ∈ �0; t�d�, is known for all of the n UAVs
involved in a cooperative mission. The variable td represents a
desired mission time (distinct from the actual mission time that
evolves as the mission unfolds), with t�d being the desired mission
duration. For a given td, pd;i�td� defines the desired position of
the ith UAV td seconds after the initiation of the cooperative mission.
These time trajectories can be reparameterized in terms of path
length to obtain spatial paths pd;i�τl;i�∶ R → R3 (with no temporal
specifications) and the corresponding desired speed profiles
vd;i�td�∶ R → R. For convenience, each spatial path is parame-
terized by its path length τl;i ∈ �0;lfi�, where lfi denotes the total
length of the ith path, whereas the desired speed profiles are
parameterized by the desired mission time td. It is assumed that
both the paths and the speed profiles satisfy collision-avoidance
constraints as well as appropriate boundary and feasibility condi-
tions, such as those imposed by the physical limitations of the UAVs.
In particular, in the context of this paper, it is assumed that the paths
are spatially deconflictedwith spatial clearanceE > 0. (The results in
the present paper can be easily extended to time-deconflicted paths;
one only needs to replace the condition in Theorem 1 that relates the
spatial clearance E to the path-following and coordination error
bounds; see Remark 6.) It is further assumed that the rate and speed
commands required to follow the paths and achieve time coordination
do not result in the UAVs operating outside their normal flight
envelope and do not lead to internal saturation of the onboard
autopilots. The problem of generation of feasible collision-free
trajectories for multiple cooperative autonomous vehicles is
described in detail in [44].

A. Path Following for a Single Unmanned Aerial Vehicle

Pioneering work in the area of path following can be found in [45],
where an elegant solution to the problemwas presented for awheeled
robot at the kinematic level. In the setup adopted, the kinematic
model of the vehicle was derived with respect to a Frenet–Serret
framemoving along the path, while playing the role of a virtual target
vehicle to be tracked by the real vehicle. The origin of the Frenet–
Serret was placed at the point on the path closest to the real vehicle.
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This work spurred a great deal of activity in the literature addressing
the path-following control problem. Of particular interest is the work
reported in [46], in which the authors reformulated the setup used in
[45] and derived a feedback control law that steers the dynamicmodel
of a wheeled robot along a desired path and overcomes stringent
initial condition constraints present in [45]. The key to the algorithm
in [46] is to explicitly control the rate of progression of the virtual
target along the path. This effectively creates an extra degree of
freedom that can be exploited to avoid singularities that occur when
the distance to the path is not well defined.
The solution to the path-following problem described in the

present paper extends to the 3-D case the algorithm presented in [46],
and relies on the insight that aUAVcan follow a given path using only
its attitude, thus leaving its speed as an extra degree of freedom to be
used at the coordination level. The key idea of the algorithm is to use
the vehicle’s attitude-control effectors to follow a virtual target
vehicle running along the path. To this effect, following the approach
developed in [46], this section introduces a frame attached to this
virtual target and defines a generalized error vector between this
moving coordinate system and a frame attached to the actual vehicle.
With this setup, the path-following control problem is reduced to
that of driving this generalized error vector to zero by using only
the UAV’s attitude-control effectors, while following an arbitrary
feasible speed profile. Next, the dynamics of the kinematic errors
between the ith vehicle and its virtual target are characterized.
Figure 1 captures the geometry of the problem at hand. Letpd�·� be

the desired path assigned to one of the UAVs, and let lf be its total
length. Let I denote an inertial reference frame feI1; eI2; eI3g, and let
pI�t� be the position of the center ofmassQ of theUAVin this inertial
frame. Further, let P be an arbitrary point on the desired path that
plays the role of the virtual target, and let pd�l� denote its position in
the inertial frame. Here, l ∈ �0;lf � is a free-length variable that
defines the position of the virtual target vehicle along the path. In the
setup adopted, the total rate of progression of the virtual target along
the path is an extra design parameter. This approach is in striking
contrast with the strategy used in the path-following algorithm
introduced in [45], where P is defined as the point on the path that is
closest to the vehicle. Endowing point P with an extra degree of
freedom is the key to the path-following algorithm presented in [46]
and its extension to the 3-D case described in this paper.
For our purposes, it is convenient to define a parallel transport

frame F attached to point P on the path and characterized by
the orthonormal vectors ft�l�;n1�l�;n2�l�g, which satisfy the
following frame equations [47,48]:

2
4

dt
dl �l�
dn1

dl �l�
dn2

dl �l�

3
5 �

2
4 0 k1�l� k2�l�
−k1�l� 0 0

−k2�l� 0 0

3
5
2
4 t�l�
n1�l�
n2�l�

3
5

where k1�l� and k2�l� are related to the polar coordinates of
curvature κ�l� and torsion τ�l� as κ�l� � �k21�l� � k22�l��

1
2 and

τ�l� � − d
dl �tan−1�k2�l�∕k1�l���. The vectors ft;n1;n2g define an

orthonormal basis for F , in which the unit vector t�l� defines the
tangent direction to the path at the point determined byl, whilen1�l�
and n2�l� define the normal plane perpendicular to t�l�. Unlike
the Frenet–Serret frame, this moving frame is well defined when
the path has a vanishing second derivative. This orthonormal basis
can be used to construct the rotation matrix RIF�l� � �ft�l�gI;
fn1�l�gI; fn2�l�gI � from F to I . Furthermore, the angular velocity
ofF with respect toI , resolved inF , can be easily expressed in terms
of the parameters k1�l� and k2�l� as

fωF∕IgF � � 0; −k2�l� _l; k1�l� _l �T

Let pF�t� be the position of the vehicle’s center of mass Q in
the parallel transport frame, and let xF�t�, yF�t�, and zF�t� be
the components of vector pF�t� with respect to the basis ft;n1;n2g,
that is,

fpFgF � � xF; yF; zF �T

Finally, let W denote a vehicle-carried velocity frame fw1;w2;w3g
with its origin at theUAVcenter ofmass and its x axis alignedwith the
velocity vector of the UAV. The z axis is chosen to lie in the plane of
symmetry of the UAV, and the y axis is determined by completing
the right-hand system. In this paper, q�t� and r�t� are the y-axis and
z-axis components, respectively, of the vehicle’s rotational velocity
resolved in theW frame.With a slight abuse of notation,q�t� and r�t�
will be referred to as pitch rate and yaw rate, respectively, in the W
frame.
Next, the previous notation is used to characterize the kinematic

error dynamics of the UAV with respect to the virtual target. The
position-error dynamics are derived first. For this purpose, note that

pI � pd�l� � pF

from which it follows that

_pI �I � _lt� ωF∕I × pF � _pF�F

where ·�I and ·�F are used to indicate that the derivatives are taken in
the inertial and parallel transport frames, respectively. Because

_pI �I � vw1

where v�t� denotes the magnitude of the UAV’s ground velocity
vector, the path-following kinematic position-error dynamics of the
UAV with respect to the virtual target can be written as

_pF�F � − _lt − ωF∕I × pF � vw1 (1)

To derive the attitude-error dynamics of the UAV with respect
to its virtual target, an auxiliary frame D fb1D;b2D;b3Dg is first
introduced. This frame will be used to shape the approach attitude to
the path as a function of the “cross-track” error components yF and
zF. Frame D has its origin at the UAV center of mass, and vectors
b1D�t�, b2D�t�, and b3D�t� are defined as

b1D ≜
dt − yFn1 − zFn2

�d2 � y2F � z2F�
1
2

; b2D ≜
yFt� dn1

�d2 � y2F�
1
2

;

b3D ≜ b1D × b2D (2)

with d being a (positive) constant characteristic distance. The basis
vector b1D�t� defines the desired direction of the UAV’s velocity
vector. Clearly, when the vehicle is far from the desired path, vector
b1D�t� becomes perpendicular to t�l�. As the vehicle comes closer to
the path and the cross-track error becomes smaller, then b1D�t� tends
to t�l�.Fig. 1 Following a virtual target vehicle; problem geometry.
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Next, let ~R�t� ∈ SO�3� be the rotation matrix fromW toD, that is,

~R ≜ RDW � RDFRFW � �RFD�TRFW

and define the real-valued error function on SO�3�

Ψ� ~R� ≜ 1

2
tr��I3 − ΠTRΠR��I3 − ~R�� (3)

where ΠR is defined as ΠR ≜
h
0 1 0

0 0 1

i
. The function Ψ� ~R� in

Eq. (3) can be expressed in terms of the entries of ~R�t� as
Ψ� ~R� � �1∕2��1 − ~R11�, where ~R11�t� denotes the (1,1) entry of
~R�t�. Therefore, Ψ� ~R� is a positive-definite function about ~R11 � 1.
Note that ~R11 � 1 corresponds to the situation where the velocity
vector of the UAV is aligned with the basis vector b1D�t�, which
defines the desired attitude.
The attitude kinematics equation

_~R � _RDW � RDW�fωW∕DgW�∧ � ~R�fωW∕DgW�∧

where �·�∧∶ R3 → so�3� denotes the hat map (see Appendix A), can
be used to derive the time derivative of Ψ� ~R�, given by

_Ψ� ~R� � −
1

2
tr��I3 − ΠTRΠR� ~R�fωW∕DgW�∧�

Equation (A1) of the hat map (see Appendix A) leads to

_Ψ� ~R� � 1

2
���I3 − ΠTRΠR� ~R − ~RT�I3 − ΠTRΠR��∨�TfωW∕DgW

where �·�∨∶ so�3� → R3 denotes the vee map, which is defined as
the inverse of the hat map. Moreover, because the first component of
the vector ��I3 − ΠTRΠR� ~R − ~RT�I3 − ΠTRΠR��∨ is equal to zero, one
can also write

_Ψ� ~R� �
�
1

2
ΠR��I3 − ΠTRΠR� ~R − ~RT�I3 − ΠTRΠR��∨

�
T

ΠRfωW∕DgW
(4)

Next, define the attitude error e ~R�t� as

e ~R ≜
1

2
ΠR��I3 − ΠTRΠR� ~R − ~RT�I3 − ΠTRΠR��∨

which allows Eq. (4) to be rewritten in the more compact form

_Ψ� ~R� � e ~R · �ΠRfωW∕DgW�

Note that the attitude error e ~R�t� can also be expressed in terms of the
entries of ~R�t� as e ~R � �1∕2�� ~R13; − ~R12 �T and, therefore, within
the region whereΨ� ~R� < 1, one has that, if

��e ~R

�� � 0, then ~R11 � 1.
Finally, noting that fωW∕FgW can be expressed as

fωW∕DgW � fωW∕IgW � fωI∕FgW � fωF∕DgW
� fωW∕IgW − ~RT�RDF fωF∕IgF � fωD∕FgD�

one obtains

_Ψ� ~R� � e ~R ·

��
q
r

�
− ΠR ~RT�RDF fωF∕IgF � fωD∕FgD�

�
(5)

This equation describes the path-following kinematic attitude-error
dynamics of frame W with respect to frame D. The path-following
kinematic-error dynamics Ge can now be obtained by combining
Eqs. (1) and (5), yielding

_pF�F � − _lt − ωF∕I × pF � vw1;

_Ψ� ~R� � e ~R ·

��
q

r

�
− ΠR ~RT�RDF fωF∕IgF � fωD∕FgD�

�
(6)

In the kinematic-error model [Eq. (6)], q�t� and r�t� play the role of
control inputs, while the rate of progression _l�t� of point P along the
path becomes an extra variable that can bemanipulated at will. At this
point, the path-following generalized error vector xpf�t� can be
formally defined as

xpf ≜ �pTF; eT~R �
T

Notice that, within the region whereΨ� ~R� < 1, if xpf � 0, then both
the path-following position error and the path-following attitude error
are equal to zero, that is pF � 0 and ~R11 � 1.
Using the previous formulation, and given a spatially defined

feasible pathpd�·�, the problem of path following for a single vehicle
can now be defined.
Definition 1 (path-following problem): For a givenUAV (equipped

with an autopilot), design feedback control laws for pitch rate q�t�,
yaw rate r�t�, and rate of progression _l�t� of the virtual target along
the path such that all closed-loop signals are bounded and the path-
following generalized error vector xpf�t� converges to a neighbor-
hood of the origin with a guaranteed rate of convergence, regardless
of what the temporal speed assignment of the mission is (as long as it
is physically feasible).
Stated in simple terms, the previous problem amounts to designing

feedback laws so that a UAV converges to and remains inside a tube
centered on the desired path curve assigned to this UAV, for an
arbitrary speed profile (subject to feasibility constraints).

B. Time-Critical Coordination and Network Model

To enforce the temporal constraints that must be met in real time
to coordinate the entire fleet of vehicles, the speed profile of each
vehicle is adjusted based on coordination information exchanged
among the UAVs over a time-varying communications network. To
this effect, an appropriate coordination variable needs to be defined
for each vehicle that captures the objective of the cooperative
mission, in our case, simultaneous arrival of all theUAVs at their final
destinations.
For this purpose, let l 0d;i�td� be defined as the desired normalized

curvilinear abscissa of the ith UAValong its corresponding path at the
desired mission time td, which is given by

l 0d;i�td� ≜
1

lfi

Z
td

0

vd;i�τ� dτ

with lfi and vd;i�·� being, respectively, the length of the path and the
desired speed profile corresponding to the ith UAV. The trajectory-
generation algorithm ensures that the desired speed profiles vd;i�·�
satisfy feasibility conditions, which implies that the following
bounds hold for all vehicles:

0 < vmin ≤ vd;i min ≤ vd;i�·� ≤ vd;i max ≤ vmax; i � 1; : : : ; n

(7)

where vmin and vmax denote, respectively, the minimum and
maximum operating speeds of the UAVs involved in the cooperative
mission, while vd;i min and vd;i max denote lower and upper bounds on
the desired speed profile for the ith UAV. From the definition of
l 0d;i�td� and the bounds in Eq. (7), it follows that l 0d;i�td� is a strictly
increasing continuous function of td mapping �0; t�d� onto �0; 1�, and
satisfying l 0d;i�0� � 0 and l 0d;i�t�d� � 1. Define also ηi∶ �0; 1� →
�0; t�d� to be the inverse function of l 0d;i�td�, td ∈ �0; t�d�. Clearly, ηi�·�
is also a strictly increasing continuous function of its argument. Then,
letting l 0i �t� be the normalized curvilinear abscissa at time t of the ith
virtual target vehicle running along its path, defined as
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l 0i �t� ≜
li�t�
lfi

where li�t� ∈ �0;lfi�was introduced in the previous section, define
the time variables

ξi�t� ≜ ηi�l 0i �t��; i � 1; : : : ; n

From this definition, it follows that ξ�t� ∈ �0; t�d�, and therefore this
variable can be seen as a virtual time that characterizes the status of
the mission for the ith UAVat time t in terms of the desired mission
time td.
Note that, for any two vehicles i and j, if ξi�t� � ξj�t� � t 0d at a

given time t, then l 0i �t� � l 0d;i�t 0d� and l 0j�t� � l 0d;j�t 0d�, which
implies that at time t the target vehicles corresponding to UAVs i and
j have the desired relative position along the path at the desired
mission time t 0d. Clearly, if ξi�t� � ξj�t� for all t ≥ 0, then the ith and
jth virtual target vehicles maintain desired relative position along the
path at all times and, in particular, these two target vehicles arrive at
their final destinations at the same time, which does not necessarily
correspond to the desired mission duration t�d. Also, in the case of
collision avoidance in time (see [44]), if ξi�t� � ξj�t� for all t ≥ 0,
then the solution to the trajectory-generation problem ensures that the
virtual targets i and j do not collide. Moreover, if the ith virtual target
travels at the desired speed for all time in the interval �0; t�, that is
_li�τ� � vd;i�τ� for all τ ∈ �0; t�, then one has that li�τ� � ld;i�τ� for
all τ ∈ �0; t�, which implies that ξi�τ� � τ (or, equivalently, that
_ξi�τ� � 1) for all τ ∈ �0; t�. This set of properties makes the variables
ξi�t� an appropriate metric for vehicle coordination, and therefore
they will be referred to as coordination states. Notice that the use of
these specific coordinationvariables is motivated by thework in [41].
To meet the desired temporal assignments of the cooperative

mission, coordination information is to be exchanged among the
UAVs over the supporting communications network. Next, tools and
facts from algebraic graph theory are used to model the information
exchange over the time-varying network as well as the constraints
imposed by the communications topology (see for example [9,49]
and references therein). The reader is also referred to [50] for key
concepts and details on algebraic graph theory.
First, to account for the communications constraints imposed by

this intervehicle network, it is assumed that the ith UAV can only
exchange information with a neighboring set of vehicles, denoted
here by N i. It is also assumed that the communications between
two UAVs are bidirectional and that the information is transmitted
continuously with no delays. Moreover, because the flow of infor-
mation among vehicles may be severely restricted, either for security
reasons or because of tight bandwidth limitations, each vehicle is
only allowed to exchange its coordination state ξi�t� with its
neighbors. Finally, it is assumed that the connectivity of the commu-
nications graph Γ�t� that captures the underlying bidirectional
communications network topology of the fleet at time t satisfies the
PE-like condition

1

n

1

T

Z
t�T

t
QL�τ�QT dτ ≥ μIn−1; for all t ≥ 0 (8)

where L�t� ∈ Rn×n is the Laplacian of the graph Γ�t�, and Q is an
�n − 1� × n matrix such that Q1n � 0 and QQT � In−1, with 1n
being thevector inRn whose components are all 1. The parametersT,
μ > 0 characterize the quality of service (QoS) of the communi-
cations network, which, in the context of this paper, represents a
measure of the level of connectivity of the communications graph.
Note that the PE-like condition of Eq. (8) requires only the
communications graph Γ�t� to be connected in an integral sense, not
pointwise in time. In fact, the graph may be disconnected during
some interval of time or may even fail to be connected for the entire
duration of the mission. Similar type of conditions can be found, for
example, in [6,51].
Using the previous formulation, one can nowdefine the problemof

time-critical cooperative path following for a fleet of n UAVs.

Definition 2 (time-critical cooperative path-following problem):
Given a fleet of n vehicles supported by an intervehicle communi-
cations network and a set of desired 3-D time trajectories pd;i�td�,
design feedback control laws for pitch rate q�t�, yaw rate r�t�, and
speed v�t� such that 1) all closed-loop signals are bounded; 2) for
each vehicle i, i ∈ f1; : : : ; ng, the path-following generalized error
vector xpf;i�t� converges to a neighborhood of the origin; and 3) for
each pair of vehicles i and j, i; j ∈ f1 : : : ; ng, the coordination
error jξi�t� − ξj�t�j converges to a neighborhood of the origin,
guaranteeing (quasi-)simultaneous time of arrival and ensuring
collision-free maneuvers.

C. Unmanned Aerial Vehicle with Autopilot

At this point, it is important to stress that this paper addresses the
design of control algorithms for path following and time coordination
yielding robust performance of a fleet of UAVs executing various
time-critical cooperative missions. These control algorithms are
to be seen as guidance outer-loop controllers that provide reference
commands to inner-loop autopilots stabilizing the UAV dynamics
and providing angular-rate as well as speed-tracking capabilities.
This inner/outer-loop approach simplifies the design process and
affords the designer a systematic approach to seamlessly tailor the
algorithms for a very general class of UAVs that come equipped with
inner-loop commercial autopilots. The design of inner-loop onboard
autopilots that are capable of tracking reference commands generated
by outer-loop controllers and providing uniform performance across
the flight envelope is, however, beyond the scope of the work
presented here. This section presents a set of assumptions on the inner
closed-loop performance of the UAVs with their autopilots, which
will be useful to analyze the convergence properties of the path-
following and coordination control laws developed later in the paper.
To this effect, and for the purpose of this paper, it is assumed that

eachUAVis equippedwith an onboard autopilot designed to stabilize
the UAV and to provide angular-rate as well as speed-tracking
capabilities. In particular, the assumption is made that the onboard
autopilots ensure that each UAV is able to track bounded pitch-rate
and yaw-rate commands, denoted here by qc�t� and rc�t�, with
guaranteed performance bounds γq and γr. Stated mathematically,

jqc�t� − q�t�j ≤ γq; ∀ t ≥ 0 (9a)

jrc�t� − r�t�j ≤ γr; ∀ t ≥ 0 (9b)

Similarly, it is assumed that, if the speed commands vc�t� satisfy the
bounds

vmin ≤ vc�τ� ≤ vmax; ∀ τ ∈ �0; t� (10)

then the autopilots ensure that each UAV tracks its corresponding
speed command with guaranteed performance bound γv:

jvc�τ� − v�τ�j ≤ γv; ∀ τ ∈ �0; t� (11)

The bounds γq, γr, and γv thus characterize the level of tracking
performance that the inner-loop autopilot is able to provide. It is
important to note that, in this setup, it is the autopilot that determines
the bank angle required to track the angular-rate commands qc�t� and
rc�t�. Therefore, it is justified to assume that the UAV roll dynamics
(roll rate and bank angle) are bounded for bounded angular-rate
commands corresponding to the set of feasible paths considered.
Remark 1: The bounds in Eqs. (9) and (11) will be used later in the

paper to set constraints on the inner-loop tracking-performance
requirements that guarantee stability of the complete cooperative
control architecture. As it will become clear from the algorithms for
path following and time coordination proposed later, a proper choice
of the boundary (initial) conditions for the trajectory-generation
problem may be required to ensure that these bounds can be satisfied
for all times. A more relaxed (and realistic) assumption would be
ultimate boundedness of the inner-loop tracking errors; under this
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assumption, the results in this paper would still hold with a few
modifications, especially affecting the initial transient phase. For
simplicity, however, we assume that the performance bounds in
Eqs. (9) and (11) hold uniformly in time. From a practical
perspective, these performance bounds (as well as the constraints on
them derived in the following sections) should be seen as guidelines/
specifications for the design of the inner-loop autopilots.

III. Three-Dimensional Path Following for a Single
Unmanned Aerial Vehicle

This section describes an outer-loop 3-D path-following nonlinear
control algorithm that uses vehicle angular rates to steer the ith
vehicle along the spatial path pd;i�·� for an arbitrary feasible speed
profile (temporal assignment along the path). Controller design
builds on previous work by the authors on path-following control of
small tactical UAVs, reported in [43], and derives newpath-following
control laws on SO�3� that avoid the geometric singularities and
complexities that appear when dealing with local parameterizations
of the vehicle’s attitude or quaternions. First, only the kinematic
equations of the UAVare addressed by taking pitch rate and yaw rate
as virtual outer-loop control inputs. In particular, it is shown that
there exist stabilizing functions for q�t� and r�t�, leading to local
exponential stability of the origin of Ge with a prescribed domain
of attraction. Then, a stability analysis is performed for the case
of nonperfect inner-loop tracking, and it is shown that the path-
following errors are locally uniformly ultimately bounded with the
same domain of attraction. The results yield an efficientmethodology
to design path-following controllers for UAVs with due account for
the vehicle kinematics and the characteristics of their inner-loop
autopilots.

A. Nonlinear Control Design Using Unmanned Aerial Vehicle

Kinematics

Recall from Sec. II.A that the main objective of the path-following
control algorithm is to drive the position error pF�t� and the attitude
error e ~R�t� to zero. At the kinematic level, these objectives can be
achieved by determining feedback control laws for q�t�, r�t�, and
_l�t� that ensure that the origin of the kinematic-error equations in
Eq. (6) is exponentially stable with a given domain of attraction.
To solve the path-following problem, let the rate of progression of

point P along the path be governed by

_l � �vw1 � KlpF� · t (12)

where Kl is a positive constant gain. Then, the rate commands qc�t�
and rc�t� given by�

qc
rc

�
≜ ΠR ~RT�RDF fωF∕IgF � fωD∕FgD� − 2K ~Re ~R (13)

where K ~R is also a positive constant gain, drive the path-following
generalized error vector xpf�t� to zero with a guaranteed rate of
convergence. A formal statement of this result is given in the next
lemma.
Lemma 1: Assume that the UAV speed v�t� verifies the following

bounds:

0 < vmin ≤ v�t� ≤ vmax; ∀ t ≥ 0 (14)

If, for given positive constants c < 1��
2
p and c1, the path-following

control parameters Kl, K ~R, and d are chosen such that

K ~RKp >
v2max

c21�1 − 2c2�2 (15)

where Kp is defined as

Kp ≜ min

�
Kl;

vmin

�d2 � c2c21�
1
2

�
(16)

then the rate commands in Eq. (13), together with the law in Eq. (12)
for the rate of progression of the virtual target along the path, ensure

that the origin of the kinematic-error equations in Eq. (6) is
exponentially stable with guaranteed rate of convergence

�λpf ≜
Kp � K ~R�1 − c2�

2

−
1

2

�
�Kp − K ~R�1 − c2��2 �

4�1 − c2�
c21�1 − 2c2�2 v

2
max

�1
2

(17)

and domain of attraction

Ωc ≜
�
�pF; ~R� ∈ R3 × SO�3�jΨ� ~R� � 1

c21
kpFk2 ≤ c2 <

1

2

�
(18)

Proof:A sketch of the proof of this result, which uses some insight
from [52], is given in Appendix B.
Remark 2: The choice of the characteristic distance d in the

definition of the auxiliary frameD [see Eq. (2)] can be used to adjust
the rate of convergence for the path-following closed-loop system.
This is consistent with the fact that a large parameter d reduces the
penalty for cross-track position errors, which results in a small rate of
convergence of the UAV to the path. Insights into this path-following
control algorithm can be found in [53].

B. Stability Analysis for Nonperfect Inner-Loop Tracking

The stabilizing control laws in Eqs. (12) and (13) lead to local
exponential stability of the origin of the path-following kinematic-
error dynamics [Eq. (6)] with a prescribed domain of attraction. In
general, this result does not hold when the dynamics of the UAVare
included in the problem formulation. This section presents a stability
analysis of the path-following closed-loop system for the case of
nonideal inner-loop tracking. In particular, it is assumed that the
onboard autopilot ensures that the UAV is able to track bounded
pitch-rate and yaw-rate commands with the performance bounds in
Eq. (9) and show that the path-following errors pF�t� and e ~R�t� are
locally uniformly ultimately bounded with the same domain of
attraction Ωc. The next lemma states this result formally.
Lemma 2: Assume that the UAV speed v�t� verifies the bounds in

Eq. (14). For given positive constants c < 1��
2
p and c1, choose the path-

following control parameters Kl, K ~R, and d according to the design
constraint in Eq. (15). Further, let λpf ≜ �λpf�1 − δλ�, where �λpf was
defined in Eq. (17) and δλ is a positive constant verifying 0 < δλ < 1.
If the performance bounds γq and γr in Eq. (9) satisfy the following
inequality:

γω ≜ �γ2q � γ2r�
1
2 <

2c

�1 − c2�12
�λpfδλ (19)

then, for any initial state �pF�0�; ~R�0�� ∈ Ωc, the rate commands in
Eq. (13), together with the law in Eq. (12) for the rate of progression
of the virtual target along the path, ensure that there is a time Tb ≥ 0
such that the path-following errors pF�t� and e ~R�t� satisfy

ke ~R�t�k2�
1

c21
kpF�t�k2 ≤

�
1

1− c2
ke ~R�0�k2�

1

c21
kpF�0�k2

�
e−2λpft;

∀ 0 ≤ t < Tb (20)

ke ~R�t�k2 �
1

c21
kpF�t�k2 ≤

�1 − c2�γ2ω
4�λ2pfδ

2
λ

; ∀ t ≥ Tb (21)

Proof: A sketch of the proof of this result is given in Appendix C.
Remark 3: Equations (20) and (21) show that the path-following

errors pF�t� and e ~R�t� are uniformly bounded for all t ≥ 0 and
uniformly ultimately bounded with ultimate bounds:

ke ~R�t�k ≤
�1 − c2�12
2�λpfδλ

γω; kpF�t�k ≤
c1�1 − c2�

1
2

2�λpfδλ
γω; ∀ t ≥ Tb
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These ultimate bounds are proportional to the inner-loop tracking
performance bound γω and, in the limit ideal case of perfect inner-
loop tracking, one recovers the exponential stability result derived in
Lemma 1.
Remark 4: An implicit assumption in the previous derivations is

that the presence ofwind (and gusts) does not result in theUAV flying
at zero or “negative” ground speed. This assumption also holds
throughout the remainder of the paper for all of the UAVs involved in
the cooperative mission. In the case of strong winds that would
violate this assumption, trajectory replanning will be required.

IV. Time-Critical Coordination

The previous section offered a solution to the path-following
problem for a single vehicle and an arbitrary feasible speed profile by
using a control strategy in which the vehicle’s attitude-control
effectors are used to follow a virtual target running along the path.
The problem of time-critical cooperative control of multiple vehicles
is now addressed. To this effect, the speeds of the vehicles are
adjusted based on coordination information exchanged among the
vehicles over a time-varying network. In particular, the outer-loop
coordination control law is intended to provide a correction to the
desired speed profile vd;i�·� obtained in the trajectory-generation step
and to generate a total speed command vc;i�t�. This speed command
is then to be tracked by the ith vehicle to achieve coordination in time.
Recall from Sec. II.B that the main objective of the time-critical

cooperative algorithm is to drive the coordination errors jξi�t� −
ξj�t�j to a neighborhood of the origin. To solve this coordination
problem, note that, from the definitions of l 0d;i�·� and ηi�·�, it follows
that the time derivative of the ith coordination state can be
expressed as

_ξi�t� �
_li�t�

vd;i�ξi�t��

Next, recall from the solution to the path-following problem that the
evolution of the ith virtual target vehicle along the path is given by
_li � �viw1;i � KlpF;i� · ti, where for simplicity Kl has been kept
without indexing and the dependency of the various variables on t has
been dropped. The dynamics of the ith coordination state can thus be
rewritten as

_ξi �
�viw1;i � KlpF;i� · ti

vd;i�ξi�
(22)

At this point, it is important to remark that, if the path-following
control law can guarantee that, for every UAV, the quantity �w1;i · ti�
is positive and bounded away form zero for all t ≥ 0, that is,

w1;i · ti ≥ c2 > 0; ∀ t ≥ 0; ∀ i ∈ f1; : : : ; ng (23)

where 0 < c2 ≤ 1; then, to solve the coordination problem, one can
use dynamic inversion and define the speed command for the ith
vehicle as

vc;i ≜
ucoord;ivd;i�ξi� − KlpF;i · ti

w1;i · ti
(24)

where ucoord;i�t� is a coordination control law, yet to be defined.With
this speed command, the dynamics of the ith coordination state
[Eq. (22)] can be rewritten as

_ξi � ucoord;i �
ev;i

vd;i�ξi�
w1;i · ti (25)

where ev;i�t� ≜ vi�t� − vc;i�t� denotes the velocity tracking error for
the ith vehicle. In what follows, it is assumed that the bound in
Eq. (23) holds for every vehicle, and a coordination control law
ucoord;i�t� is derived that achieves coordination for the entire fleet of
UAVs. This assumptionwill beverified later in Sec.V,where stability

of the combined time-critical cooperative path-following closed-loop
system is proven and an expression for the constant c2 is derived.
Recall now that each vehicle is allowed to exchange only its

coordination parameter ξi�t� with its neighbors N i, which are
defined by the time-varying communications topology. To observe
this constraint, the following distributed coordination law is
proposed:

ucoord;1�t� � −a
X
j∈N 1

�ξ1�t� − ξj�t�� � 1 (26a)

ucoord;i�t� � −a
X
j∈N i

�ξi�t� − ξj�t�� � χI;i�t�; i � 2; : : : ; n

(26b)

_χI;i�t� �−b
X
j∈N i

�ξi�t�− ξj�t��; χI;i�0� � 1; i� 2; : : : ;n

(26c)

where vehicle 1 is elected as the formation leader (which can be a
virtual vehicle), and a and b are positive adjustable coordination
control gains. Note that the coordination control law has a pro-
portional-integral structure, which provides disturbance rejection
capabilities at the coordination level.Moreover, note that the vehicles
exchange information only about the corresponding virtual targets,
rather than exchanging their own state information.
The coordination law in Eq. (26) can be rewritten in compact

form as

ucoord�t� � −aL�t�ξ�t� �
�

1

χI�t�

�
;

_χI�t� � −bCTL�t�ξ�t�; χI;i�0� � 1 (27)

where ξ�t� ≜ �ξ1�t�; : : : ; ξn�t��T , ucoord�t� ≜ �ucoord;1�t�; : : : ;
ucoord;n�t��T , χI�t� ≜ �χI;2�t�; : : : ; χI;n�t��T , CT ≜ � 0 In−1 �, and

L�t� is the Laplacian of the undirected graph Γ�t� that captures
the underlying bidirectional communications network topology of
the UAV formation at time t. It is well known that the Laplacian

of an undirected graph is symmetric, LT�t� � L�t�, and positive
semidefinite, L�t� ≥ 0; λ1�L�t�� � 0 is an eigenvalue with
eigenvector 1n, L�t�1n � 0; and the second smallest eigenvalue of
L�t� is positive if and only if the graph Γ�t� is connected.
Next, the coordination problem stated previously is reformulated

into a stabilization problem. To this end, define the projection matrix
Π as Π ≜ In − 1

n 1n1
T
n , and note that Π � ΠT � Π2 and also that

QTQ � Π, where Q is the �n − 1� × n matrix introduced in Eq. (8).
Moreover, one has that L�t�Π � ΠL�t� � L�t�, and the spectrum of
the matrix �L�t� ≜ QL�t�QT is equal to the spectrum of L�t� without
the eigenvalue λ1 � 0 corresponding to the eigenvector 1n. Finally,
define the coordination error state ζ�t� ≜ �ζ1�t�T; ζ2�t�T �T as

ζ1�t� ≜ Qξ�t� ζ2�t� ≜ χI�t� − 1n−1

By definition, ζ1�t� � 0 is equivalent to ξ�t� ∈ spanf1ng, which
implies that, if ζ�t� � 0, then all target vehicles are coordinated at
time t.
With the previous notation, the closed-loop coordination dynamics

formed by Eq. (25) and the coordination control algorithm defined in
Eq. (27) can be reformulated as

_ζ�t� � F�t�ζ�t� �He 0v�t� (28)

where F�t� ∈ R�2n−2�×�2n−2� and H ∈ R�2n−2�×n are given by

F�t� ≜
�

−a �L�t� QC
−bCTQT �L�t� 0

�
; H ≜

�
Q
0

�
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and e 0v�t� ∈ Rn is a vector with its ith component equal to

e 0v;i ≜
ev;i

vd;i�ξi�w1;i · ti.

Next, it is shown that, if the connectivity of the communications
graph Γ�t� verifies the PE-like condition of Eq. (8) and, in addition,
every vehicle travels at the commanded speed vc;i�t�, that is
ev;i�t� ≡ 0, then the coordinated system asymptotically reaches
agreement and all the vehicles travel at the desired speed

lim
t→∞
�ξi�t� − ξj�t�� � 0; ∀ i; j ∈ f1; : : : ; ng

lim
t→∞

_ξ�t� � 1n

On the other hand, if ev;i�t� ≠ 0 for some t ≥ 0, then the coordination
error vector degrades gracefully with the size of the speed-tracking
error ev�t� ≜ �ev;1�t�; : : : ; ev;n�t��T. The next lemma summarizes this
result.
Lemma 3: Consider the coordination system of Eq. (28) and

suppose that the Laplacian of the graph that models the
communications topology satisfies the PE-like condition of Eq. (8)
for some parameters μ and T. Moreover, assume that the speed-
tracking error vector ev�t� is bounded for all t ≥ 0. Then, there exist
coordination control gains a and b such that the system [Eq. (28)] is
input-to-state stable (ISS) with respect to ev�t�, satisfying

kζ�t�k ≤ k1kζ�0�ke−λct � k2 sup
τ∈�0;t�
kev�τ�k; ∀ t ≥ 0 (29)

for some positive constants k1, k2 ∈ �0;∞�, and with
λc ≜ �λc�1 − θλ�, where

�λc ≜
anμ

�1� anT�2 �1� β�−1; β ≥ 2n; and 0 < θλ < 1

Furthermore, the coordination states ξi�t� and their rates of change
_ξi�t� satisfy

lim
t→∞

sup jξi�t� − ξj�t�j ≤ k3 lim
t→∞

sup kev�t�k (30)

lim
t→∞

sup j_ξi�t� − 1j ≤ k4 lim
t→∞

sup kev�t�k (31)

for all i, j ∈ f1; : : : ; ng and for some positive constants k3,
k4 ∈ �0;∞�.
Proof: A sketch of the proof of this result is given in Appendix D.
Remark 5: Lemma 3 indicates that the QoS of the network

(characterized by parameters T and μ) limits the achievable
(guaranteed) rate of convergence for the coordination control loop.
According to the lemma, for a given QoS of the network, the
maximum upper bound on the (guaranteed) rate of convergence
�λ�c is achieved by setting a� � �1∕Tn�, which results in �λ�c �
μ
4T �1� β�−1. Also, it is important to mention that, as the parameter T
goes to zero (graph connected pointwise in time), the upper bound on
the convergence rate can be set arbitrarily fast by increasing the
coordination control gains a and b. This is consistent with results
obtained in previous work by the authors (see [40], Lemma 2).
Finally, notice that �γλ ≜ �anμ∕�1� anT�2� represents the upper

bound on the (guaranteed) convergence rate for the coordination loop
with a proportional control law, rather than a proportional-integral
control law (seeAppendixD). It is straightforward to verify that, for a
given proportional gain a, one has that �λc < �γλ, which implies that a
proportional control law can provide higher rates of convergence than
the proportional-integral control law used in this paper. However, as
mentioned earlier, the integral term in the coordination control law is
important in the current application because it provides disturbance
rejection capabilities at the coordination level; see [54].

V. Combined Path Following and Time-Critical
Cooperation

The previous sections have shown that, under an appropriate
set of assumptions, the path-following and coordination control
laws are able to ensure stability and ultimate boundedness of the
path-following and time-critical cooperation problems when treated
separately. In particular, the solution developed for the path-
following problem assumes that the speed of the UAV is bounded
above and below, while the control law designed for vehicle
coordination relies on the assumption that the angle between the
UAV’s velocity vector and the tangent direction to the path is less than
90 deg; see Eqs. (14) and (23). This section addresses the
convergence properties of the combined cooperation and path-
following systems and derives design constraints for the inner-loop
tracking performance bounds that guarantee stability of the complete
system. The cooperative path-following control architecture for the
ith UAV is presented in Fig. 2.
In this section, it is assumed that the onboard autopilot ensures that

each UAV is able to track bounded pitch-rate, yaw-rate, and speed
commands with the performance bounds in Eqs. (9)–(11). Note that,
although the pitch-rate and yaw-rate commands in Eq. (13) are
continuous in time, the same cannot be said about the speed
command in Eq. (24). In fact, because of the time-varying nature of
the network topology, the coordination law ucoord�t� in Eq. (26) is
discontinuous, which implies that the speed command vc�t� is also
discontinuous. Assuming that the following bound holds for all
vehicles and for all t ≥ 0,

jvc;i�t� − vi�t�j ≤ γv; i � 1; : : : ; n (32)

which implies that supt≥0 kev�t�k ≤
���
n
p

γv, then the maximum
amplitude Δvc;i of a jump in the speed command vc;i�t� can be
derived from Eqs. (24) and (26) and the results of Lemma 3 and is
given by

Δvc;i ≜
2a�n − 1�vd;i max�k1kζ�0�k � k2

���
n
p

γv�
c2

; i � 1; : : : ; n

where vd;i max was introduced in Eq. (7). Thus, a necessary (but by no
means sufficient) condition for the bound in Eq. (32) to hold is that

Δvc;i < γv; i � 1; : : : ; n

The previos condition limits the choice of the coordination control
gains, which in particular need to satisfy the following inequality

2a�n − 1�vd;i maxk2
���
n
p

< c2; i � 1; : : : ; n

However, the derivation of sufficient conditions that guarantee that
the bound in Eq. (11) holds for all time requires assumptions on

Fig. 2 Time-critical cooperative path-following closed-loop for the ith
vehicle.
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vehicle dynamics and autopilot design and is thus beyond the
scope of this paper. Hence, for the subsequent developments, the
assumption is made that the bound in Eq. (11) holds, provided that
the speed command vc;i�t� satisfies the bounds in Eq. (10), and design
constraints for this inner-loop tracking performance bound are
derived that ensure that the overall time-critical cooperative path-
following control system is stable and has desired convergence
properties. The next theorem summarizes this result.
Theorem 1: Consider a fleet of n UAVs supported by a

communications network that satisfies the PE-like condition in
Eq. (8). Let c and c1 be positive constants, with c < �1∕

���
2
p
� and

c1 < �E∕c�. For each UAV, choose the path-following control
parameters Kl, K ~R, and d such that

d >
2c�1 − c2�12
1 − 2c2

c1; K ~RKp >
v2max

c21�1 − 2c2�2 (33)

where Kp is defined as in Eq. (16). Also, choose the coordination
control gains a and b such that

a > 0;
2n

2n� 1

anμ

�1� anT�2 ≤
b

a
≤

anμ

�1� anT�2 (34)

and let k1 and k2 be the constants in Eq. (29) for this particular choice
of control gains a and b. Further, let the performance bounds γq, γr,
and γv satisfy the following inequalities:

�γ2q � γ2r�
1
2 <

2c

�1 − c2�12
�λpfδλ (35)

γv < min

�
vmaxc2 − vd max − Klcc1

c2 � �k2vd max

���
n
p ;

vd min − vmin − Klcc1

1� �k2vd max

���
n
p

�
(36)

where δλ is a constant satisfying 0 < δλ < 1, vd max ≜
maxi�1; : : : ;nvd;i max, vd min ≜ mini�1; : : : ;nvd;i min, while c2 and �k2
are defined as c2 ≜ �d�1 − 2c2� − 2c1c

2�1 − c2�12�∕��d2 � c2c21�
1
2�

and �k2 ≜ �2a�n − 1� � 1�k2. Then, the progression law in Eq. (12),
the rate commands in Eq. (13), and the speed commands in Eq. (24)
with the coordination control law in Eq. (26) ensure that, for all initial
conditions

�pF;i�0�; ~Ri�0�� ∈ Ωc; i � 1; : : : ; n (37)

kζ�0�k ≤ 1

�k1

�
min

�
vmax − γv
vd max

c2 − 1;
vd min

vd max

−
vmin � γv
vd max

�

− �k2
���
n
p

γv −
Klcc1
vd max

�
(38)

where �k1 ≜ �2a�n − 1� � 1�k1, there exist times Tb;i ≥ 0 and a
positive constant λc such that the path-following errors pF;i�t� and
e ~R;i�t� for the ith UAV satisfy

ke ~R;i�t�k2 �
1

c21
kpF;i�t�k2

≤
�

1

1 − c2
ke ~R;i�0�k2 �

1

c21
kpF;i�0�k2

�
e−2

�λpf�1−δλ�t;

∀ 0 ≤ t < Tb;i (39)

ke ~R;i�t�k2 �
1

c21
kpF;i�t�k2 ≤

�1 − c2�γ2ω
4�λ2pfδ

2
λ

; ∀ t ≥ Tb;i (40)

while the coordination error states ζ�t� satisfy

kζ�t�k ≤ k1kζ�0�ke−λct � k2
���
n
p

γv; ∀ t ≥ 0 (41)

Proof: A sketch of the proof of this result is given in Appendix E.
Remark 6: The previous lemma shows that, if the initial conditions

for each UAV satisfy Eq. (37), then the UAVs remain inside tubes of
radii cc1 centered at the corresponding desired paths during the entire
duration of the mission. The bound c1 < E∕c, where E is the spatial
clearance between paths introduced at the beginning of Sec. II,
ensures that these tubes do not intersect and, hence, the UAVs do not
collide. In the case of collision avoidance in time (see [44]), the bound
on c1 is more involved and accounts for both path-following and
coordination errors.
Remark 7: Equations (39, 40) show that the path-following errors

pF;i�t� and e ~R;i�t� are uniformly bounded for all t ≥ 0 and uniformly
ultimately bounded with ultimate bounds

ke ~R;i�t�k ≤
�1 − c2�12
2�λpfδλ

γω;

kpF;i�t�k ≤
c1�1 − c2�

1
2

2�λpfδλ
γω; ∀ t ≥ Tb; ∀ i ∈ f1; : : : ; ng

which are proportional to the inner-loop tracking performance bound
γω. On the other hand, Eq. (41) implies that the coordination error
state ζ�t� converges exponentially fast to a neighborhood of the
origin with radius proportional to the inner-loop speed-tracking
performance bound γv. This implies that, in the limit case of perfect
inner-loop tracking, the path-following errors of each vehicle and the
coordination error state vector converge exponentially fast to zero.
Remark 8: The design constraint in Eq. (36) requires a sufficiently

large margin between vd max and vmax and between vd min and vmin.
This can be achieved by directly imposing tighter feasibility
constraints on vehicle’s speed in the formulation of the trajectory-
generation problem; see [44].

VI. Cooperative Road Search with Multiple
Unmanned Aerial Vehicles

This section presents flight-test results for a cooperative road-
search mission that show the efficacy of the multi-UAV cooperative
framework presented in this paper. The significance of these
experiments is twofold. First, the flight-test results verify the main
stability and convergence properties of the developed cooperative
algorithms in a realistic mission scenario, under environmental
disturbances andwith the limitations of a real-world communications
network. And second, the results demonstrate the usefulness and
validity of the proposed generic theoretical framework in a specific
realistic application as well as the feasibility of the onboard
implementation of the algorithms. More flight tests are scheduled in
2013 to conduct a more thorough verification of the theoretical
findings of this paper.

Fig. 3 The concept of coordinated road search using multiple UAVs.
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A. Mission Description

One of the applications that motivates the use of multiple
cooperativeUAVs and poses several challenges to systems engineers,
both from a theoretical and practical standpoint, is automatic road
search for improvised explosive device detection; see Fig. 3. It is
envisioned that the mission is initiated by a minimally trained user
who scribbles a path on a digitalmap, generating a precise continuous
ground track for the airborne sensors to follow. This ground
track is then transmitted over the network to a fleet of small tactical
UAVs equippedwith complementary visual sensors.An optimization
algorithm generates feasible collision-free flight trajectories that
maximize road coverage and account for sensor capabilities (field of

view, resolution, and gimbal constraints) as well as intervehicle and
ground-to-air communications limitations. Maximization of the road
coverage by two complementary sensors is the high-level mission
objective in this scenario. The fleet of UAVs then starts the
cooperative road search. During this phase, the information obtained
from the sensors mounted onboard the UAVs is shared over
the network and retrieved by remote users in near real time. The
explosive device detection can thus be done remotely, based on in situ
imagery data delivered over the network.
In this particular mission scenario, a robust cooperative control

algorithm for the fleet of UAVs can improve mission performance
and provide reliable target discrimination by effectively combining

a) SIG Rascal 110 research aircraft

b) High-resolution camera

c) Full-motion video camera
Fig. 4 SIG Rascal UAV with two different onboard cameras.
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the capabilities of the complementary onboard sensors. In fact, flying
in a coordinated fashion is what allows maximizing the overlap
of the fields of view (FOVs) of multiple sensors while reliably
maintaining a desired image resolution. Furthermore, this autono-
mous multivehicle cooperative approach can potentially reduce
the number of operators involved in the mission as well as their
workload.

B. Airborne System Architecture

The small tactical UAVs employed in this mission are two SIG
Rascals 110 s operated by the Naval Postgraduate School; see Fig. 4.
The two UAVs have identical avionics and instrumentation onboard,
the only difference being the vision sensors. The first UAV has a one-
degree-of-freedom bank-stabilized high-resolution 12 MP camera,
while the second UAV has a full-motion video camera suspended
on a two-degree-of-freedom pan-tilt gimbal. Because of weight and
power constraints, each UAVis allowed to carry only one camera at a
time, and therefore the two cameras need to be mounted on different
platforms. The rest of the onboard avionics, common to both
platforms, includes two PC-104 industrial embedded computers¶¶

assembled in a stack, a wireless mobile ad hoc network (MANET)
link***, and the Piccolo Plus autopilot††† with its dedicated 900 MHz
command and control channel.

The first PC-104 computer runs the cooperative-control
algorithms in hard real time at 100 Hz. The computer directly
communicates with the Piccolo Plus autopilot at 50 Hz over a
dedicated bidirectional serial link. The second PC-104 acts as a
mission management computer that implements a set of non-real-
time routines enabling onboard preprocessing and retrieval of the
sensory data (high-resolution imagery or video) in near-real time over
the network. Integration of the MANET link allows for robust
transparent intervehicle and ground communication, which is needed
for both the coordination algorithms and the expedited sensory data
delivery to a remote mission operator. In fact, the MANET link
provides “any-to-any” connectivity capability, allowing every node
(vehicle or ground station) to securely communicate directly with
every other node. Details on the flight-test architecture and the
supporting network infrastructure for coordination control and data
dissemination can be found in [55].

C. Flight-Test Results

The flight-test results for a cooperative road-search mission
executed by the two SIG Rascal UAVs are presented next. The
objective of the mission is to detect a stationary or moving target on a
given road. The imagery data obtained by the UAVs during the road
search is to be shared over aMANET link so that it can be retrieved by
remote operators in near real time. Success of themission relies on the
ability to overlap the footprint of the FOVs of the two cameras along
the road, which increases the probability of target detection [56]. For
the sake of clarity, in the following description, the execution of the
coordinated road search is divided into three consecutive phases:
namely initialization, transition, and road search. The description is
supported by one of the flight-test results performed during a Tactical

20 30 40 50 60 70 80 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

ξ i / 
t∗  (

di
m

en
si

on
le

ss
)

UAV 1
UAV 2
Desired

2s ahead
of desired arrival time

a) Normalized coordination states

20 30 40 50 60 70 80 90

15

20

25

30

35

time (s)

ve
hi

cl
e 

sp
ee

d,
 v

i (
m

/s
)

UAV 1
UAV 2

b) UAV speeds

20 30 40 50 60 70 80 90

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (s)

| ξ
1 −

 ξ
2| /

 t∗  (
di

m
en

si
on

le
ss

)

 final 11%
coordination error

c) Normalized coordination error

20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

1000

time (s)

in
te

r−
ve

hi
cl

e 
se

pa
ra

tio
n 

(m
)

Inter−vehicle separation
> 100 m

d) Intervehicle separation

Fig. 6 Time coordination during the transition phase.

¶¶Data available online at http://www.adl-usa.com/products/cpu/index.php
[retrived 30 March 2012].

***Data available online at http://www.persistentsystems.com [retrived
30 March 2012].

†††Data available online at http://cloudcaptech.com [retrived 30 March
2012].
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Network Testbed field experiment at Camp Roberts, CA; see
Figs. 5–8. These experimental results build on the ones reported in
[44] by analyzing in greater detail the performance of the cooperative
algorithms during the road-search phase.
In the initialization phase, an operator specifies on a digital map the

road of interest. Then, a centralized optimization algorithm generates
road-search suboptimal paths and desired speed profiles for the two
UAVs that explicitly account for UAVdynamic constraints, collision-
avoidance constraints, and mission-specific constraints such as
intervehicle and vehicle-to-ground communications limitations as
well as sensory capabilities. In particular, for this mission scenario,
the trajectory-generation algorithm is designed to maximize the
overlap of the footprints of the FOVs of the high-resolution camera
and the full-motion video during the road search, while at the same
time minimizing gimbal actuation. In addition to the road-search
paths and the corresponding desired speed profiles, the outcome of
the trajectory-generation algorithm includes a sensor trajectory on the
ground to be followed by the vision sensors. The two road-search
paths and the sensor path, along with the three corresponding speed
profiles, are then transmitted to the UAVs over the MANET link.
In the transition phase, the two UAVs fly from their standby

starting positions to the initial points of the respective road-search
paths. For this purpose, decentralized optimization algorithms
generate feasible collision-free 3-D trajectories that start at theUAVs’
standby positions and satisfy simultaneous arrival to the initial points
of the road-search paths. Once these transition trajectories are
generated, the two vehicles start operating in cooperative path-
following mode. From that moment on, the UAVs follow the

transition paths while adjusting their speeds based on coordination
information exchanged over the MANET link to achieve simulta-
neous arrival at the starting point of the road-search paths. The
transition and road-search paths obtained for this particular mission
scenario, together with the corresponding desired speed profiles, are
shown in Fig. 5. Figure 6 illustrates the performance of the
coordination control algorithm during the transition phase of the
mission. As can be observed, the intervehicle separation remains
above 100 m and the coordination error remains below 13% during
the entire duration of the transition phase, with an 11% error in
coordination at the end of this phase.
Finally, the third phase addresses the cooperative road-search

mission itself, in which the two UAVs follow the road-search paths
generated in the initialization phase while adjusting their speeds to
ensure the required overlap of the FOV footprints of the cameras. In
this phase, a target vehicle running along the sensor path is virtually
implemented on one of the UAVs. For this road-search mission, a
natural choice for this sensor path is the road itself, and this virtual
vehicle thus determines the spot of the road being observed by the
vision sensors mounted onboard the UAVs at a given time. This
virtual vehicle is indeed used as a leader in the coordination
algorithm, and its speed is also adjusted, based on the coordination
states of the two UAVs. The coordination state of this virtual vehicle
is also transmitted over the network and used in the coordination
control laws of the two “real” vehicles. The performance of the
cooperative path-following control algorithm is illustrated in Fig. 7.
For this particular scenario, the path-following cross-track errors
converge to a 3 m tube around the desired spatial paths, while the
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coordination errors remain below7%during the entire duration of the
road search. It is worth noting that significant data dropouts occurred
between 145 s and 170 s, especially effecting UAV1; these data
dropouts cause sudden jumps in the normalized coordination states,
as can be seen in Figs. 7a and 7c. The road-search phase ends at 178 s,
when a target is detected on the road. Upon detection, the two
UAVs immediately switch to cooperative vision-based target-
trackingmode. Flight-test results for this target-tracking phase are not
included here and can be found in [44].
As mentioned previously, maintaining a tight coordination along

the paths is important to ensure a desired level of FOVoverlap with
desired image resolution, two key elements for reliable target
detection. Figure 8 illustrates the performance of the road-search
mission from this perspective. One one hand, Fig. 8a shows a set of
estimates of the ground FOV footprint, assuming a flat Earth with
known ground elevation. These estimates assume a trapezoidal
footprint and are based on experimental data including the inertial
position and orientation of the two UAVs, orientation of their
cameras, and the line-of-sight range to the ground. To provide a
quantitative measure of the FOVoverlap, Fig. 8b presents an image-
overlap coefficient, sampled at 1 Hz. This coefficient is calculated
offline using proprietary technology‡‡‡ and is based on semi-
automated alignment and differencing of two synchronous images.
As can be seen, except for a 5 s initial transient, the overlap coefficient
stays above 0.7 during the cooperative road search. This figure also
includes a side-by-side image comparison of the imagery data
obtained from the two cameras at approximately 160 s after initiation
of themission; one can easily observe that the two images correspond

to the same road segment. On the other hand, Fig. 8c shows the range
for the two vision sensors to the virtual vehicle on the sensor path;
these ranges are always below 1000 m for UAV1 and 500 m for
UAV2, therefore ensuring desired image resolution for the targets of
interest given the characteristics of the two cameras.
In summary, the results presented previously demonstrate

feasibility and efficacy of the onboard integration of the nonlinear
path-following and time-critical coordination algorithms. This
cooperative control approach applies to teams of heterogeneous
systems and does not necessarily lead to swarming behavior, which is
unsuitable for many of the mission scenarios envisioned in this
research. At the same time, the achieved functionality of the UAV
following 3-D curves in an inertial space outperforms the
conventional waypoint navigation method typically implemented
on off-the-shelf commercial autopilots. These results provide also a
roadmap for further development and onboard implementation of
advanced cooperative algorithms.

VII. Conclusions

This paper addressed the problem of multiple unmanned aerial
vehicle (UAV) cooperative control in the presence of time-varying
communications networks and stringent spatial/temporal constraints.
The constraints involve collision-free maneuvers and simultaneous
times of arrival at desired target locations. The methodology
proposed in the paper built on previous work by the authors on
cooperative path following and extended it to a very general setting
that allows for the consideration time-critical specifications and time-
varying communications topologies. In the setup adopted, single-
vehicle path-following control in three-dimensional space was done
by resorting to a nonlinear control strategy derived at the kinematic
level. Decentralized multiple-vehicle time-critical cooperative path

a) Two-dimensional flat-Earth field-of-view footprints

b) FOV-overlap coefficient c) Range to the virtual vehicle on the sensor path

Fig. 8 Mission performance: FOV overlap and range to the virtual vehicle on the sensor path.

‡‡‡Data available online at http://perceptivu.com/TargetTrackingSoftware
.html [retrived 4 September 2012].
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followingwas achieved by adjusting the speed of each vehicle about a
nominal speed profile, in response to information exchanged with its
neighbors over a dynamic communications network. The proposed
approach addressed explicitly the situation where each vehicle
transmits only its coordination state to only a subset of the other
vehicles, as determined by the communications topology adopted.
Furthermore, the paper considered the case where the communica-
tions graph that captures the underlying communications network
topology is disconnected during some interval of time or even fails to
be connected for the entire duration of the mission, and it provided
conditions under which the complete coordinated path-following
closed-loop system is stable and yields convergence of conveniently
defined cooperation error states to a neighborhood of the origin. The
paper also derived lower bounds on the convergence rate of the
collective dynamics as a function of the quality of service of the
intervehicle communications network. Flight tests of a coordinated
road-search mission scenario that exploited the multi-UAV
cooperative control framework exposed in the paper demonstrated
the efficacy of the algorithms developed. Future work will aim at
extending the algorithms presented to other kinds of vehicles and
maneuvers (e.g., quadrotor UAVs undergoing complex time-critical
maneuvers that require synchronization of attitude and position).

Appendix A: Hat and Vee Maps

The hat map �·�∧∶ R3 → so�3� is defined as

�x�∧ �
"

0 −x3 x2
x3 0 −x1
−x2 x1 0

#

for x � �x1; x2; x3�T ∈ R3. The inverse of the hat map is referred to as
the vee map �·�∨∶ so�3� → R3. A property of the hat and vee maps
used in this paper is given next:

tr�M�x�∧� � −x · �M −MT�∨ (A1)

for any x ∈ R3, and M ∈ R3×3. The reader is referred to [52] for
further details on the hat and vee maps.

Appendix B: Sketch of the Proof of Lemma 1

First, note that, over the compact setΩc introduced in Eq. (18), the
following upper bounds hold:

kpFk ≤ cc1 <
c1���
2
p (B1)

Ψ� ~R� ≤ c2 < 1

2
(B2)

Consider now the Lyapunov function candidate

Vpf�pF; ~R� � Ψ� ~R� � 1

c21
kpFk2

This function is locally positive-definite about �pF; ~R11� � �0; 1�
within region Ωc defined in Eq. (18). Moreover, note that ke ~Rk2 �
Ψ� ~R��1 − Ψ� ~R�� and, then, the bound in Eq. (B2) implies that, inside
set Ωc, the Lyapunov function Vpf can be bounded as

ke ~Rk2 �
1

c21
kpFk2 ≤ Vpf ≤

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2 (B3)

From Eqs. (1) and (5), the time derivative of Vpf along the
trajectories of the system is given by

_Vpf � e ~R ·

��
q

r

�
− ΠR ~RT�RDF fωF∕IgF � fωD∕FgD�

�

� 2

c21
pF · �− _lt − ωF∕I × pF � vw1�

The rate commands of Eq. (13), together with the law of Eq. (12) for
the rate of progression of the virtual target along the path, lead to

_Vpf � −2K ~Re ~R · e ~R �
2

c21
�−Kl�pF · t�2 − pF · �ωF∕I × pF�

� vpF · �w1 − �w1 · t�t��

� −2K ~Re ~R · e ~R −
2Kl

c21
x2F �

2v

c21
�pF · �w1 − �w1 · t�t��

Let p×�t� ≜ yF�t�n1�t� � zF�t�n2�t� denote the cross-track error,
and note that, within set Ωc, the following bounds hold:

0 < 1 − 2c2 ≤ 1 − 2Ψ� ~R� � �w1 · b1D� ≤ 1;

kp×k ≤ kpFk ≤ cc1

From these bounds, together with the assumption on the UAV speed
in Eq. (14), it can be proven that

_Vpf ≤ −2K ~Rke ~Rk2 −
2Kl

c21
x2F −

2vmin

c21�d2 � c2c21�
1
2

kp×k2

� 2vmax

c21�1 − 2c2� kp×kkw1 × �w1 × b1D�k

Then, noting that kw1 × �w1 × b1D�k � 2ke ~Rk, it follows that

_Vpf ≤ −2K ~Rke ~Rk2 −
2Kl

c21
x2F −

2vmin

c21�d2 � c2c21�
1
2

kp×k2

� 4vmax

c21�1 − 2c2� kp×kke ~Rk

Letting Kp ≜ min

�
Kl;

vmin

�d2�c2c2
1
�
1
2

�
and noting that kp×k ≤ kpFk,

one finds

_Vpf ≤ −2K ~Rke ~Rk2 −
2Kp
c21
kpFk2 �

4vmax

c21�1 − 2c2� kpFkke ~Rk

From the choice for the characteristic distance d and the path-
following control parametersKl andK ~R in Eq. (15) and the definition
of �λpf in Eq. (17), it follows that"

K ~R − vmax

c2
1
�1−2c2�

− vmax

c2
1
�1−2c2�

Kp
c2
1

#
≥ �λpf

"
1

1−c2 0

0 1
c2
1

#

which implies that, within set Ωc, the following bound holds:

_Vpf ≤ −2�λpf
�

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�
≤ −2�λpfVpf

It follows from [57] (Theorem 4.10) that both ke ~Rk and kpFk
converge exponentially to zero for all the initial conditions inside the
compact set Ωc. □

Appendix C: Sketch of the Proof of Lemma 2

First, it is shown that the rate commands qc�t� and rc�t� are
bounded for all �pF; e ~R� ∈ Ωc. To this end, note that, over the
compact set Ωc, which was introduced in Eq. (18), the following
inequalities hold:

kpFk ≤ cc1; Ψ� ~R� ≤ c2

These bounds, together with the bound on the UAV speed in Eq. (14)
and the assumption on the feasibility of the path, can be used to show
that, for all �pF; e ~R� ∈ Ωc, the rate commands qc�t� and rc�t� are
bounded. Then, based on the assumption made in Sec. II.C on the
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tracking capabilities of theUAVwith its autopilot, one has that, for all
�pF; e ~R� ∈ Ωc, the following performance bounds hold:

jqc − qj ≤ γq; jrc − rj ≤ γr (C1)

Next, consider again the Lyapunov function candidate

Vpf�pF; ~R� � Ψ� ~R� � 1

c21
kpFk2

FromEqs. (1) and (5), the time derivative ofVpf along the trajectories
of the system can be expressed as

_Vpf � e ~R ·

��
qc
rc

�
− ΠR ~RT�RDF fωF∕IgF � fωD∕FgD�

�

� 2

c21
pF · �− _lt − ωF∕I × pF � vw1� − e ~R ·

�
qc − q
rc − r

�

Similar to the proof of Lemma 1, one has that, inside set Ωc, the
following bound holds:

_Vpf ≤ −2�λpf
�

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�
� ke ~Rk

����
�
qc − q
rc − r

�����
where �λpf was defined in Eq. (17). From the performance bounds in
Eq. (C1) and the definition of γω in Eq. (19), it follows that

����
�
qc − q
rc − r

����� ≤ γω

which leads to

_Vpf ≤ −2�λpf
�

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�
� ke ~Rkγω

The previous inequality can now be rewritten as

_Vpf ≤ −2�λpf�1 − δλ�
�

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�

− 2�λpfδλ

�
1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�
� ke ~Rkγω

where 0 < δλ < 1. Then, for all pF�t� and e ~R�t� satisfying

−2�λpfδλ
�

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�
� ke ~Rkγω ≤ 0 (C2)

one has

_Vpf ≤ −2�λpf�1 − δλ�
�

1

1 − c2
ke ~Rk2 �

1

c21
kpFk2

�

≤ −2�λpf�1 − δλ�Vpf

The inequality in Eq. (C2) is satisfied outside the bounded set D
defined by

D ≜
�
�pF; ~R� ∈ R3 × SO�3�j 1

1 − c2

�
ke ~Rk −

�1 − c2�γω
4�λpfδλ

�
2

� 1

c21
kpFk2 <

�1 − c2�γ2ω
16�λ2pfδ

2
λ

�

One can prove that set D is in the interior of the compact set Ωb

defined by

Ωb ≜
�
�pF; ~R� ∈ R3 × SO�3�jΨ� ~R� � 1

c21
kpFk2 ≤

�1 − c2�γ2ω
4�λ2pfδ

2
λ

�

Then, the design constraint for the performance bounds γq and γr in
Eq. (19) implies that set Ωb is in the interior of set Ωc introduced in
Eq. (18), that is Ωb ⊂ Ωc.
With the previous results and using a proof similar to that of

Theorem 4.18 in [57], it can be shown that, for every initial state
�pF�0�; ~R�0�� ∈ Ωc, there is a time Tb ≥ 0 such that the following
bounds are satisfied:

Vpf�t� ≤ Vpf�0�e−2
�λpf�1−δλ�t; ∀ 0 ≤ t < Tb;

Vpf�t� ≤
�1 − c2�γ2ω
4�λ2pfδ

2
λ

; ∀ t ≥ Tb

The bounds in Eqs. (20) and (21) follow immediately from the
previous two bounds and the inequalities in Eq. (B3). □

Appendix D: Sketch of the Proof of Lemma 3

Toprove ISS, it is first shown that the homogeneous equation of the
coordination dynamics

_ζ�t� � F�t�ζ�t� (D1)

is globally uniformly exponentially stable (GUES). To this end,
consider the system

_ϕ�t� � −a �L�t�ϕ�t� (D2)

where a is the proportional coordination control gain introduced
in Eq. (26). Letting D�t� be the time-varying incidence matrix,
L�t� � D�t�DT�t�, one can rewrite the previous system as
_ϕ�t� � −a�QD�t���QD�t��Tϕ�t�. Then, because QD�t� is piece-
wise constant in time and, in addition, one has that kQD�t�k2 ≤ n, it
can be proven that the system in Eq. (D2) is GUES, and the following
bound holds:

kϕ�t�k ≤ kλkϕ�0�ke−γλt

with kλ � 1 and γλ ≥ �γλ ≜ �anμ∕�1� anT�2�. This result can be
proven along the same lines as Lemma 5 in [58] or Lemma 3 in [59].
Because �L�t� is continuous for almost all t ≥ 0 and uniformly
bounded, and the system [Eq. (D2)] is GUES, Lemma 1 in [59] and a
similar argument as in [57] (Theorem 4.12) imply that, for any �c3 and
�c4 satisfying 0 < �c3 ≤ �c4, there exists a continuous, piecewise-
differentiable Pc0�t� � PTc0�t� such that

�c1In−1 ≜
�c3
2an

In−1 ≤ Pc0�t� ≤
�c4
2�γλ

In−1 ≜ �c2In−1 (D3)

_Pc0�t� − a �L�t�Pc0 �t� − aPc0�t� �L�t� ≤ − �c3In−1 (D4)

Next, define

z�t� � Sζζ�t� �
�

In−1 0

− b
a C

TQT In−1

�
ζ�t�

and, nothing that λmin �CTQTQC�−1 � 1, consider the Lyapunov
function candidate

Vc�t; z� ≜ zTPc�t�z; Pc�t� ≜
�
Pc0�t� 0

0 a3

b3
�CTQTQC�−1

�

The time derivative of Vc along the trajectories of the system is
given by
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_Vc�t� � zT�t�
�
_Pc0�t� − a �L�t�Pc0�t� − aPc0 �t� �L�t� � b

a QCC
TQTPc0�t� � b

a Pc0�t�QCCTQT Pc0�t�QC − a
b QC

CTQTPc0�t� − a
b C

TQT −2 a2
b2
In−1

�
z�t�

Now, for any kβ ≥ 2, define β ≜ kβn. Then, letting a > 0,
�λc � �γλ�1� β�−1,b � an�λckβ, and �c3 � �c4 � ��γλ∕�λc��2∕kβn�, and
noting that kQCk � 1 and λmax �CTQTQC�−1 � n, one can use
Eqs. (D3) and (D4) and Schur complements to prove that

_Vc�t� ≤ −2�λczT�t�
�
Pc0�t� 0

0 a3

b3
�CTQTQC�−1

�
z�t� � −2�λcVc�t�

Application of the comparison lemma (see [57], Lemma 3.4]) leads
to Vc�t� ≤ Vc�0�e−2

�λct, and because minf �c1; a
3

b3
gkz�t�k2 ≤ Vc�t�

≤ maxf �c2; a
3

b3
gkz�t�k2, one finds that

kζ�t�k ≤ kS−1ζ k
�
maxf �c2; a

3

b3
ng

minf �c1; a
3

b3
g

�1
2

kSζkkζ�0�ke−
�λct

and consequently the system of Eq. (D1) is GUES. One concludes
that the forced system of Eq. (28) is ISS because it is a linear system,
the Laplacian L�t� is bounded, the homogeneous equation is GUES,
and the speed-tracking error vector ev�t� is assumed to be bounded
for all t ≥ 0. This implies that the bound in Eq. (29) holds. The
constants k1 and k2 in Eq. (29) can be derived from a proof similar to
those of Theorem 4.19 and Lemma 4.6 in [57].
To prove Eqs. (30) and (31), one can introduce the disagreement

vector ρ�t� ≜ Πξ�t� and use the facts that

ξi�t� − ξj�t� � ρi�t� − ρj�t�; i; j � 1; 2; : : : ; n; (D5)

kρ�t�k � kζ1�t�k (D6)

ζ2;i�t� � χI;i�t� − 1; i � 2; : : : ; n (D7)

It follows from the relationships of Eqs. (D5) and (D6) that
jξi�t� − ξj�t�j ≤ 2kζ1�t�k, and thus Eq. (29) leads to Eq. (30) with
k3 � 2k2. On the other hand, from Eqs. (25), (27), and (D7), one
obtains

_ξ1�t� − 1 � −a
X
j∈J1

�ξ1�t� − ξj�t�� � e 0v;1�t�

_ξi�t� − 1 � −a
X
j∈Ji

�ξi�t� − ξj�t�� � ζ2;i−1�t� � e 0v;i�t�;

i � 2; : : : ; n

which, along with the bound in Eq. (29) and the fact that
je 0v;i�t�j ≤ �jev;i�t�j∕vmin�, lead to the bound in Eq. (31) with
k4 � �2a�n − 1� � 1�k2 � �1∕vmin�. □

Appendix E: Sketch of the Proof of Theorem 1

To simplify the notation in this proof sketch, define the positive
constants vcmin and vcmax as vc min ≜ vmin � γv and vc max ≜
vmax − γv.
From the assumptions on the initial conditions in Eqs. (37) and

(38), along with the choice for the characteristic distance d in
Eq. (33), it can be shown that the following bounds hold at time t � 0
for all vehicles:

vc min ≤ vc;j�0� ≤ vc max; ∀ j ∈ f1; : : : ; ng

With this preliminary result in mind, the claims of the theorem are
nowproven by contradiction. To this effect, consider one of theUAVs
involved in the mission that has not yet reached its final destination,
and assume that it violates the results of the theorem, that is either it is

not able to remain inside the prespecified tube centered on its desired
path or its speed command goes outside the acceptable feasible range
while trying to keep coordination with the other UAVs. Without loss
of generality, assume that this UAV is the first one that violates (at
least) one of these conditions, and therefore suppose that all other
vehicles do satisfy the claims of the theorem. More precisely,
consider the ith UAV and suppose that, at time t > 0, it has not yet
reached the final destination, i.e.,l 0i �t� < 1. Assume that, at this same
time instant t, either the path-following errors of the ith UAVare such
that �pF;i�t�; ~Ri�t�� ∈= Ωc, or its speed command vc;i�t� does not
satisfy the bounds vc min ≤ vc;i�t� ≤ vc max (or both). For all other
UAVs, assume that �pF;j�τ�; ~Rj�τ�� ∈ Ωc and vc min ≤ vc;j�τ� ≤
vc max, j ∈ f1; : : : ; ng, j ≠ i, and for all τ ∈ �0; t�.

Consider first the case in which �pF;i�t�; ~Ri�t�� ∈= Ωc, while
vc min ≤ vc;i�τ� ≤ vc max for all τ ∈ �0; t�. For the ith UAV, consider
the path-following Lyapunov function candidate Vpf;i�pF;i; ~Ri� �
Ψ� ~Ri� � �1∕c21�kpF;ik2. Because �pF;i�0�; ~Ri�0�� ∈ Ωc by assump-
tion, and Vpf;i evaluated along the system trajectories is continuous
and differentiable, one has that, if �pF;i�t�; ~Ri�t�� ∈= Ωc for some
t > 0, then there exists a time t 0 (0 ≤ t 0 < t) such that

Vpf;i�t 0� � c2 (E1)

_Vpf;i�t 0� > 0 (E2)

while

Vpf;i�τ� ≤ c2; ∀ τ ∈ �0; t 0� (E3)

Equations (E1, E3) imply that kpF;i�τ�k ≤ cc1 andΨ� ~Ri�τ�� ≤ c2 for
all τ ∈ �0; t 0�. These two bounds, along with the choice for the
characteristic distance d in Eq. (33) and the assumption on the UAV
dynamics in Eq. (11), imply that w1;i�τ� · ti�τ� ≥ c2 > 0 and vmin ≤
vi�τ� ≤ vmax for all τ ∈ �0; t 0�. A proof similar to the one of Lemma 2
can now be used to show that, for all τ ∈ �0; t 0�, _Vpf;i < 0 on the
boundary of Ωc, which contradicts the claim in Eqs. (E1) and (E2).
Next, consider the case in which the bounds vc min ≤ vc;i�t� ≤

vc max do not hold, while �pF;i�τ�; ~Ri�τ�� ∈ Ωc for all τ ∈ �0; t�. Let t 0
(0 < t 0 ≤ t) be the first time at which vc min ≤ vc;i ≤ vc max is not
satisfied. Then, one has that, at time t 0, one of the following bounds
holds:

vc min > vc;i�t 0�; or vc;i�t 0� > vc max (E4)

while

vc min ≤ vc;i�τ� ≤ vc max; ∀ τ ∈ �0; t 0� (E5)

Because �pF;i�τ�; ~Ri�τ�� ∈ Ωc for all τ ∈ �0; t 0� by hypothesis, it
follows that kpF;i�τ�k ≤ cc1 and Ψ� ~Ri�τ�� ≤ c2 for all τ ∈ �0; t 0�.
These bounds, along with the choice for the characteristic distance d
in Eq. (33), the assumption on the UAV dynamics in Eq. (11), and the
bound inEq. (E5), imply thatw1;i�τ� · ti�τ� ≥ c2 for all τ ∈ �0; t 0� and
that jev;i�τ�j ≤ γv and vmin ≤ vi�τ� ≤ vmax for all τ ∈ �0; t 0�. From
this last bound, the continuity of vi, and the fact that (by hypothesis)
the bounds vc min ≤ vc;j�τ� ≤ vc max hold for all j ∈ f1; : : : ; ng,
j ≠ i, and for all τ ∈ �0; t 0�, it follows that jev;j�τ�j ≤ γv and vmin ≤
vj�τ� ≤ vmax for all j ∈ f1; : : : ; ng, j ≠ i, and for all τ ∈ �0; t 0�.
These bounds, along with the hypothesis that �pF;j�τ�; ~Rj�τ�� ∈ Ωc
for all j ∈ f1; : : : ; ng, j ≠ i, and for all τ ∈ �0; t 0�, can be used to
prove that ev;i�t 0� is bounded. Then, because the speed-tracking error
vector ev�τ� is bounded for all τ ∈ �0; t 0�, a proof similar to the one of
Lemma 3 can be used to show that the choice of the coordination
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control gains a and b in Eq. (34) ensures that there exists a positive
constant λc such that

kζ�τ�k ≤ k1kζ�0�ke−λcτ � k2 sup
s∈�0;τ�
kev�s�k; ∀ τ ∈ �0; t 0�

Because kev�τ�k ≤
���
n
p

γv for all τ ∈ �0; t 0�, it follows that
kζ�t 0�k ≤ k1kζ�0�k � k2

���
n
p

γv. This bound, along with Eqs. (D5)
and (D6) and the assumption on the initial condition in Eq. (38), can
be used to show that vmin � γv ≤ vc;i�t 0� ≤ vmax − γv, which
contradicts the claim in Eq. (E4).
Finally, similar arguments can be used to prove the impossibility of

both �pF;i; ~Ri� ∈ Ωc and vc min ≤ vc;i ≤ vc max failing to hold at the
exact same time.
Therefore, one has that, for all i ∈ f1; : : : ; ng and for all t ≥ 0, the

path-following errors pF;i�t� and ~Ri�t� satisfy �pF;i�t�; ~Ri�t�� ∈ Ωc,
while the speed command vc;i�t� verifies the bounds vc min ≤ vc;i�t�
≤ vc max. From these bounds and the assumption on the UAV
dynamics in Eq. (11), it follows that vmin ≤ vi�τ� ≤ vmax for all
i ∈ f1; : : : ; ng and for all t ≥ 0. Moreover, the choice for the
characteristic distance d in Eq. (33) implies that w1;i�τ� · ti�τ� ≥
c2 > 0 for all i ∈ f1; : : : ; ng and for all t ≥ 0. Then, the bounds in
Eqs. (39)–(41) follow respectively from proofs similar to those of
Lemmas 2 and 3. □
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