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Abstract:
There is currently a surge of interest in the development of advanced systems for cooperative
control of multiple autonomous marine vehicles. Central to the implementation of these systems
is the availability of efficient algorithms for multiple vehicle path planning that can take explicitly
into account the capabilities of each vehicle and existing environmental conditions. Multiple
vehicle path planning methods build necessarily on key concepts and algorithms for single vehicle
path following. However, they go one step further in that they must explicitly address inter-
vehicle collision avoidance, together with a number of criteria that may include simultaneous
times of arrival at the assigned target points and energy minimization, to name but a few. As
such, they pose considerable challenges both from a theoretical and practical implementation
standpoint. This paper is a short overview of multiple vehicle path planning techniques. The
exposition is focused on specific algorithms developed in the scope of research work in which
the authors have participated. Namely, algorithms that ensure that at no time will two vehicles
get closer in space than a desired safety distance, that is, achieve trajectory deconfliction.
The algorithms make ample use of direct optimization methods that lead to efficient and fast
techniques for path generation using a polynomial-based approach. The paper affords the reader
a fast paced presentation of key algorithms that had their genesis in the aircraft field, discusses
the results of simulations, and suggests problems that warrant further consideration.

Keywords: Multiple Vehicle Missions, Path Planning, Spatial Deconfliction, Temporal
Deconfliction, Autonomous Marine Vehicles.

1. INTRODUCTION

Space, land, and marine robots are becoming ubiquitous
and hold promise to the development of networked systems
to sample the environment at an unprecedented scale.
This trend is clearly visible in the marine world, which
harbors formidable challenges imposed by the extent of
the areas to be surveyed, sea waves, currents, low visibility
at depth, lack of global positioning systems underwater,
and stringent acoustic communication constraints. Some of
these difficulties can be partially overcome through the use
of fleets of heterogeneous vehicles working in cooperation,
under the supervision of advanced systems for cooperative
control of multiple autonomous vehicles. Central to the
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implementation of these systems is the availability of
efficient algorithms for multiple vehicle path planning that
can take explicitly into account the capabilities of each
vehicle and existing environmental conditions.

As an application example, consider the scenario where
multiple autonomous marine vehicles (that have been
launched from one or more support ships and are scattered
in the ocean) are required to execute a cooperative mis-
sion underwater, adopting a desired geometrical formation
pattern. To this effect, and while still at the surface, the
vehicles must maneuver from their initial positions and
reach formation at approximately the same speed, in a
prescribed neighborhood of the diving site. Only then
can the underwater mission segment start. Because the
vehicles may be operating in a restricted area and in
the vicinity of support ships, this initial Go-To-Formation
maneuver must be executed in such a way as to avoid
collisions. Furthermore, the vehicles must arrive at their
target positions at approximately the same time. This
scenario is depicted in Fig. 1, which shows the evolution of
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Fig. 1. Multiple Vehicle Path Planning: Go-To-Formation
Maneuver with Spatial Deconfliction.

two vehicles that start from arbitrary positions and reach
a simple side-by-side formation pattern prior to diving.

The example above can be further detailed to show how
multiple vehicle path planning yields an optimization
problem subject to a number of critical constraints. For
example, in the case of an energy-related cost criterion
the function to be minimized may be an weighted sum
of the energies spent during a Go-To-Formation maneu-
ver. However, other criteria may be envisioned such as
average maneuvering time. Vehicle related constraints are
the total energy available for vehicle maneuvering and
vehicle dynamic restrictions such as maximum vehicle
accelerations. Environmental constraints include external
disturbances caused by ocean currents and sea waves. It
is also required that collisions be avoided among vehicles
as well as between vehicles and stationary and moving
obstacles (e.g. support ships, the coastline, and harbor
structures). In particular, it is crucial that path planning
algorithms yield feasible paths and that any two vehicles
never come to close vicinity of each other. This property
is often referred to as deconfliction in the area of multiple
air vehicle control, for it ensures that at no time will two
vehicles get closer in space than a desired safety distance
E, see Figure 1.

Stated in such generality, path planning is obviously a
problem with far reaching implications not only in robotics
but also in control theory, computer science, artificial in-
telligence, and other related engineering subjects (LaValle
[2006]). Figure 2 illustrates the problem at hand and shows
how a cost criterion, initial and final vehicle conditions,
and internal and external constraints are used to produce
(if it exists) a trajectory that meets the constraints and
minimizes the cost. The spatial and temporal coordinates
of this trajectory yield a spatial path and a corresponding
vehicle profile. This simple observation is at the root of
the methodologies for path planning that are briefly sum-
marized in the paper.

In practice, deconfliction can be spatial or temporal.
In the first category, shown in Fig. 1 for the case of
two vehicles, non-intersecting spatial paths are generated
without explicit temporal constraints. In the second case,
temporally deconflicted paths will give rise to nominal
trajectories (defined in space and time) for the vehicles to
track. Clearly, temporal deconfliction introduces an extra
degree of freedom (time) that is not available in the case of

spatial deconfliction. As such, it leads to solutions whereby
paths are allowed to come to close vicinity or intersect in
space, but the temporal scheduling of the vehicles involved
separates these occurrences well in time. In summary,
temporal deconfliction allows for the solution of a larger
class of problems than those that can be tackled with
spatial deconfliction algorithms.

Motivated by the above considerations, this paper ad-
dresses the problem of deconflicted path planning with
applications to multiple autonomous marine vehicles. For
simplicity of exposition, the main focus is on vehicles
moving in 2D space. The problem formulation and the
solutions proposed have been strongly influenced by sev-
eral mission scenarios studied in the scope of the two
EU research projects described in FREE subNET [2006—
2010] and GREX [2006—2009]. The key objective is to
obtain path planning methods that are effective, computa-
tionally easy to implement, and lend themselves to real-
time applications.

The techniques that are the focus of this survey paper
build upon and extend the work first reported for un-
manned air vehicles in Yakimenko [2000] and later in
Kaminer et al. [2006] and Kaminer et al. [2007]. See also
Ghabcheloo et al. [2009b] for recent work on the subject.
Explained in intuitive terms, the key idea exploited is
to separate spatial and temporal specifications, effectively
decoupling the process of spatial path computation from
that of computing the desired speed profiles for the vehi-
cles along those paths. The first step yields the vehicles’
spatial profiles and takes into consideration geometrical
constraints; the second addresses time related require-
ments that include, among others, initial and final speeds,
deconfliction in time, and simultaneous times of arrival.
Decoupling the spatial and temporal constraints can be
done by parameterizing each path as a set of polynomials
in terms of a generic variable τ and introducing a polyno-
mial function η(τ)that specifies the rate of evolution of τ
with time, that is, dτ/dt = η(τ), see Kaminer et al. [2007].
By restricting the polynomials to be of low degree, the
number of parameters used during the computation of the
optimal paths is kept to a minimum, a fact that stands
at the root of the success of the direct method for rapid
prototyping of near-optimal aircraft trajectories proposed
in Kaminer et al. [2006]. Once the order of the polynomial
parameterizations has been decided, it becomes possible to
solve the multiple vehicle optimization problem of interest
(e.g., simultaneous time of arrival under specified decon-
fliction and energy expenditure constraints) by resorting
to any proven direct search method Kolda et al. [2003].

The paper is organized as follows. Section 2 offers a gen-
eral description of the methodology adopted for decon-
flicted path generation and details its application to the
generation of the Go-To-Formation manoeuver with an
energy cost criterion and a simultaneous time of arrival
constraint. Section 3 contains simulation examples that
illustrate the efficacy of the methods developed. Finally,
Section 4 overviews the main results obtained and summa-
rizes theoretical and practical issues that warrant further
research. Due to space limitations, some important details
are necessarily omitted. The reader is referred to Häusler
et al. [2009] for a thorough treatment of the topic.

2. MULTIPLE VEHICLE PATH PLANNING WITH
SPATIAL AND TEMPORAL DECONFLICTION

This section describes two algorithms for multiple vehicle
path planning with spatial and temporal deconfliction. In
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what follows, we let V := {Vi; i = 1, .., n} denote the set
of n ≥ 2 vehicles Vi involved in a maneuver. We start by
recalling the difference between a path and a trajectory.
A path is simply a curve p : τ → R3 parameterized
by τ in a closed subset [0, τfi ], τfi > 0 of R+. If τ is
identified with time t or a function thereof then, with a
slight abuse of notation, p : t → R3 with t ∈ [0; tf ], tf > 0
will be called a trajectory. Path following refers to the
problem of making a vehicle converge to and following a
path p(τ) with no explicit temporal schedule. However, the
vehicle speed may be assigned as a function of parameter τ .
Trajectory tracking is the problem of making the vehicle
track a trajectory p(t), that is, the vehicle must satisfy
spatial and temporal schedules simultaneously. For the
sake of clarity, and whenever one wishes to refer to a
specific vehicle Vi, the variables of interest will be written
with subscript index i. For example, pi(τ); τ ∈ [0, τfi ] and
pi(t); τ ∈ [0, tfi ] refer to a path and a trajectory for vehicle
Vi, respectively.

Suppose the objective is to execute a multi-vehicle Go-
To-Formation maneuver while avoiding inter-vehicle colli-
sions, meeting dynamical constraints (e.g. bounds on max-
imum accelerations), and minimizing a weighted combina-
tion of vehicle energy expenditures. Further suppose that
the vehicles are required to arrive at their final destination
at the same final time tf , that is, tfi = tf ; i = 1, 2, .., n.
At first inspection, a possible solution to this problem
would be to solve a constrained optimization problem
that would yield (if at all possible) feasible trajectories
pi(t), t ∈ [t0, tf ]; i = 1, 2, ..., n for the vehicles, with t0 and
tf denoting initial and final time, respectively. Trajectory
tracking systems on-board the vehicles would then ensure
precise tracking of the trajectories generated, thus meeting
the mission objectives.

This seemingly straightforward solution suffers from a ma-
jor drawback: it does not allow for any “deviations from
the plan”. Absolute timing becomes crucial because the
strategy described does not lend itself to on-line mod-
ification in the event that one or more of the vehicles
cannot execute trajectory tracking accurately (e.g. due to
adverse currents or lack of sufficient propulsion power). For
this reason, it is far more practical to adopt a different
solution where absolute time is not crucial and enough
room is given to each vehicle to adjust its motion along
the path in response to the motions of the other vehicles.
The goal is that of reaching a terminal formation pattern

and ensure simultaneous times of arrival. Dispensing with
absolute time is key to the solution proposed. In this set-
up, the optimization process should be viewed as a method
to produce paths pi(τi) without explicit time constraints,
but with timing laws for τi(t) that effectively dictate how
the nominal speed of each vehicle should evolve along the
path. Using this set-up, spatial and temporal constraints
are essentially decoupled and captured in the descriptions
of pi(τi) and ηi(τ) = dτi/dt, respectively, as will be seen
later. Furthermore, adopting polynomial approximations
for pi(τi) and ηi(τ) = dτi/dt keeps the number of op-
timization parameters small and makes real-time com-
putational requirements easy to achieve. Intuitively, by
making the path of a generic vehicle Vi a polynomial
function of τi ∈ [0, τfi], the shape of the path in space
can be changed by increasing or decreasing τi - a single
optimization parameter. This, coupled with a polynomial
approximation for ηi(τi) = dτi/dt makes it easy to shape
the speed and acceleration profile of the vehicle along the
path so as to meet desired dynamical constraints. The
paths thus generated can then be used as “templates” for
path following.

2.1 Path Planning: the single vehicle case

The approach adopted for path generation exploits a sep-
aration between spatial and temporal specifications. Let
p(τ) = [x(τ), y(τ), z(τ)]" denote the path of a single
vehicle, parameterized by τ = [0; τf ]. For computational
efficiency, assume each coordinate x(τ), y(τ), z(τ) is rep-
resented by an algebraic polynomial of degree N . For
example, x(τ) is of the form

x(τ) =
N∑

k=0

axkτk. i = 1, 2, 3, (1)

The degree N of polynomials x(τ), y(τ), z(τ) is determined
by the number of boundary conditions that must be sat-
isfied. Notice that these conditions (that involve spatial
derivatives) are computed with respect to the parameter
τ . There is an obvious need to relate them to actual
temporal derivatives, but this issue will only be addressed
later. For the time being, let d0 and df be the highest-
order of the spatial derivatives of x(τ), y(τ), z(τ) that
must meet specified boundary constraints at the initial and
final points of the path, respectively. Then, the minimum
degree N∗ of each of the corresponding polynomials is
N∗ = d0+df +1. For example, if the desired path includes
constraints on initial and final positions, velocities, and
accelerations (second-order derivatives), then the degree
of each polynomial is N∗ = 2 + 2 + 1 = 5. Explicit
formulae for computing boundary conditions p′0), p′′(0)
and p′(τf ), p′′(τf ) are given later. Additional degrees of
freedom may be included by making N > N∗. As an
illustrative example, consider the case where (1) is polyno-
mial trajectory of 5th degree. In this case, the coefficients
ax,k; k = 0, .., 5 can be computed from





1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 τf τ2

f τ3
f τ4

f τ5
f

0 1 2τf 3τ2
f 4τ3

f 5τ4
f

0 0 2 6τf 12τ2
f 20τ3

f




·





ax,0
ax,1
ax,2
ax,3
ax,4
ax,5




=





x(0)
x′(0)
x′′(0)
x(τf )
x′(τf )
x′′(τf )





where τf is the terminal value of τ . Similar equa-
tions can be used to compute the coefficients ay,k and
az,k; k = 0, .., 5. For 6th degree polynomial trajecto-
ries, an additional constraint on the fictitious initial jerk



can be included, which increases the order of the re-
sulting polynomial and affords extra (design) parameters
x′′′(0), x′′′(0), z′′′(0).

It is now important to clarify how temporal constraints
may be included in the feasible path computation process.
A trivial solution would be to make τ = t. In this case,
however, little control exists over the speed profile along
a path x(t), y(t), z(t) that meets the required boundary
conditions. In fact, once the path has been computed the
speed v is inevitably given by

v(t) =
√

ẋ2(t) + ẏ2(t) + ż2(t), (2)
and not much freedom is available to meet temporal con-
straints unless one resorts to high order polynomials. We
therefore turn our attention to a different procedure that
will afford us the possibility of meeting strict boundary
conditions and other constraints without increasing the
complexity of the path generation process. To this ef-
fect, let vmin, vmax and amax denote predefined bounds
on the vehicle’s speed and acceleration, respectively. Let
η(τ) = dτ/dt, yet to be determined, dictate how param-
eter τ evolves in time. A path p(τ) (with an underlying
assignment η(τ)) is said to constitute a feasible path if the
resulting trajectory can be tracked by a vehicle without
exceeding prespecified bounds on its velocity and total
acceleration along that trajectory. With an obvious abuse
of notation, we will later refer to a spatial path only,
without the associated η(τ), as a feasible path.

From (2), and for a given choice of η(τ), the temporal
speed v(τ(t)) and acceleration a(τ(t)) of a vehicle along
the path are given by

v(η) = η(τ)
√

x′2(τ) + y′2(τ) + z′2(τ) = η(τ)||p′(τ)||
a(τ) = ||p′′(τ)η2(τ) + p′(τ)η′(τ)η(τ)||

(3)

At this point, a choice for η(τ) must be made. A par-
ticular choice is simply η(τ) = η(0) + τ

τf
(η(f) − η(0))

with η(0) = v(0) and η(τf ) = v(tf ), where tf is the
terminal time yet to be determined. This polynomial is of
degree sufficiently high to satisfy boundary conditions on
speed and acceleration because the boundary conditions
p′(0), p′′, p′(τf ), p′′(τf ) can be easily obtained from given
ṗ(0), p̈(0), ṗ(tf ), p̈(tf ) using the definition of η(τ). In fact,
since ṗ(t) = p′(τ)η(τ), it is easy to see that

p′(0) =
ṗ(0)
η(0)

, p′′(0) =
p̈(0)− p′(0)η′(0)η(0)

η2(0)
,

p′(τf ) =
ṗ(tf )
η(τf )

, p′′(τf ) =
p̈(tf )− p′(tf )η′(τf )η(τf )

η2(τf )
,

where η′(0) = η′(τf ) = η(τf )−η(0)
τf

. Furthermore, the choice
of boundary conditions on η(τ) guarantees that ||p′(0)|| =
||p′(tf )|| = 1. It now follows from (3) that a path p(τ) is
feasible if all boundary conditions are met, together with
the additional speed and acceleration constraints

vmin ≤ η(τ) ||p′(τ)|| ≤ vmax,

||p′′(τ)η2(τ) + p′(τ)η′(τ)η(τ)|| ≤ amax, ∀τ ∈ [0, τf ].
(4)

A feasible trajectory can be obtained by solving, for
example, the optimization problem

F1 : min
Ξ

J subject to (4)

and to the boundary conditions at initial and final points,
where Ξ is the vector of optimization parameters that may
include, for example, τf together with x′′′(0), y′′′(0), z′′′(0).
The latter definition of Ξ corresponds to the case where
the degree of the polynomial path selected is 6 . The
cost function J may be defined to be the total energy
consumption of the vehicle, given by

J =
∫ tf

0
cfcDρv3

c (t)dt =
∫ τf

0
cfcDρη3(τ) ||p′(τ)||3 dτ,

where ρ is dynamic pressure, cf is a propulsion efficiency
factor, and cD is the total drag coefficient of the vehicle.
Other choices of J can be made to address time optimal
or minimum length paths.

2.2 Path Planning: the multiple vehicle case

The above methodology is now extended to deal with
multiple vehicles. In particular, we address the problem
of time-coordinated control where all vehicles must arrive
at their respective final destinations at the same time. The
dimension of the corresponding optimization problem in-
creases and the time coordination requirement introduces
additional constraints on parameters τfi; i = 1, 2, .., n.
To achieve simultaneous times of arrival we adopt the
simplified functions

ηi(τi) = ηi(0) +
τi

τfi
(ηi(τfi)− ηi(0)).

Integrating τ̇i = ηi(τi) yields

τfi = τi(tf ) =






ηi(0)tf , ηi(τfi) = ηi(0)
ηi(τfi)− ηi(0)

ln(ηi(τfi)/ηi(0))
tf ηi(τfi) '= ηi(0) (5)

and

t

tf
=






τi

τfi
, ηi(τfi) = ηi(0)

ln
(
1 +

(
ηf

η0
− 1

)
τ
τf

)

lnηf

η0

ηi(τfi) '= ηi(0)
(6)

Thus, given a value of the final time tf , the final values
τfi; i = 1, 2, ..., n of the path parameters τi are uniquely
defined by (5). This set-up can now be exploited to
achiever either spatial or temporal deconfliction by viewing
tf , in some specified interval [t1, t2], as the key search
parameter in an optimization problem.

Spatial deconfliction. In the case of spatial deconfliction,
feasible trajectories for all the vehicles are obtained by
solving an optimization problem of the form

F2 :






min
tf∈[t1,t2]

n∑

i=1

wiJi

subject to geometric boundary conditions and (4)
for any i ∈ [1, n], and

min
j,k=1,...,n,j &=k

||pcj (τj)− pck(τk)||2 ≥ E2

for any τj , τk ∈ [0, τfj ]× [0, τfk],
with τfj , τfk obtained from Eq. (5)

where Ji represents total energy consumption of vehicle Vi
and the weights wi > 0 penalize the energy consumptions
of all vehicles. Note that in contrast to F1, in F2 an addi-
tional constraint minj,k=1,...,n,j &=k ||pj(τj)−pk(τk)||2 ≥ E2



for any τj , τk ∈ [0, τfj ] × [0, τfk] was added to guarantee
spatially deconflicted trajectories separated by a mini-
mum spatial clearance distance E. In summary, we seek
to minimize the simultaneous time of arrival, subject to
constraints that include minimum and maximum vehicle
speeds, maximum vehicle accelerations, the allowed win-
dow of times of arrival, and spatial clearance requirements
for deconfliction.

Temporal deconfliction. We now address the problem of
multiple vehicle path planning with temporal deconflic-
tion. As argued before, temporal deconfliction introduces
an extra degree of freedom (time) that is not available in
the case of spatial deconfliction. As such, it yields solutions
whereby paths are allowed to come to close vicinity or
intersect in space. However, the temporal scheduling of the
vehicles involved separates these occurrences well in time.
The crucial point is therefore to guarantee that the vehicles
maneuver along the assigned paths, in a synchronized
manner.

Stated in these terms, it appears as if one is led inevitably
to the situation where each vehicle must track a pre-
assigned trajectory with great precision, that is, to execute
a trajectory tracking maneuver. This strategy meets with
considerable problems. In fact, in the event that one of the
vehicles will deviate considerably from its planned spatial
and temporal schedule (due to environmental disturbances
or temporary failures), the original plan can no longer be
executed and replanning will become necessary. However,
this strategy does not lend itself to formal analysis. For
this reason, it is important to adopt a new strategy
where the vehicles cooperate and adjust their motion in
reaction to deviations from the original plan, so as to keep
maintain the spatial formation that is naturally imposed
by that plan. In this set-up absolute time ceases to play an
important role, and all that is relevant is for the vehicles
to arrive simultaneously at their target positions, the final
times of arrival being left unspecified (but within defined
bounds).

This circle of ideas, originally proposed in Ghabcheloo
et al. [2009b], leads to an integrated strategy for mul-
tiple vehicle path planning and control that is referred
to as Time-Coordinated Path Following (TC-PF). The
methodology proposed unfolds in three steps. First, ex-
tending the methods exposed in Kaminer et al. [2007],
temporally deconflicted trajectories are generated for a
group of vehicles. At the end of this step, the trajectories
obtained are conveniently re-parametrized by a variable
that we call virtual time, leading to a set of spatial paths,
together with the corresponding nominal vehicle speed
profiles along them. The second step involves the design
of path following algorithms to steer each vehicle along
its assigned path, while tracking the corresponding speed
profile. Here, absolute time does not play any role. Finally,
the last step aims to coordinate the relative motion of the
vehicles along their paths, so as to guarantee deconfliction
and meet desired temporal constraints such as equal times
of arrival. This is done by varying the speed of each vehicle
about the nominal speed profile computed in the first step,
based on the exchange of information with its neighbors.
The information exchanged is related to the virtual time
referred to above. The resulting scheme lends itself to a
rigorous formulation and avoids replanning except for the
situation where, due to strong disturbances, the vehicles
deviate considerably from the paths or fail to meet re-
quired temporal constraints. In this paper we focus on
the first step described above. For an introduction to the
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(c) Velocity profiles.
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Fig. 3. Path planning using spatial and temporal de-
confliction. Boundary conditions are as follows: V1 -
[x10 , y10 ] = [0, 0]m, [x1f , y1f ] = [500, 500]m, ψ1f =
45◦; V2 - [x20 , y20 ] = [−100, 100]m, [x2f , y2f ] =
[600, 525]m, ψ2f = 45◦; V3 - [x30 , y30 ] = [550,−100]m,
[x3f , y3f ] = [650, 450]m, ψ3f = 45◦. For all vehicles,
the initial and final speed were set to 1m/s and
1.5m/s, respectively. The initial headings as well as
the initial and final accelerations were determined
during the optimization process.

theoretical machinery that supports steps two and three
above, the reader is referred to Ghabcheloo et al. [2009a].

It is against this backdrop of ideas that we now describe a
solution to the problem of multiple vehicle path planning
with temporal deconfliction. The solution borrows from
the concepts previously introduced in the section on spa-
tial deconfliction. Namely, the optimization problem to be
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(a) Spatial deconfliction in 3D, top view.
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(b) The same solution in isometric view.
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Fig. 4. A spatially deconflicted solution to the problem depicted in Fig. 3, in three dimensional space. The (x, y)
projection of the path path resembles that obtained with the algorithm for temporal deconfliction in Fig. 3b;
notice, however (isometric view) that one of the vehicles dives under the nominal path of another vehicle in order
to ensure spatial deconfliction.

solved is (F2), except that the avoidance constraint is now
expressed as

||pi(t)− pj(t)||2 ≥ E2

∀ i, j = 1, . . . , n; i '= j and t ∈ [0, tf ],
where tf is the optimization parameter and t is is related
to the τi via (5). We again stress that multiple vehicle path
planning with temporal deconfliction is the first step in the
general methodology of Time-Coordinated Path Following
introduced in Ghabcheloo et al. [2009b]. At the end of this
step, the temporal coordinate used in the computations
becomes a path parameter that is hidden in the remaining
two steps. This is simply done by reparameterizing the
paths produced as pi(γ), with γ = t/ti ∈ [0, 1] defined as

γ(τi) =






τi

τfi
, ηi(τfi) = ηi(0)

ln
(
1 +

(
ηf

η0
− 1

)
τ
τf

)

lnηf

η0

ηi(τfi) '= ηi(0)
(7)

3. SIMULATION RESULTS

This section contains the results of simulations aimed
at illustrating the efficacy of the multiple vehicle path
planning systems developed. The zero-order optimization
method adopted is described in Hooke and Jeeves [1961].

Fig. 3 shows the results of running the algorithms for
spatial and temporal deconfliction in 2D. The initial and
final conditions for the three vehicles are the same. In
the case of spatial deconfliction, vehicle V1 (purple) must
perform a large turn (in a direction that points away
from its final position) to avoid coming close the the path
of vehicle V2 (blue), see Fig. 3a. The same situation is
solved with temporal deconflicted path planning in Fig. 3b.
The solution is far simpler in terms of path shapes and
the saving in maneuvering time is more than 2 minutes.
The velocity profiles are also much smoother. Notice that
because the paths are temporally deconflicted, spatial
intersections are now allowed. However, collisions among
vehicles will not occur because the actual spatial clearance
will never fall below its limit E at any time t.

It is intuitive that by adding a third depth coordinate,
spatial deconfliction problems that are hard to solve in
2D may have straightforward solutions in 3D. This is
illustrated in Fig. 4, which should be compared against
Fig. 3.

4. CONCLUSIONS

The paper addressed the problem of multiple vehicle path
planning with spatial and temporal constraints. Solutions
were described that build on polynomial-based techniques
and direct optimization methods. The path planning meth-
ods derived are computationally easy to implement, thus
lending themselves to real-time applications. The efficacy
of the solutions developed was shown with selected simula-
tion examples. Future work will include the development of
path planning methods to avoid fixed obstacles or to meet
nonconventional constraints that arise when the directivity
of the inter-vehicle communication links must be taken
into account.
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