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Abstract: This paper addresses the problem of underwater navigation, using a single beacon
(or a transponder). We propose a solution to estimate the underwater vehicle position in the
presence of unknown ocean currents. The main idea is to combine the dead-reckoning information
with multiple range measurements taken at different instants of time from the vehicle to a
single beacon. Then, applying a multilateration based algorithm and using a Kalman filter,
the unknown velocity of ocean current and a more accurate estimation of vehicle’s position is
estimated. The stability and convergence of the position estimation error are analysed taken
explicitly into account the presence of ocean currents, disturbances, measurement noise and
discretization errors. Simulation results are presented and discussed. In particular, we show
that the implementation of the Kalman filter to estimate the ocean current is crucial to achieve

convergence of the estimated position.
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1. INTRODUCTION

Over the last decade, applications with ocean robotics have
increased dramatically. The use of remotely operated vehi-
cles and, more recently, autonomous underwater vehicles
(AUVs) have shown to be extremely important tools to
study and explore the oceans. A key enabling element for
the use of such robotic vehicles is the availability of ad-
vance navigation and positioning systems. In this regard,
often acoustic Long Baseline (LBL) navigation systems
play an important role. Typically, these systems only pro-
vide range measurements and rely in multiple transpon-
ders to compute an estimative of the vehicle position. In
order to obtain a desired precision, the location of each
deployed transponder ! must be precisely surveyed, prior
to conducting autonomous vehicle operation. Deploying,
surveying and prior recovering the transponders is a costly
and a time consuming process. Instead, having a single
transponder navigation system that guarantees the desired
precision, may save money and time.

Motivated by the above considerations, this work ad-
dresses the single transponder underwater navigation
problem. Inspired by previous works by [Larsen (2001)]
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1 The transponder sends out an acoustic response only when interro-
gated, and the beacon sends out an acoustic signal at predetermined
intervals.

and [LaPointe (2006)], we propose a solution to estimate
the underwater vehicle position in the presence of unknown
ocean currents. The main idea is to combine the dead-
reckoning information with multiple ranges measurements
taken at different instants of time from the vehicle to
a single beacon. Then, applying a multilateration based
algorithm and using a Kalman filter, the unknown velocity
of ocean current and a more accurate estimation of the
vehicle’s position is estimated.

The stability and convergence of the position estimation
error are analysed taken explicitly into account the pres-
ence of ocean currents, disturbances, measurement noise
and discretization errors. In particular, we provide condi-
tions under which the position error is (locally) Input to
State Stable (ISS).

The organization of the paper is as follows: Section 2
describes the proposed navigation system. In Section 3, the
stability and convergence of the position estimation error
is analysed. Section 4 illustrates the performance of the
navigation algorithm developed within several scenarios
using computer simulations. Finally considerations are
presented in Section 5.

2. POSITION NAVIGATION SYSTEM

To obtain the position of the vehicle using only a single
beacon, a two stage algorithm is proposed. At first stage
the position is computed using a multilateration-based
scheme. At second stage a Kalman filter is implemented in
order to refine the previous estimation and to estimate the
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Fig. 1. Ilustration of the creation of the virtual net of
beacons.

ocean velocity current. As it will be shown, the integration
of the first and the second stage of the algorithm is crucial
to make position navigation possible, when ocean currents
exists.

2.1 Algorithm’s first stage

The first part of the algorithm consists of creating a
(dynamic) virtual network of beacons and then apply a
similar navigation strategy as Long Baseline (LBL), but
with virtual beacons, to obtain a rough estimation of the
vehicle’s position. The strategy to form the virtual network
of beacons is described as follows (see Fig. 1): The vehicle
records at pre-defined instants of time ¢;, i = 1,2,..., N —
1, with V > 3 the distance d; between the vehicle and the
beacon by measuring the fly-time of the acoustic signal and
using (an estimative) of the underwater speed of sound.
Let py Dbe the last beacon in the virtual net and set it
to be the position of the real beacon, which is assumed
to be known in some inertial frame {I}. Then, going
backwards and using the vehicle’s dead reckoning data, the
next virtual beacons are created by applying the vehicle
displacement to the beacon location, which simulates that
the real beacon had moved with the same trajectory as the
vehicle (see Fig. 1). Using this reasoning, it turns out that
the distance measurements d; taken during that process
corresponds exactly to the ranges between the vehicle in
the last position and the virtual beacons. Formally, the
position of the i*" virtual beacon p;, i = 1,2,...,N is
given by

PiZPN-F/tNU(T)dTa (1)

where pyn is the position of the real transponder, v is
the total vehicle velocity vector expressed in the inertial

frame {I}, and ¢; is the instant of time decided to take
a range measurement. After the virtual net of beacons is
established, using a multilateration based algorithm, one
can find the best estimative for the vehicle position p.
As an example, a simple way to determine p algorithm
(but not at all the best) is to solve the straightforward
optimization
N
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To compute p it is implicitly assumed that the vehicle not
only can measure the range from its location to the beacon
but it can also measure the velocity v (see (1)). Note also
that p can only be computed at the final time ¢t = ¢, and
then the process starts again by forming another virtual
netwok of beacons to compute the next p (at time t = 2ty).

2.2 Algorithm’s second stage

It turns out that the previous step of the algorithm will
only work when there is no ocean current or when one
have a precise way of measure the ocean current’s velocity
ve. Usually this is not the case. Since the velocity is
measured through a Doppler velocity log. If the AUV is
not near the seabed than the Doppler can only provide
the velocity of the vehicle relative to the water v,., which
implies that the inertial velocity v = v,- + v, is not directly
measured. Neglecting the effect of the ocean current may
lead to divergence in the algorithm, as it is shown in the
simulation results (see Section 4). To tackle this problem,
we resort to a Kalman filter to estimate the ocean current
and also filter out the vehicle position p. The Kalman filter
is implemented assuming that the unknown ocean current
is constant and making use of a simple Kinematic relation
between the velocity and the position. The equations that
model the system are given by

{pvr(t)+vc+w(t) (3)
e =0+ v(t)

where wg(t) and vi(t) are assumed to be stationary,
Gaussian, zero mean white noise processes and mutu-
ally independent, with covariances E[wy(t)wi(s)] and
Evi(t)vi(s)] given by Qu0(t — s) and Q,d(t — s) respec-
tively. Applying a Euler approximation to the continuous
model (3), we obtain the discrete-time process model
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where the state is composed by the vehicle’s position (z, y)
and the ocean current velocity vector v, = (ve,,vc,). The
input is the water relative vehicle’s velocity vector v, =
(vr,,vr,) provided by the Dopler, and the measurement is
the position p = (Z, 7) computed in (2) replacing v in (1)
by v, 4+ ¥, where 0, denotes the estimative of v, provided
by the Kalman filter. The symbol At denotes the time step
ti+1 — tr and {wy} and {vj} are mutually independent,
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Fig. 2. Interconnection of the algorithm subsystems. Sub-
system 1 represents equation (11). Subsystem 2 is the
dynamic system (14). Input 1 is ¢. Input 2 is the
error vector p. Input 3 is the relative velocity error
U,. Disturbance 1 represents the errors in the range
measurements, d;, and Disturbance 2 represents the
signals w(t) and v(t).

stationary, zero mean white Gaussian sequences of random
variables, with covariances given by [Mao et al. (2007)]

{ Wy = \/At'y%k

VA, ©

where the vector sequences {7, ;} and {7, ;} are mutu-
ally independents, stationary zero mean, white Gaussian
sequences of vector random variables, with covariances @),
and @Q,. For convenience of notation we re-write (4) and
(5) in the compact notation

Vi =

{g(k+ 1) = AC(k) + Bu(k) + w(k) )
z(k+1) = C((k) +v(k)
where

] I I

Then the Kalman filter is given by
{ {(k+1) = AL(k) + L{z(k) — 2(k)] + Bu(k) + w(k)
(k) = C¢(k) + v (k) o)
9

where L is the Kalman gain. Equation (9) together with
the algorithm to compute p (equations (1) and (2)) forms
the Position Navigation System.

The use of the Kalman filter in a integrated fashion with
the algorithm to compute p improves the estimative of the
vehicle position and allows to predict the velocity of the
ocean current. These results are discussed in Section 4.

3. STABILITY ANALYSIS

In the present section we discuss the convergence of the
algorithm proposed. The analysis is done in a deterministic
setting where it is assumed that the disturbance and noise

signals are deterministic and bounded but unknown. We
start to analyze the algorithm’s first stage, then the second
stage, and finally the influence of the interconnection
between these two stages. Note that the computation of p
(done at the first stage), where p is an input signal of the
Kalman filter (implemented at the second stage), depends
on the output of the Kalman filter (more precisely from
the estimative of the ocean current).

To analyse the influence of the range measurement errors,
dead-recknoning errors, discretization errors, and others,
in the computation of p we resort to the results of the
work presented in [Thomas and Ros (2005)]. In that work,
a closed-form formulation for trilateration based on the
Cayley-Menger determinants and geometric concepts was
derived. Using that fact, selecting three arbitrarily points
from the virtual network of beacons, say ¢1, g2, and g3, the
position p determined by 3D trilateration can be expressed
as

P =q1 + ka1 + kaaz £ k3(a1 x az), (10)
where
ky = _D(Q17Q2,Q3;Q17Q3,P)
D(q1,92,q3)
ky = 200192, 05101, 42,p)
D(q1,92,g3)
ks = +v/D(q1,42,G3,D)
D(q1, 42, 93)
a1 = ¢ — q1, a2 = q3 — q1, D(-,+,-) are the Cayley-
Menger determinants, D(-,-,;-, -, -) are Cayley-Menger bi-

determinants, and the pm sign accounts for the two mirror
symmetric locations of p with respect to the base plane
defined by ¢q1, g2, and ¢3. In the sequel, given a vector
a, we denote by a’ its nominal value (no errors) and a
additive error such that a = a® + a. Using (10) it can be
concluded that
P=p—p=q + ka1 + kaas
+ kg[(a? X 5,2) + (&1 X ag) + (&1 X ag)]

(11)

We now analyze each term in (11) with the objective of
obtaining an upper bound of the position error p. From
(1) it follows that

gi = 4N +/t N(@«(T) + 0.(7)) dr.

7

Thus, foralli=1,2,...,N
gl < llgnll + max |[|or(7) + 0c(7)[|(En — 1),
t1<7<tn

la:|l <2 max

Up Ue tny —t1).
max (|7 (7) + 5u(7) [t — )

In addition,

la’ > agll < [la' ] l1a]

<4 max u(r)l| max [5.(7) + Te(7)l|(tx — t2)?

t1<7<itn t1<7<tn

g x a;|| <4 max [[o.(1) + 0e(T)|*(tn — t1)?
t1<7<tn

for 2,5 = 1,2,..., N. Therefore, using the above bounds
in (11) we obtain
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where «; are given by

ap = (ty —t1)(1 4 2(k1 + k2)
+ 8ka(tn —t1) max |lu(7)]])

t1<7<itn
g = (4k3(t]\[ — t1>2)
a3 = (tN — tl)(l + 2(]{31 + kg)

ks(ty —t
+8ko(ty — ), max (o7
+dks(ty — ), max [5.(7)])

gy = 4k3(t1\[ — t1)2.

Note that the bound of the error p turns out to be a
function of the position error of the real beacon py, the
relative velocity measurement error v,, and the ocean
estimation error v, with a linear and a quadratic term,
which will prevent from yielding a global stability result
(only local). These dependences with exception of the first
one, are also function of the discretization time interval
At =ty —t1.

We now analyze the second part of the algorithm. Let

C(k) = ¢(k) — C(k) be the state estimation error. Then,
from (7) and (9) we obtain

{(k+1) = (A— LO){(k) = AoC(k), (13)

for w(k) = vy = 0. Since system (7) is linear and time-
invariant with (A,C) detectable, then there exists a matrix
L such all the eigenvalues of A9 = A— LC have magnitudes
(strictly) less than one. Therefore, the error dynamics (13)
is globally asymptotical stable.

Consider now system (13) with input signals (due to
errors)

Ck+1) = AgC(k) + Sp(k) + w(k) + LCv (k).  (14)

Since Ag is a Schur matrix, i.e., all his eigenvalues are
located strictly inside the unit ball, then the Lyapunov
equation

ATP—A=—

holds with P > 0. Consider the positive-definite Lyapunov
function

vV = (TP

Straightforward computations shows

(15)

Viyr = Vi = (k)" [AgPAg — PIC
+ (Sp+w + LCv)T P(Sp+ w + LCv(k))
+2CTAgP(Sp+ w + LCV)
< oo(lI<I) 4+ o1 (Ipl]) + o2 (lwl]) 4+ o1 (|v]])
where
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S =[1,1,0,0], 1 = 1 — (|| Pl[(ex3 + cap) = 2|[ Ao|| | P||(as +
ayp)) and 72 = 1= (| LC|*||P[|(as+euup) =2 Ao || PI[[| LC|
(as + aup)), and ¢ is assumed to satisfies ||C]| < p, and
0; to be K o-function?, which it is true for sufficiently
small sampling time {5 — ¢; and measurement noise and
disturbances. Therefore, it can be concluded that V is an
ISS-Lyapunov function (c.f. [Jiang and Wang (2001)]), and
consequently ¢ is (local) ISS.

oo(r, k) =

+ I(LC)TP(LC)H)?“2

4. SIMULATION RESULTS

This section illustrates the single beacon navigation al-
gorithm through computer simulations. The simulations
were performed with N = 4 (number of virtual beacons),
which means that for each 4 measurements, one estimated
point of the trajectory is computed.

Figure 3 shows the estimated trajectory performed by the
vehicle with and without ocean current. The yellow star
represents the Beacon location (which is at the origin), the
red line represents the true path of the vehicle, the black
dots represents the estimative p ignoring the presence of
ocean current (that is, in (3) we set v = v,), the green
dots represents the estimative p using the Kalman filter
(in (3) we set v = v, + 0), and the blue line represents
the estimative of the vehicle’s position provided by the
Kalman filter. This simulation was performed without
sensor noises. As expected, (see Fig. 3(a)) without ocean
current, there is no estimation error even using only the
algorithm described in the first step (black dots). However,
in the presence of ocean currents (see Fig. 3(b)), it can be
seen that the algorithm without the Kalman filter diverges
(black dots).

Figure 4 illustrates the same set of simulations but in-
cluding Gaussian noise in all sensors with a (0)? =
0.8(m.s™1)?, which is more than 10% of the vehicle veloc-
ity. It can be seen that there is a significantly improvement
in using the Kalman filter compared with only applying the
first step of the algorithm (see green dots). The postion es-
timation error with water current is greater than without,
but is still small when compared with the distance of the

vehicle to the beacon, that is around 100m.

Figures 5 and 6 display the time evolution of the estimative
of the ocean current and the vehicle position estimation er-
ror, respectively. Note that the first part of the trajectory is
worst estimated. This happens because the ocean current
is still in the process of being determined. Once it is esti-
mated, it can be seen almost a perfect match between the
real and the estimated trajectory. In the horizontal part
of the trajectory one see again another worst performance
of the estimator because the trajectory becomes almost in
2

o : Ryg — Ryq is a Koo-function if it is continuous, strictly
increasing, 0(0) = 0, and o(r) — oo as r — oo.
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Fig. 3. The yellow star at (0,0) represents the Beacon, the
red line represents the true path of the vehicle, the
green dots represents the estimative using only the
first step of the algorithm (with ocean current estima-
tive obtained from the Kalman filter), the doted blue
line represents the estimative from the Kalman filter,
and the black dots represent the vehicle’s position
estimative using the first step of the algorithm, but
without any ocean current’s velocity estimation.

the same line as the beacon. In all simulations it was not
used an outliers rejection algorithm. The results could be
improved by an implementation of a such algorithm.

The position navigation system works even in the presence
of variable water current’s velocity, both in magnitude and
direction. This is showed in figure 7.

5. CONCLUSIONS

The problem of underwater navigation, using a single
beacon (or a transponder) was formalized. We proposed
a solution to estimate the underwater vehicle position in
the presence of unknown ocean currents. The algorithm
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(b) Simulation with unknown constant ocean current.
Fig. 4. The yellow star represents the Beacon, the red line

represents the true path of the vehicle, the green dots
represents the estimative using only the first step of
the algorithm, and the doted blue line represents the
estimative using the Kalman filter.

unfolds in two basic steps: First, combining the dead-
reckoning information with multiple range measurements
taken at different instants of time from the vehicle to a sin-
gle beacon a virtual network of beacons is created, which
then permits to apply a multilateration based algorithm.
In the second step a Kalman filter is implemented to obtain
an estimative of the unknown velocity of ocean current
and a more accurate estimation of vehicle’s position. The
stability and convergence of the position estimation error
were analyzed taken explicitly into account the presence
of ocean currents, disturbances, measurement noise and
discretization errors. We have shown that the implemen-
tation of the Kalman filter to estimate the ocean current
is crucial to achieve convergence of the estimated position.
The computer simulations results show that the navigation
algorithm works well even in presence of relatively large
amount of noise in the sensors.
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(b) Time evolution of the position error with ocean current.

Fig. 6. The blue line represents the x component of the vehicle
position error and the green one the y component.
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Fig. 7. Estimated vehicle’s trajectory in presence of vari-
able underwater currents.
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