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Abstract: In the cooperative target tracking maneuvering a group of vehicles is required to
follow a target while maintaining a desired formation in space. For that effect, the trajectory of
the target has to be estimated (for example by one of the vehicles in formation), translated into
mission codes (to save communication resources) and transmitted to the other vehicles. This
paper addresses the online mission planning task of converting the absolute or relative position
data available from the positioning system installed on the target (e.g. INS, GPS) into a set of
lines and constant curvature arcs. Two algorithms are proposed: one using a polynomial fitting
and a more complex one using an Interactive Multiple-Model Kalman filter. Simulation results
using experimental data and a set of simulated data corrupted with noise and data loss are
presented and discussed.
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1. INTRODUCTION

The past few decades have witnessed considerable interest
in the area of motion control of autonomous marine ve-
hicles (AMV) (Aguiar and Pascoal (2007); Alonge et al.
(2001); Encarnacao and Pascoal (2000); Fossen (1994);
Jiang (2002); Lefeber et al. (2003); Leonard (1995)). In
a great number of scenarios, which range from ocean
exploration to military applications, AMVs have the ca-
pability to perform missions that would be unfeasible, or
too dangerous, for a human crew. Current research how-
ever goes well beyond single vehicle control. Considerable
effort is being placed on the deployment of groups of net-
worked AMVs which can interact autonomously with the
environment and other vehicles, resulting in a significant
improvement in efficiency, performance, reconfigurability
and robustness, and in the emergence of new capabili-
ties beyond the ones of individual vehicles (Klein et al.
(2008); Vanni et al. (2008); Aguiar et al. (2009)). One of
the most challenging cooperative missions is cooperative
target tracking, where a group of vehicles is required to
follow a target while maintaining a certain formation in
space. Amongst the many scenarios of this kind that can
be envisioned, some may require the vehicles to move along
the same trajectory that the target has traced (Blidberg
et al. (1991)). For this case, the position of the target
has to be known either to a ground station or to one
of the vehicles in the formation (a “leader”), who could
then communicate it to the other vehicles. However, this
solution presents significant requirements in terms of com-
munication resources, requirements that could be reduced
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if the target’s trajectory was first approximated by a series
of simple, parametrized curves, defined by a few variables
that could be sent to the other vehicles at a lower rate. This
would be particularly beneficial in the case of underwater
applications, where vehicles exchange information over low
bandwidth, short range communication channels that are
plagued with intermittent failures, multi-path effects, and
distance-dependent delays. Moreover, this strategy has the
advantage of only requiring vehicles equipped with low
cost off-the-shelf controllers, capable of steering them only
along simple trajectories such as straight lines or constant
curvature arcs.

This work proposes online 2D mission planning algorithms
for cooperative target tracking. Fig. 1 shows the schematic
block diagram of a generic cooperative target tracking
scenario. The goal is to design a real-time algorithm that
translates the absolute or relative position data available
from the navigation system installed on the target (e.g.
INS, GPS) into a set of mission codes. These mission
codes are sent to the cooperative target tracking module
(which is not addressed in this article) to be translated
into identical missions for each of the follower AMVs, so
that they can track the moving target in formation. It
is important to stress that the translation of the original
trajectory into mission codes allows the use of a low
capacity communication channel with a low refresh rate.
In this paper the translated mission code consists of a
combination of lines and constant curvature arcs. This
solution was adopted for the GREX Project (GREX
(2006–2009)) and is currently being implemented.

We propose two methods of online mission planning. One
uses polynomial fitting and the other Interactive Multiple-
Model Kalman filter (IMM-KF). The next section de-
scribes the algorithms developed. To compare how these
methods behave in a practical case, results based on simu-



Fig. 1. Schematic block diagram of cooperative target
tracking.
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Fig. 2. Quantization: Detection of arcs and lines with
quantization.

lated data and on a set of experimental data are compared
in Section 3. Concluding remarks are given in Section 4.

2. ONLINE MISSION PLANNING ALGORITHMS

Consider a target moving in a 2D space with its associ-
ated magnitude of velocity vector V (m/s), and angular
velocity ω (rad/s). Let Ω(rad/m)

Ω =
ω

V
=

1

r
(1)

be the curvature, where r denotes the radius. Note that
for straight lines Ω is zero. Consider the set

Φ = {Ω0,Ω1,Ω2, ...,Ωn}, Ωi ∈ R (2)

composed by n specified curvatures and let Ω0 = 0. The
online mission planning problem can be decomposed as
follows:

• Computation of an estimative of Ω from the position
(x, y) measurements of the target. In the following
subsections we will describe two methods.

• Quantization of the estimated Ω according to Φ and
formulation of the corresponding trajectory into a set
of lines and arcs. Fig. 2 shows an example plot of Ω
versus time quantized by the set Φ = {0, 0.3, 0.6, 0.9}
with 7 arcs.

• Transmission of the quantized estimated arc only if it
is different from the previous one.

Fig. 3. Data blocks: Diagram of creating data blocks
together with start and end data blocks.

2.1 Curvature estimation using polynomial fitting

The first solution proposed for curvature estimation con-
sists in fitting the target position data through a low order
polynomial. More precisely, we set a buffer of size m that
is constantly filled as the measurements arrive with the
last m position data from the target navigation system.
Whenever the mission planning is called, the most recent
unprocessed buffer is loaded to a data block (DB) inside
the mission planning module. To compute Ω from the
discrete position data (x, y) along time, a naive solution
would be to compute V and ω and then use (1). However,
this is not the best solution because the position data
is corrupted with noise and computing its derivative will
amplify it. Instead, we propose to first smooth the data by
fitting it to a low order polynomial p = (px, py) and only
then compute the curvature as follows:

∆x(tk) = px(tk) − px(tk−1) (3)

∆y(tk) = py(tk) − py(tk−1) (4)

θ(tk) = atan2(
∆y(tk)

∆x(tk)
) (5)

Ω(tk) =
θ(tk) − θ(tk−1)

√

∆x(tk)2 + ∆y(tk)2
(6)

Notice that the polynomial curve fitting may encounter
considerable discontinuity in the junction of two consecu-
tive fitted polynomials. To reduce this discontinuity, two
more DBs of size l are attached to the beginning and end
of the main DB (see Fig. 3).

2.2 Curvature estimation using IMM Kalman filter

In this case, an Interactive Multiple Model Kalman filter
(IMM-KF) is developed to estimate the curvature Ω.
The IMM-KF is a nonlinear filter that combines a bank
of Kalman filters running in parallel, each one using a
different model for target motion, with a dynamic system
that computes the conditional probability of each KF. The
output of the IMM-KF is the state estimate given by a
weighted sum of the state estimations produced by each
Kalman filter. Fig. 4 shows the block diagram of the IMM-
KF. Further details on the IMM-KF can be found in the
book by Bar-Shalom et al. (2002), and for a survey on
IMM methods in target tracking the reader is referred to
Mazor et al. (1998).

In the present work, each Kalman filter j is designed
according to the following discrete process model with a
constant sampling time Ts.
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= V j
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√

Ts

(7)

The sequences wj
θk

and wj
Vk

are mutually independent,
stationary zero mean white Gaussian sequences of random
variables, with covariances Qj

θ and Qj
V respectively. Here

the angular velocity ωj is set to be a constant in each
model, which is included in the set of possible ranges,
−ωmax to ωmax including the origin (straight line). In (7),
(xj , yj) denote the position in 2D Cartesian space, and θj

is the angle of the speed vector (ẋj , ẏj).

The IMM-KF algorithm is described as follows:

(1) Initialization:

The initial state vector x̂
j(0) for each model j

is assumed to be a Gaussian random variable with
known mean

E{x̂j(0)} = x̄
j(0) (8)

and known covariance matrix

P
j(0) = E

{

(

x̂
j(0) − x̄

j(0)
)(

x̂
j(0) − x̄

j(0)
)T

}

(9)

Also let µj(0) be the corresponding mixing probabil-
ity initial condition.

(2) Calculation of the mixing probabilities:

µi|j(k|k) =
pijµi(k)

c̄j

(10)

c̄j =

r
∑

i=1

pijµi(k)

where P = [pij ]n×n is the Markov chain transition
matrix between models. Here pij represents the prob-
ability of switching from model i to model j.

(3) Mixed Initial condition for each jth model:

x̂
0j(k|k) =

r
∑

i=1

x̂
i(k|k)µi|j(k|k) (11)

P
0j(k|k) =

r
∑

i=1

(µi|j(k|k){P i(k|k)

+
r

∑

j=1

[x̂i(k|k) − x̂
0j(k|k)].[x̂i(k|k) − x̂

0j(k|k)]T })

(4) Propagation of state estimate and covariance matrix:

Each mixed initial condition (x̂0j(k|k),P 0j(k|k)) is
used as initial condition for its corresponding model
j to propagate the estimate x̂

j(k + 1|k + 1) and the

covariance matrix P
j(k + 1|k + 1) as follows:

x̂
j(k + 1|k + 1) = x̂

j(k + 1|k) + Kj
k+1

rj
k+1

P
j(k + 1|k + 1) = (I − Kj

k+1
Hj

k+1
)P j(k + 1|k)

where

Fig. 4. Block diagram of the IMM-KF.

x̂
j(k + 1|k) = f(x̂0j(k|k), uk) (12)

P
j(k + 1|k) = Aj

k+1
P

0j(k|k)Aj
k+1

T
+ Qj
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k
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(5) Mode-matched filtering: The Innovation or measure-

ment residual rj
k+1

and its corresponding covariance

matrix Sj

k+1|k of the Kalman filter j are used to

generate mode-matched filtering:

Lj(k + 1) =

√

∣

∣

∣
Sj

k+1

∣

∣

∣

(2π)
ns
2

e−
1
2
r

j

k+1

T (S
j

k+1)
−1

r
j

k+1 (13)

where ns represents the number of states, which is
equal to 4 in this case.

(6) Mode probability update:

µj(k + 1) =
1

c
Lj(k + 1)c̄j (14)

c =
r

∑

j=1

Lj(k + 1)c̄j

(7) Estimate and covariance combination:

x̂(k + 1|k + 1) =

r
∑

j=1

x̂
j(k + 1|k + 1)µj(k + 1) (15)

P (k + 1|k + 1) =
r

∑

j=1

(µj(k + 1){P j(k + 1|k + 1)

+ [x̂j(k + 1|k + 1) − x̂(k + 1|k + 1)]

.[x̂j(k + 1|k + 1) − x̂(k + 1|k + 1)]T })

3. SIMULATION RESULTS

Figure 5 illustrates the online mission planning algorithms
described in the paper to generate a mission composed
only by lines and arcs from the path traced by the target,
using polynomial fitting (Fig. 5(a)) and the IMM-KF filter
(Fig 5(b)). In this simulation, the trajectory of the target
is composed by a set of GPS real data acquired during
the experimental tests done in scope of the GREX project
(GREX (2006–2009)) in the summer of 2008 in Azores,
Portugal.

Figure 6 shows the time evolution of the error between
the target trajectory and the mission planning trajectory.
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Fig. 5. Simulation results of the online mission planning
algorithms using real GPS data.
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Fig. 6. Time evolution of the norm of the error between the
target trajectory and the mission planning trajectory
for the real GPS data experiment.
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Fig. 7. Simulation results of the online mission planning
algorithms using simulated GPS data.

Table 1. Norm and RMS of the errors shown
in Fig. 6.

l1 l2 l∞ RMS

Polynomial fitting 469 10.90 0.84 0.12

IMM-KF fitting 701 19.67 1.52 0.22

See also the computed l1, l2, l∞ and RMS errors in Table
1. From this experiment we can conclude that both the
polynomial fitting and IMM-KF perform very well. To test
the robustness of the proposed algorithms with respect to
GPS failures, a second simulation was performed.

Figures 7, 8 and Table 2 display the results for the case
of a lawn mower trajectory corrupted with noise and data
loss for periods of 40 and 50 seconds in two sections. As it
was expected the IMM-KF approach predicts the target
motion (using the kinematic model) when it does not
receive data, and therefore the error norm is considerably
smaller than the one achieved with the polynomial fitting
strategy.
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Fig. 8. Time evolution of the norm of the error between
the target trajectory and the mission planning tra-
jectory in the simulation for the simulated GPS data
experiment

Table 2. Norm and RMS of the errors shown
in Fig. 8.

l1 l2 l∞ RMS

Polynomial fitting 1671 72.8 8.63 2.49

IMM-KF fitting 239 14.8 2.45 0.51

4. CONCLUSION

We proposed two methods to generate missions in real
time composed by lines and arcs. These algorithms play a
key role on the target following maneuver where a group
of vehicles are required to follow a target in formation.
To convert the absolute or relative position data available
from the positioning system installed on the target (e.g.
INS, GPS) into a set of lines and constant curvature
arcs one method resorts to a polynomial fitting algorithm
and the second method utilizes an interactive multiple-
model Kalman filter (IMM-KF). Both approaches produce
good results: while the polynomial fimial fitting method
is simpler to implement, the IMM-KF approach benefits
from a Kalman filter core, so it can predict the trajectory
in case of data loss. A rigorous analysis of the impact
of sensor noise and failures of communication on system
performance is a topic for future research.
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