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Abstract: This paper addresses the problem of marine vehicle path following using inner-
outer loop control, with due account for the vehicle dynamics. We propose an inner-outer
control structure that lends itself to a simple intuitive interpretation and exhibits three key
advantages: i) it allows for decoupling in the design of the inner and outer control loops, ii) the
design of the outer loop controller does not require in depth knowledge of the internal vehicle
dynamics, and iii) it affords practitioners a very convenient method to effectively implement
path following controllers on a wide range of vehicles. The mathematical tools used for systems
characterization and stability analysis borrow from Input to Output Stability (IOS) theory and
small gain theorems. In this paper, formal system analysis is done only for the case where
the paths to be followed are straight lines. However, the technical machinery developed and
the results obtained shed light into the process of designing path following controllers with
an inner-outer loop structure for arbitrary paths. The efficacy of the path following control
structure developed has been proven during tests with an AUV and an ASV at sea.
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1. INTRODUCTION

In many oceanographic missions of interest, marine vehi-
cles are required to follow spatial paths accurately. An
example is the case where an autonomous underwater
vehicle (AUV) executes a lawn-mowing manoeuvre along
a desired path, at a speed that may be a function of its
position along the path. In this case, no strict temporal
constraints are imposed on the motion of the vehicle. This
is in striking contrast with trajectory tracking, where the
reference for the vehicle motion is given explicitly in terms
of ”space versus time” coordinates. This strategy is seldom
pursued in practice, for it may lead to situations where, by
requesting that a vehicle track a desired inertial trajectory,
the required speed with respect to the water may either be
too small (leading to the loss of surface control authority)
or too high (exceeding the capability of the propulsion
systems installed on board). Path following control sys-
tems overcome these problems and, if properly designed,
lead naturally to vehicle trajectories that are smoother
than those obtained with trajectory tracking control. See
for example Micaelli and Samson (1993), Encarnacao and
Pascoal (2000), Silvestre (2000), Fossen (2002), Aguiar
et al. (2005) and the references therein for a discussion
of this circle of ideas.

Interestingly enough, path following is at the core of a
number of methods used for multiple vehicle cooperative
control along a set of fixed spatial paths, while holding a
desired formation pattern. See for example Pascoal et al.
(2006) and Ghabchello et al. (2009) for an introduction to
this subject. In this set-up, each vehicle executes a path
following maneuver along its assigned path; a decentralized
control law adjusts the different vehicle speeds so that the
desired geometrical pattern (compatible with the paths) is
achieved. The above comments add weight to the fact that
there is a need for the development of methods for reliable
path following that can be implemented on heterogeneous

vehicles even when detailed knowledge of their dynamics
is not available.

The literature on path following is extensive and the types
of control laws available display a vast choice of techniques
that borrow from linear and nonlinear control theory.
Representative examples can be found in Breivik and Fos-
sen (2005), Park et al. (2007), Vanni (2007), Aguiar and
Hespanha (2007), and Indiveri and Zizzari (2008). Path
following has also been addressed extensively in the air-
craft control field, where inner-outer (dynamic-kinematic)
loop control structures are pervasive and have shown to be
effective. In particular, inner-outer loop control structures
exhibit a fast-slow temporal scale separation that yields
simple ”rules of thumb” for controller tuning. Stated intu-
itively , the inner loop dynamics should be much faster
than those of the outer loop. This qualitative result is
well rooted in singular perturbation theory Khalil (2001).
Conceptually, the procedure described has three key ad-
vantages: i) it decouples the design of the inner and outer
control loops, ii) the structure of the outer loop controller
does not depend on the dynamics of the vehicle, and
iii) it affords practitioners a very convenient method to
effectively implement path following controllers on a wide
range of vehicles.

With the set-up adopted, the outer kinematic loop is
designed separately by assuming that its output variables
can be tracked infinitely fast by the inner dynamic loop.
In practice, this does not hold true. Furthermore, many
vehicle suppliers equip their platforms with inner dynamic
control loops for which only a general characterization of
the resulting plant-controller dynamics is available. It is
therefore required that the system designer tune the outer
loop control based on the characteristics of the inner loop,
so that the resulting combination yields a stable system
with good performance. In some cases, tuning of the inner
loop may also be required. To do this, however requires
going well beyond qualitative statements regarding fast-



slow temporal scale separation and to actually analyze
the inner-outer loop combination to obtain quantitative
relationships aimed at assessing stability and performance.
Furthermore, to be of practical value the analysis must
take into account the fact that the inner loops dynamics
are often described in very general terms. For example,
in the case of linear systems the end user may only know
the approximate bandwidth and static gain of the inner
loop control system. In the general nonlinear case, some
form of Input to State Stability (ISS) or Input to Output
Stability (IOS) characterizations may be available, see
Khalil (2001).

Motivated by the above considerations, this paper ad-
dresses the problem of path following for marine vehicles
by resorting to inner-outer control loops, with due account
for the vehicle dynamics and currents. The tools adopted
borrow from nonlinear control theory, whereby the cas-
cade and feedback systems of interest are characterized
in terms of their IOS properties. To derive quantitative
relationships for proper controller tuning an IOS small-
gain theorem is used. The analysis applies to a very general
class of vehicles. In this paper, formal system analysis is
done only for the case where the paths to be followed are
straight lines. However, the technical machinery developed
and the results obtained shed light into the process of
designing path following controllers with an inner-outer
loop structure for arbitrary paths.

For the sake of simplicity, the paper addresses the case
where the vehicles under consideration move in 2D space.
In this case, the path following controller is designed as the
combination of a kinematic outer-loop that issues heading
commands to an inner loop consisting of the feedback
combination of the vehicle itself and a heading controller
(heading autopilot). The speed of the vehicle may be kept
approximately constant by a dedicated controller that is
not analyzed here. The basic assumptions are that the plant
/ inner loop controller interconnection is characterized
in very general terms by an IOS-like relationship, and
no in depth knowledge of the internal vehicle dynamics
is available. This is of crucial importance to seamlessly
implement path following controllers on vehicles that come
equipped with heading autopilots.

Due to space limitations, and for the sake of clarity, we
have chosen to focus on showing stability of the complete
path following control system. A proof of convergence that
relies on ISS system characterization is available in Maurya
et al. (2009). Notice also that the present paper includes
only an indication of the proofs of the main theoretical
results required for path following controller design. Full
details are available in Maurya et al. (2009).

The paper is organized as follows. Section 2 formulates the
problem of path following for straight lines in 2D, proposes
an inner-outer loop control structure for its solution, and
gives an indication of the proof of stability of the resulting
feedback control system. Section 3 describes the results of
simulations and field test results with an ASV. Finally,
Section 4 contains the main conclusions and discusses
problems that warrant further research.

2. PATH FOLLOWING ALGORITHM IN 2D

The path following problem that we consider in the paper
can be simply explained by referring to fig.1. In the figure,
{I} = {xI , yI} and {B} = {xB , yB} denote an inertial
frame and a body-frame that is solidary with the vehicle,
respectively. Variable Vw is the velocity of the vehicle
with respect to the water expressed in {B}, Vc is the
velocity of the current in {I}, and V is the total inertial

Fig. 1. Cross track error for straight line following

velocity, also expressed in {I}. As is customary, ψ and β
denote yaw and sideslip angles, respectively. For motion
in the horizontal plane, the vehicle is equipped with a
stern propeller and two coupled vertical stern planes.
The total speed of the vehicle is set by ”freezing” the
speed of rotation of the stern propeller. The stern rudders
are then used in common mode to control the vehicle’s
heading. Let P denote the position of the center of mass
of the AUV, expressed in {I}. Clearly, Ṗ = R(ψ)Vw +
Vc where R(.) denotes the rotation matrix from {B}
to {I}, parameterized by ψ. Equivalently, Ṗ = R(ψ +
β)[‖Vw‖ 0]T + Vc, where β is angle of side slip. It follows
from the above that the evolution of the distance from the
center of mass of the AUV to the path, usually called cross
track error and denoted e, satisfies ė = sin(ψ + β) ‖Vw‖+
vcy, where vcy denotes the component of Vc along the unit
vector yI . Assume for simplicity of exposition that the
total speed ‖Vw‖ is held constant and equal to U > 0. This
assumption can be lifted and the results extended to the
case where ‖Vw‖ > ‖Vc‖. The objective (path following
problem) is to steer the vehicle using the stern planes
so that e will converge to zero. In what follows, this is
done by adopting a two step procedure: first, assuming
that the heading angle can be commanded instantaneously,
design a kinematic outer-loop with heading as a command
variable (virtual control) so that the cross track error
converges to zero; then, use a dynamic inner-loop loop
(heading controller) so that the actual heading angle
track the commanded angle. It is tacitly assumed that
the heading control loop (autopilot) is characterized in
very general terms via an IOS relationship. Conditions are
determined and tuning rules are offered under which the
complete path following system is stable. See Maurya et al.
(2009) for a convergence result.

Path Following Algorithm: the Rationale

The rationale for the control law derived can be best
understood by considering the simplified case where the
sideslip angle is zero (this assumption is lifted afterwards).
In this situation,

ė = U sin(ψ) + vcy (1)
which, in the absence of the term vcy, can be re-written as

ė = Uu,

with u = sin(ψ). We now make the trivial and yet
crucial observation: should we be free to manipulate the
variable u, then the choice of control law u = −(K1/U)e
would yield asymptotic exponential convergence of e to
the origin. To further push this line of thought, notice
also that the existence of the fixed bias vcy motivates the



introduction of an integral term in the virtual input u,
which is now re-rewritten as

u = − 1
U

K1e−K2

t∫
0

e(τ) dτ

 .

As a consequence, the dynamics of e become

ė+K1e+K2

t∫
0

e(τ) dτ =0

Let

ς =

t∫
0

e(τ) dτ.

Then,
ς̈ +K1ς̇ +K2ς = 0

The above system is second order system and the gains K1
and K2 can now be chosen so as to obtain a desired natural
frequency and damping factor. Clearly, the above virtual
control suggests that the desired command for heading be
written as

ψd = sin−1(sat(u)),

abbreviated ψd = sin−1 us, with us = sat(u), where

sat(u) =


u if |u| < ls
ls if u > ls,

−ls if u 6 −ls
0 < ls < 1, and the saturation function is introduced to
guarantee that the argument of sin−1(.) lies in the interval
[−1,+1]. In what follows, it is important to introduce an
antiwindup mechanism in the integral term of u. For this
reason, the final form of the control law for ψd involves a
new definition of u and is given in terms of the operator
f : e→ ψd defined by

ψd = sin−1(sat(u));u =
(
−K1e

U
− K2

U
ς

)
where ς is the output of the dynamical system faw(e) :
e→ ς with realization

ς̇ =
{

e if |u| < ls
0 otherwise

(2)

It is possible to show, using Lyapunov-based analysis tools,
that the above nonlinear control law yields convergence of
the cross track error to zero if the actual vehicle heading
equals the desired heading reference ψd. The key goal of
this paper is to show that ”identical behaviour” is obtained
when the dynamics of the heading autopilot (inner loop)
and the sideslip of the vehicle are taken into account.
In particular, we show that the basic structure and the
simplicity of the outer-loop control law are preserved. The
theoretical machinery used to prove stability borrows from
IOS concepts and a related small gain theorem. See Khalil
(2001) for a fast paced introduction to the subject and
Panteley and Ortega (1997) and Vanni (2007) for inter-
esting applications of control techniques that bear affinity
with with inner outer loop control structures. Here, we in-
dicate briefly how the existence of the heading autopilot is
taken into account without having to change the structure
of the outer-loop described before.The resulting control
scheme is depicted in Fig. 2, where the heading autopilot
plays the role of an inner loop.

Fig. 2. Path following using inner-outer loop control

Inner Loop Dynamics

This section addresses explicitly the inclusion of the inner
loop dynamics, thus lifting the assumption that the actual
heading ψ equals the desired heading ψd. However, the
dynamics of the vehicle are still simplified in that the angle
of sideslip is not taken into account. This assumption will
be lifted in the last part of the paper. Let

ψ̃ = ψ − ψd
be the mismatch between actual and desired heading
angles. We assume that the autopilot characteristics can be
described in very general terms as an IOS (input-output-
stable) system, see Khalil (2001). In order to understand
the rationale for this characterization, notice that if the
inner-loop dynamics are linear with static gain equal to 1,
then its dynamics admit a realization of the form

ẋ = Ax+Bψd
ψ = Cx

with −CA−1B = 1. In this case, the coordinate transfor-
mation η = x−A−1Bψd yields the realization

η̇ = Aη +A−1Bψ̇d

ψ̃ = Cη

for the operator from ψ̇ to ψ̃ that characterizes the inner
loop dynamics. An IOS characterization of the loop can
be easily derived from the above system matrices [Khalil
(2001)]. Notice, however that this type of description
applies also to general nonlinear systems of the form

η̇ = g(η, ψ̇d)

ψ̃ = h(η, ψ̇d)
and allows for a somewhat loose, yet quantifiable descrip-
tion of the inner-loop dynamics. This justifies the IOS
characterization of the inner loop dynamics as∥∥∥ψ̃(t)

∥∥∥ ≤ βf (‖η(0)‖ , t) + γf

(
sup

t0≤τ≤t

∥∥∥ψ̇d(τ)
∥∥∥) , (3)

where βf is a class KL function, and γf is a class K
function.

The above assumption captures in a rigorous mathemati-
cal framework simple physical facts about the inner loop
control system. Namely, i)if the time-derivative of the
heading reference ψd is bounded, then the heading tracking
error is bounded and ii) the dynamics of the inner loop
system can be characterized in terms of bandwidth-like
characteristics that are reflected in βf and γf , see Khalil
(2001). A simple exercise with a first order system will
convince the reader that as the bandwidth of the system
increases, γf will decrease. For practical purposes, the
latter can be viewed as a ”tuning knob” during the path
following controller design phase. For analysis purposes,



Fig. 3. Inner-outer loop control: an IO characterization

Fig. 4. General feedback interconnection

it is also required to ensure that not only ψ̃ but also
the remaining variables in the inner loop be bounded in
response to ψ̇d. This fact can be easily captured with an
ISS condition of the type

‖η(t)‖ ≤ βg (‖η(0)‖ , t) + γg

(
sup

t0≤τ≤t

∥∥∥ψ̇d(τ)
∥∥∥) , (4)

for some βg ∈ KL and γg ∈ K. We assume such a condition
holds.

At this point we make the key observation that the
complete path following control system can be represented
as the interconnected structure depicted in Fig. 3. The
latter can be further abstracted to the scheme in Fig.4
consisting of blocks H1 : ψ̃ → ψ̇d and H2 : ψ̇d → ψ̃, a
description of which is given next. To this effect, we start
by defining the variable

ς̃ = K −
t∫

0

e dτ,

where K is a constant to be defined. Clearly, system H1
admits the representation

ė = Usin(ψ̃ + ψd) + vcy,

˙̃ς = −e,

ψd = sin−1

{
sat

(
−K1e

U
+
K2ς̃

U
− KK2

U

)}
,

y1 = ψ̇d,

and H2 satisfies the IOS stability condition in (3). In what
follows we show, using a small gain theorem, that the
above interconnected system is closed-loop stable and all
signals are bounded. Central to the proof of stability is
the fact that system H1 is IOS in the unsaturated region
of operation defined by |u| < ls. We purposely avoid
discussing the issues that arise when the overall system
enters one of the saturated regions of operation. Namely,
that it will again enter the unsaturated region of operation
in finite time as shown in Maurya et al. (2009).

The proof that H1 is IOS hinges on the facts that H1 is
the composition of two auxiliary systems Ha1 : ψ̃ → e and
Ha2 : e → ψ̇ and that both are IOS. An indication of the
proof is given next.

Consider the Lyapunov function V (e, ς̃) = 1
2e

2 + K2
1
2 ς̃

2

and assume that ∣∣∣ψ̃∣∣∣ ≤ α < π/2
for all t ≥ 0 (conditions under which this holds are
described in Maurya et al. (2009). Further let K = vcy

K2
.

Simple but lengthy computations show that
V̇ (e, ς̃) ≤ −K1e

2 cos(ψ̃)

+ |e|
[
K2

∣∣∣(cos(ψ̃)− 1
)∣∣∣ |ς̃|+ |vcy| ∣∣∣(cos(ψ̃)− 1

)∣∣∣
+ |U |

∣∣∣sin(ψ̃)
∣∣∣] .

Using (2), it follows that
∣∣∣∣ t∫
0

e dτ

∣∣∣∣ < Ues

K2
for all t and

therefore

|ς̃| ≤
∣∣∣∣K +

Ues
K2

∣∣∣∣ =
1
K2
|vcy + Ues| .

As a consequence,
V̇ (e, ς̃) ≤−K1e

2 cos(ψ̃)

+ |e|
[
C
∣∣∣(cos(ψ̃)− 1

)∣∣∣+ |U |
∣∣∣sin(ψ̃)

∣∣∣] ≤ 0

∀ |e| > |U |
K1 cosα

[
C

|U |

∣∣∣(cos(ψ̃)− 1
)∣∣∣+

∣∣∣sin(ψ̃)
∣∣∣] ,

where C = |vcy + Ues| + |vcy|. It follows from standard
arguments in Khalil (2001) that the cross track error e
satisfies the IOS condition

‖e (t)‖ ≤ βe (ν(0), t) + γe

(
sup

0≤τ6t

∥∥∥ψ̃(τ)
∥∥∥) ∀ t ≥ 0, (5)

where ν = (e, ς̃), βe is a class KL function, and γe is a
class K∞ function given by

γe (r) =
(
C + |U |
K1 cosα

)
r.

From (5),

‖e‖∞ ≤ βc + γe

∥∥∥ψ̃∥∥∥
∞
, (6)

where βc = βc(ν(0)) depends on the initial state but is
otherwise constant in time, thus proving that Ha1 is IOS.
To show that Ha2 is IOS start by computing ψ̇d to obtain

ψ̇d = −
(
K1ė

U
+
K2e

U

)(
1− u2

)− 1
2 , (7)

where (
1− u2

)− 1
2 ≤ η, (8)

with η = 1

(1−l2s)
1
2

. Using equations (7) and (8) yields∥∥∥ψ̇d∥∥∥
∞
≤ K1η

|U |
‖ė‖∞ +

K2η

|U |
‖e‖∞ .

Furthermore, from equation (1)
‖ė‖∞ ≤ |U |+ |vcy|

and therefore∥∥∥ψ̇d∥∥∥
∞
≤ K1η

|U |
(|U |+ |vcy|) +

K2η

|U |
‖e‖∞ , (9)

thus proving the result.



Fig. 5. Block diagram for interconnected system including
side slip dynamics

Equipped with the above two results, it now follows from
(6) and (9) that H1 is IOS because∥∥∥ψ̇d∥∥∥

∞
≤ β1 + γ1

∥∥∥ψ̃∥∥∥
∞

where γ1 = K2η
|U | γe and β1 = K1η

|U | (|U |+ |vcy|) + K2η
|U | βc,

with γ1 showing explicit dependence on K1,K2. In conclu-
sion, the systems H1 and H2 are both IOS. It can now be
shown, using the small gain theorem in (Khalil (2001), that
the interconnected system is stable if γ1γf < 1. This result
yields a rule for the choice of gains K1,K2 (as functions
of the inner-loop dynamic parameters) so that stability is
obtained.

Sideslip Dynamics

So far, stability of the path following system has been
proven by ignoring the presence of vehicle sideslip β. In this
section we overcome this artificial constraint and show that
stability of the closed loop system can be maintained even
when the sideslip dynamics are taken into account. Again,
only an indication of the proof is given for the unsaturated
region. The technique that we exploit to prove stability
can be best understood by referring to Figure 5, where
the dynamics of β are driven by yaw rate r, an internal
state of the inner loop. Let

ψ̃ = ψd + ψ̃′,

with
ψ̃′ = ψ̃ + β.

From (4), it can be concluded that the system with input
ψ̇d and output r is IOS and satisfies

‖r‖∞ ≤ γr
∥∥∥ψ̇d∥∥∥

∞
+ βr. (10)

We also make the assumption that the sideslip dynamical
system with input r and output β is IOS and satisfies

‖β‖∞ ≤ γs ‖r‖∞ + βs (11)
for some γs and βs. This assumption is valid for under-
actuated open loop stable vehicles. Simple computations
that build on the stability result obtained with β = 0 show
that∥∥∥ψ̇d∥∥∥

∞
≤ γ1

1− γ1γf
‖β‖∞ +

1
1− γ1γf

(γ1βf + β1) , (12)

where γ1γf < 1. It now follows from (10) and (11) that

‖β‖∞ ≤ γsγr
∥∥∥ψ̇d∥∥∥

∞
+ γsβr + βs. (13)

The systems characterized by the IOS relationships (12)
and (13) are interconnected in feedback form as shown
in Fig. 6, where only the corresponding IO gains are
indicated. Again, using a small gain theorem argument
it follows that the closed loop feedback system is stable if

γ1γsγr
1− γ1γf

< 1.

Fig. 6. Block diagram for interconnected system showing
IO gains

As in the previous case, once the inner loop and sideslip
dynamics have been characterized in terms of their IOS
descriptions, the above equations yields an explicit method
to compute the outer loop controller coefficients.

3. IMPLEMENTATION AND FIELD TEST RESULTS

The algorithm for path following described was imple-
mented and fully tested with success in two vehicles: the
MAY A AUV and the DELFIMx ASV. The first is an
autonomous underwater vehicle developed at the National
Institute of Oceanography, Goa, India. The latter is an au-
tonomous surface vehicle that is property of the Instituto
Superior Tecnico, Lisbon, Portugal, see Fig 8. Implementa-
tion issues and results of tests carried out with the MAYA
AUV are briefly discussed in Maurya et al. (2008). Prior
to testing the path following algorithm on the DELFIMx
ASV, simulations were done with a full nonlinear model
of the vessel. The outer loop controller parameters were
tuned based on the bandwidth of the linearized equations
of motion of the vessel about 1m/s; see Maurya et al.
(2009) for the details. The results of the simulations are
shown in figures 9 and 10 that show the tracking error
e and desired and actual heading, respectively. Figure 11
shows the results obtained with the DELFIMx ASV in
the Azores, performing a lawn mowing maneuver during
tests done in the scope of the European GREX project.
Both in the simulations and in real tests the vehicle rejects
the disturbance introduced by a fixed current. Further-
more, figure 11 shows that the performance of the path
following algorithm is good even when the path contains
arcs of circumferences.

CONCLUSIONS

This paper introduced an inner-outer control structure for
marine vehicle path following in 2D, with due account for
the vehicle dynamics and ocean currents. The structure
is simple to implement and affords systems designers a
convenient way of tuning the outer loop control law param-
eters as functions of a ”bandwidth-like” characterization
of the inner loop. Stability of the complete path following
control system was proven for straight paths, by resorting
to nonlinear control theoretical tools that borrow from
input to output stability concepts and a related small gain
theorem. The efficacy of the inner-outer control structure
adopted was shown during tests with an AUV and an ASV
at sea. Future work will aim at obtaining formal proofs of
practical stability and convergence in the case of arbitrary
spatial paths.
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Fig. 7. The MAYA AUV
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Fig. 9. Cross track error

Fig. 10. Desired and actual heading

REFERENCES

Aguiar, A.P. and Hespanha, J. (2007). Trajectory-tracking
and path-following of underactuated autonomous vehi-
cles with parametric modeling uncertainty. IEEE Trans-
actions on Automatic Control, 52(8), 1362–1379.

Aguiar, A.P., Hespanha, J., and Kokotovic, P. (2005).
Path-following for non-minimum phase systems removes
performance limitations. IEEE Transactions on Auto-
matic Control, 50(2), 234–239.

Fig. 11. Delfimx performing a lawn mowing maneuver in
the Azores, PT

Breivik, M. and Fossen, T. (2005). Principles of guidance-
based path following in 2d and 3d. 44th IEEE Confer-
ence on Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC ’05., 627–634.

Encarnacao, P. and Pascoal, A. (2000). 3d path following
for autonomous underwater vehicle. Proceedings of
the 39th IEEE Conference on Decision and Control,
Sydney, Australia, 3, 2977–2982.

Fossen, T. (2002). Marine Control System: Guidance,
Navigation and Control of Ships, Rigs and Underwater
Vehicles. Marine Cybernetics AS, Trondheim, Norway.

Ghabchello, R., Aguiar, A.P., Pascoal, A., Silvestre, C.,
Kaminer, I., and Hespanha, J. (2009). Coordinated
path-following in the presence of communication losses
and time delays. SIAM J. Control Optim., 48(1), 234–
265.

Indiveri, G. and Zizzari, A.A. (2008). Kinematics motion
control of an underactuated vehicle: A 3d solution
with bounded control effort. Second IFAC Workshop
on Navigation, Guidance and Control of Underwater
Vehicles, Killaloe, Ireland.

Khalil, H.K. (2001). Nonlinear Systems (3rd Edition).
Prentice Hall.

Maurya, P., Aguiar, A.P., and Pascoal, A. (2009). Marine
vehicle path following using inner-outer loop control.
Technical Report , ISR/IST, Lisbon.

Maurya, P., Navelkar, G., Madhan, R., Afzalpurkar, S.,
Prabhudesai, S., Desa, E., and Pascoal, A. (2008). Nav-
igation and path following guidance of the maya auv:
from concept to practice. 2nd International Conference
on Underwater System Technology: Theory and Appli-
cations, Bali, Indonesia.

Micaelli, A. and Samson, C. (1993). Trajectory-tracking
for unicycle-type and two-steering-wheels mobile robots.
In G. Roberts and R. Sutton (eds.), Technical Re-
port No. 2097, Project Icare, INRIA, 353–386. Sophia-
Antipolis, France.

Panteley, E. and Ortega, R. (1997). Cascaded control of
feedback interconnected nonlinear systems: application
to robots with ac drives. Automatica, 33(11), 1935–1947.

Park, S., Deyst, J., and How, J. (2007). Performance and
lyapunov stability of a nonlinear path following guidance
method. Journal of Guidance, Control, and Dynamics,
30(6), 1718–1728.

Pascoal, A., Silvestre, C., and Oliveira, P. (2006). Vehi-
cle and mission control of single multiple autonomous
marine robots. In G. Roberts and R. Sutton (eds.),
Advances in Unmanned Marine Vehicles, 353–386. IEE
Contol Engineering Series.

Silvestre, C. (2000). Multi-objective optimization theory
with applications to the integrated design of controllers
/ plants for underwater vehicles. In PhD Thesis. Insti-
tuto Superior Técnico, Lisbon,Portugal.

Vanni, F. (2007). Coordinated motion control of multiple
autonomous underwater vehicles. In Masters Thesis,
46–50. Instituto Superior Técnico, Lisbon,Portugal.


