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Abstract: There is widespread interest in the deployment of fleets of marine robots with the potential
to roam the oceans freely and collect data at an unprecedented scale. This calls for the development
of efficient algorithms for multiple vehicle motion planning that can take directly into account the
capabilities of each vehicle and environmental conditionsand lend themselves to seamless integration
with control and navigation systems. The paper describes advances towards the development of a new
breed of motion planning systems that address explicitly inter-vehicle collision avoidance, together with
a number of criteria that may include simultaneous times of arrival at assigned target points, energy
minimization, and acoustic communication constraints. The theoretical framework adopted is rooted
in the so-called Projection Operator Approach that borrowsfrom optimization and dynamical systems
theory. Simulations with full dynamic vehicle models illustrate the potential of the methods developed.
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1. INTRODUCTION

Marine robotics is a highly active and rapidly evolving fieldof
research, and recent advances have made it both technologically
and economically possible to execute missions involving more
than one vehicle. This opens up new avenues for marine re-
search that were not possible before, for it increases drastically
the interest in applications where multiple autonomous marine
vehicles (AMVs) execute missions at sea cooperatively, in order
to achieve new and challenging goals.

1.1 Cooperative Planning for Multiple AMVs

It is nowadays at the heart of most research programs to fully
explore the possibilities that multiple AMV scenarios pose, and,
in accordance with that, the areas of application are widespread
and diverse. One of the most explored scenarios to date is the
sampling of ocean data (Leonard et al., 2010; Ögren et al.,
2004), and it is a subject of continuous interest how to optimize
a cooperative mission in terms of maximizing the amount of
collected samples.

Another active field of research is the incorporation of hetero-
geneous AMVs into one cooperative framework for mission
execution (Aguiar et al., 2009). Several factors need to be taken
into account, and besides having to solve the obvious problem
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of finding a common framework upon which inter-vehicle com-
munication can be based, a mission has to be planned in such a
manner that the constraints imposed by the vehicles’ different
dynamics are taken into account to yield feasible trajectories
and therefore, an executable mission.

Recent advances in diver assistance and harbor security sce-
narios (Indiveri et al., 2010) also demonstrate the importance
of cooperation among the vehicles. Providing the diver unit
with means of trilateration, i.e. positional information and di-
rectional instructions in relation to the mission objectives, not
only requires a reliable control that is capable of adaptingthe
vehicle formation in case the diver diverges from its path. It
also inherently requires a mission plan that brings together the
mission objectives and the vehicle restrictions and outputs a
mission that is optimal in vehicle energy usage as well as in
terms of the strain put on the diver when following the instruc-
tions transmitted to him by the assisting vehicle network.

1.2 Related Work

In Paley et al. (2008), trajectories are designed to meet the
scientific objectives of a mission, and adapted in case of vehicle
failures. Instead of aiming for single-track trajectorieswith
simultaneous arrival, the objective is rather a closed shape that
can be executed repeatedly; if more than one vehicle follows
such a trajectory, they need to maintain a fixed distance. Vehicle
models are explicitly incorporated, but used only for position
prediction; trajectory planning is done using a simplified point-
mass model.

Spangelo and Egeland (1994) use optimal control techniques
for path planning with respect to minimum energy requirement,
where the energy is computed as the mechanical power input



to the propeller shaft, which, according to Kumar et al. (2005),
means that the performance index does not exactly representthe
energy consumed by the thrusters. By defining path constraints,
the trajectories are planned in a way that obstacles are avoided.
The vessel model is explicitly incorporated. This is also done
by Inanc et al. (2005), but here, energy-minimal trajectories are
computed by assuming the instantaneous power to be constant.

1.3 Contribution

In previous publications (see Häusler et al. (2010) and the ref-
erences therein), we restricted ourselves to a kinematic model
of the vehicles under consideration. Optimization constraints
related to the dynamics had to be incorporated indirectly by
constraining the kinematic model, e.g. by providing numerical
bounds on the path’s curvature.

In this paper, we introduce a novel approach to cooperative
planning and optimization of energy-minimal trajectoriesin the
presence of obstacles. The trajectories are guaranteed to be fea-
sible in terms of the vessels’ dynamic models, which is an ad-
vantage inherent to the projection-operator based optimization
approach we follow, since it explicitly incorporates the vessel
dynamics. A minimum energy planning problem is solved to
obtain the trajectories, with an emphasis on the computation of
the energy as the integral of the instantaneous power drained
from the batteries , i.e. electrical (and not the more commonly
used mechanical) power.

The paper is organized as follows: we first summarize the
dynamic model for the MEDUSA class of autonomous surface
vehicles in Sec. 2, where we also introduce the accompanying
static equations that, as part of the cost function, achieveenergy
expenditure minimization. We discuss the problem formulation
in relation to that vehicle model in Sec. 3, before giving an
overview of the optimization approach in Sec. 4. The paper
concludes with simulation results in Sec. 5, after which final
comments and the research outlook are included in Sec. 6.

2. THE MEDUSA MODEL

The MEDUSA ASV is a vessel recently developed at the Dy-
namical Systems and Ocean Robotics laboratory at ISR/IST in
Lisbon. Its hull consists of two torpedo shaped tubes that lie
parallel to the water surface, but with a vertical displacement,
so that one tube is fully submerged at all times. By switchingoff
the GPS receiver, this design even allows treating the MEDUSA
as if it were an underwater vehicle (in some limited fashion),
while still making it possible for the operator to observe an
ongoing mission directly, thus making the MEDUSA an ideal
test platform for the development of planning algorithms, co-
operative controllers, and more.

2.1 Kinematic and Dynamic Equations

Since the MEDUSA is conceptually a semi-submersible, the
mathematical model can be considered to be that of a planar
vehicle. Using the notation of Fossen (2002), the model is

η̇ =R(η)ν (1)
(

Mrb +Ma
)

ν̇+
(

Crb(ν) +Ca(ν)
)

ν+
(

D+Dn(ν)
)

ν = τ (2)

where the kinematic statesη = [x,y,ψ] express the vessel’s
pose in the inertial reference frame{I}, and the dynamic state

Fig. 1. The MEDUSA vessel set-up. The thrusters are mounted in the middle
between both hull parts on thex-z-plane (body coordinates) and produde
completely from the body on thex-y-plane.

vectorν = [u,v,r] represents the velocities in the body frame
{B}. In (1),R(η) is a rotation matrix such that




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ẏ
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][
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]

The model inputsnps andnsb are the rotational velocities of the
MEDUSA’s actuators, the port side and starboard propeller,re-
spectively, obtained by multiplying a percentage command with
the maximally admissible rotational velocitynmax. Maneuver-
ing is done using common and differential thrust, resultingin
the external force vector

τ =

[

Tps+Tsb
0

l(Tps−Tsb)

]

wherel is the displacement of the propellers from the center
of {B}, see Fig. 2. The forcesTps andTsb are functions of
u, r, and the two propellers’ rotational velocities,nps andnsb,
respectively, both given in [rps].

Placing the center of{B} at the center of mass of the vessel,
the rigid body and hydrodynamic added mass matrices in the
dynamics (2) can be written as

Mrb =

[

m 0 0
0 m 0
0 0 Izz

]

Ma =−

[

Xu̇ 0 0
0 Yv̇ 0
0 0 Nṙ

]

wherem is the body mass andIzz the rigid body inertia. The
rigid body and hydrodynamic centripetal and Coriolis matrices
are

Crb(ν) =

[

0 −mr 0
mr 0 0
0 0 0

]

Ca(ν) =

[

0 0 −Yv̇v
0 0 Xu̇u
Yv̇v −Xu̇u 0

]

and the linear and nonlinear drag is expressed as

D=−

[

Xu 0 0
0 Yv 0
0 0 Nr

]

Dn(ν) =−





X|u|u|u| 0 0
0 Y|v|v |v| 0
0 0 N|r|r|r|




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Fig. 2. Conceptual drawing of the MEDUSA as seen from above. The arrows
illustrate the velocities experienced at different pointsof the body for a
system that is undergoing a right turn withr = 0.1s−1 while moving
forward with u = 1.0ms−1. The black coordinate axes represent the
body frame{B}, the grey axes the inertial frame{I}.

2.2 Static Equations for Thrust and Torque

Since the model inputs are the propellers’ rotational velocities
nps andnsb, a mapping between those and the thrustTps and
Tsb needs to be defined. The standard way is given through the
open-water coefficients(Fossen, 2002). It turns out, however,
that models based on these coefficients are only applicable in
the regime of non-zero advance velocity at the propeller blade,
together with non-zero propeller velocities, where the rotational
direction must be the one that drives the vessel forward. This
is because the coefficients are defined in terms of the open-
water advance ratioJo = va

nd
, whereva is the propeller’s (and

the vessel’s) advance speed,n is the rotational velocity of the
propeller, andd is its diameter. Clearly, a zero-crossing of the
propeller speed makes the advance ratio go to infinity.

Thus, for small ocean vehicles, especially ones that are steered
by differential thrust from two or more propellers (and not,
for instance, by changing the deflection of a rudder), another
model must be used, as it is highly likely that the propellers
will change their rotational direction for maneuvers that involve
curved trajectories. A model that is valid for all regions ofmo-
tion (i.e. ahead, back, crash back and crash ahead) is described
by van Lammeren et al. (1969) and explored later on by Oost-
erveld (1970) and Bachmayer et al. (2000), the so-calledfour-
quadrant model. The coefficients used by this model are given
in terms of the advance angleβ at the propeller blade, and data
is available in the form of a 20th order Fourier series for various
ducted propellers and nozzles (Oosterveld, 1970). A smoothing
procedure that makes the coefficients more usable for Newton
descent methods is described in Healey et al. (1994).

In this propeller model, the thrust and torque equations are

T =
1

2
ρcT(β)

(

v2
a + v2

p

)

πR2 (3)

Q=
1

2
ρcQ(β)

(

v2
a + v2

p

)

πR2d (4)

whered is the propeller diameter andR= d/2 is its radius. The
advance angle can be computed as

β = atan2(va,vp) (5)
whereva is the advance velocity of the propeller, andvp is the
lateral velocity of the propeller blade at radius0.7R, which is a
function of the rotational velocities. See Fig. 3, and Bachmayer
et al. (2000) and Healey et al. (1994) for an illustration of the
concepts involved. In what follows,
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Fig. 3. A cross-section of the propeller blade at0.7R showing the forces and
velocities acting on the propeller blade (the force vectorsare enlarged).
The propeller runs counter-clockwise in order to achieve forward thrust
T , moving the system upwards in this picture. To avoid overlapping
arrows, the tangential component of the propeller torqueQ at 0.7R is
shown here with a negative sign. Propeller liftL and dragD and total
hydrodynamic forceF are only shown for reference.

vpps,sb
= 0.7Rωps,sb = 0.7R2πnps,sb (6)

When the vessel is rotating about thez axis, we need to account
for the fact that the advance velocities at the propellers are
different from each other, which results in the side-dependent
expressions

Vaps = sin(atan2(−py,px))lr+u=−pyr+u

Vasb = sin(atan2(py,px))lr+u= pyr+u
(7)

Here,(px,py) is the offset of the propellers from the vessel’s
center of mass in body coordinates, andl is their absolute
distance to the center of mass (see Fig. 2). Since (6) and (7)
are dependent on the vessel side, it needs to be kept in mind
that the advance angle (5) and both the thrust (3) and the torque
(4) need to be computed separately for each propeller.

The MEDUSA vessel uses Seabotix HPDC1507 thrusters,
which run in a Type 37 Kort nozzle and have a pitch ratio of
roughlyP/d≈ 1.2. A correction factor (the detailed derivation
of which is not given here due to space limitations) was applied
to achieve the bollard-pull conditions that Seabotix indicates
for this thruster model. Thanks to the particular body shape
of the MEDUSA (see Fig. 1), we may regard propeller-hull
interactions as negligible and treat the propellers as if they were
running in open water, simply employing the four quadrant
model just described.

3. PROBLEM FORMULATION

Our goal is to generate trajectories for missions involving
multiple MEDUSAs. The trajectories are required to be free
of inter-vehicle collisions as well as collisions with obstacles.
Furthermore, they must be optimal in terms of prospective
energy usage throughout the mission, take into account the
dynamic constraints of the vessel, and provide the means of
simultaneous arrival.

When referring to minimum energy trajectories, the energy to
be minimized is usually understood as the amount of work done
to change the vehicle’s velocity and overcome the drag forces
(Kruger et al., 2007). Here, however, we are more in the line
with Chyba et al. (2008), since we want the algorithm to find
trajectories that are minimal in terms of the wattage drawn from
the the batteries. To this effect, we formulate an additional set
of static equations that are based on the DC motor model for
the thrusters, and which will be used as means of computing
the required electrical energy along a trajectory to allow for the
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Fig. 4. Data and polynomial fit for the port-side motor, obtained from measure-
ments conducted on April 14, 2011, data set of 09:46 am.

computation of energy-related quantities that make sense in a
physically sound manner.

Since the terminal inductance of the thrusters is small (La ≈
500µH), we can neglegt the fast dynamics of the electric part
of the standard DC motor equation,La dIdt +RaI = V −Keω
(Franklin et al., 2002), and write the relation of the rotational
velocities of the propellers to the voltage as

Vps,sb =RaIps,sb+Keωps,sb =RaIps,sb+Ke2πnps,sb (8)

whereVps,sb, Ips,sb andRa are the armature voltage, current
and resistance of the (portside/starboard) DC motor,Ke is its
electrical constant, andnps,sb its rotational velocity. There is
no data available on the viscous friction coefficient and the
rotor inertia of the Seabotix thrusters, which would usually be
required to compute the armature currentI as a function of the
rotational velocities from the mechanical part of the DC motor
dynamics. However, we were able to determine the currents
Ips and Isb as functions ofnps and nsb, respectively, from
measurements conducted with the MEDUSA, and by fitting a
3rd order polynomial to the data obtained (see Fig. 4).

Considering the different inputs for port side and starboard
propeller, the electrical power consumed by the motors thusis

P = VpsIps+VsbIsb+Pp
= (RaIps+Kenps)Ips+ (RaIsb+Kensb)Isb+Pp

(9)

with Pp as the constant power required by the on-board com-
puters. This, under the assumptions made for (8), can of course
only be applied if we have maneuvers that sustain the velocity
for a certain amount of time; if the velocity changes faster,one
has to be more sophisticated than using steady-state equations.

4. MATHEMATICAL FRAMEWORK

Before discussing the technical details of formulating thecolli-
sion avoidance constraints, we give a very short overview ofthe
projection operator method we adopt in this paper. The reader is
referred to Hauser (2002) and related papers for in-depth detail.

4.1 The Projection Operator Approach and Barrier Functional

The central idea of this approach to the solution of optimal
control problems is aprojection operatormethod that allows
expressing the dynamically constrained optimization problem

minimize
∫ T

0
l(x(τ),u(τ), τ) dτ +m(x(T ))

subject to ẋ(t) = f(x(t),u(t), t), x(0) = x0

(10)

as an unconstrained one, and use Newton’s method to find an
optimal solution. This is centered around the realization that a
trajectory tracking controller defines a function spaceoperator
that maps a desired trajectory (acurve) to a systemtrajectory

(an element of the trajectory manifold). Composing the opti-
mization objective (afunctional) with the (trajectory tracking)
projection operatorconverts the dynamically constrained opti-
mal control problem into an essentially unconstrained optimiza-
tion problem.

Suppose thatξ(t) = (α(t),µ(t)), t≥ 0, is a bounded curve (e.g.,
an approximate trajectory off ) and letη(t) = (x(t),u(t)), t≥
0, be the trajectory off determined by the nonlinear feedback
system

ẋ(t) = f(x(t),u(t), t), x(0) = x0

u(t) = µ(t) +K(t)(α(t)−x(t))

This feedback system defines a continuous, nonlinearprojec-
tion operator

P : ξ = (α(·),µ(·)) 7→ η = (x(·),u(·))

This allows us to formulate the following algorithm for infinite-
dimensional optimization, similar to the Newton method for
optimization of a functiong(·), e.g., in finite dimensions:

PROJECTIONOPERATORNEWTON METHOD

1 Init initial trajectoryξ0 ∈ T
2 for k = 0,1,2, . . .
3 do design feedbackK(·) definingP aboutξi
4 search direction

ζi = argminζ∈TξiT
Dh(ξi) · ζ+ 1

2 D
2g(ξi) · (ζ,ζ)

5 step sizeγi = argminγ∈(0,1] g(ξi+γζi)
6 updateξi+1 = P(ξi+γiζi)

whereT is the trajectory manifold,ξ ∈ T , andg(ξ) := h(P(ξ))
with

h(ξ) :=

∫ T

0
l(α(τ),µ(τ), τ) dτ +m(α(T ))

Since our problem formulation demands having additional col-
lision avoidance constraints, we have in fact a constrainedopti-
mal control problem

min
∫ T

0
l(x(τ),u(τ), τ)dτ +m(x(T ))

s.t. ẋ(t) = f(x(t),u(t), t), x(0) = x0

cj(x(t),u(t), t) ≥ 0, t ∈ [0,T ], j ∈ {1, . . . ,k}

(11)

We incorporate the constraintscj(·) using the barrier functional
method introduced in Hauser and Saccon (2006). The method
requires the approximate log barrier functionβ̃δ(·), 0 < δ ≤ 1
defined as

β̃δ(z) =











− logz z > δ

k−1

k

[

(

z−kδ

(k−1)δ

)k

−1

]

− logδ z ≤ δ
(12)

wherek > 1 is an even integer. This allow us to express (11) in
the shape of (10) as

minimize
∫ T

0

(

l(x(τ),u(τ), τ)

+ ǫ

k
∑

j=1

β̃δ(cj(x(τ),u(τ), τ))
)

dτ +m(x(T ))

subject to ẋ(t) = f(x(t),u(t), t), x(0) = x0

where ǫ and δ express the “sharpness” of the barrier, and
are reduced over the iterations of the algorithm to force the
trajectories into the valid region of the optimization space.



We found it necessary to slightly modify (12), since it assumes
(unbounded) negative values forz > 1. This may result in a
domination of the negative part in the cost integral, thereby,
in relation to our application, effectively putting areward
on staying away from the other vehicle (or obstacle) as far
as possible in addition to the cost for avoiding collisions.
Since this is not desirable, we extended (12) by forming a
composition with theC2-smooth “hockey stick” function

σ(z) =

{

tanh(z) if z ≥ 0

z otherwise z

σ(z)

defining the new barrier functional

βδ(z) := β̃δ(σ(z))

that behaves as the standard barrier functionβ̃δ for small and
negative z, but goes to zero forz→∞ (Saccon et al., 2012).

4.2 The Optimization Problem

Our goal is to minimize the energy spent by each vehicle when
moving from a given initial to a given final configuration. Using
(9), the total power consumption of thei-th vehicle is

lpow(x[i](t),u[i](t)) =
(

RaI
[i]
ps (t) +Ken

[i]
ps(t)
)

I
[i]
ps (t)

+
(

RaI
[i]
sb (t) +Ken

[i]
sb(t)
)

I
[i]
sb (t) +Pp (13)

wherex
[i](t) denotes thei-th vehicle’s state vector. An addi-

tional cost term expressingL2 trajectory optimization can be
formulated as

ldes(x
[i](t),u[i](t), t) =

1

2

∣

∣

∣

∣

x
[i](t)−x

[i]
des(t)
∣

∣

∣

∣

2

Qto
+

1

2

∣

∣

∣

∣

u
[i](t)−u

[i]
des(t)
∣

∣

∣

∣

2

Rto
(14)

whereQto andRto are positive definite weight matrices that
have to be chosen appropriately.

The inter-vehicle collision avoidance constraint (explained in
more detail in Saccon et al. (2012)) between vehiclesi andj is

ccol(x
[i](t),x[j](t)) =
(

x[i](t)−x[j](t)
)2

(2rc)2
+

(

y[i](t)− y[j](t)
)2

(2rc)2
−1 (15)

where rc is the minimum safety distance that must be kept
between two vehicles. Due to space limitations, the obstacle
avoidance constraintcobs(x

[i](t),o[k]) between vehiclei and
obstaclek is not given here, but it can be formulated in a similar
manner. (Here,k ∈ {1, . . . ,No}, whereNo is the total number
of obstacles in the environment.)

Using the power function (13), the desired trajectory function
(14), the inter-vehicle collision avoidance function (15), and
the obstacle avoidance function, the vehicle trajectoriesare
obtained by solving the optimization problem

min
∫ T

0

Nv
∑

i=1

(

lpow
(

x
[i](τ),u[i](τ)

)

+

ldes
(

x
[i](τ),u[i](τ), τ

)

)

dτ +m(x(T ))

s.t. ẋ
[i] = f(x[i],u[i], t), x

[i](0) = x
[i]
0 , x

[i](T ) = x
[i]
f

ccol
(

x
[i](t),x[j](t)

)

≥ 0, i 6= j

cobs
(

x
[i](t),o[k]

)

≥ 0
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(a) The lines around the obstacles illustrate the safety distance of 1.5m between
vessel and obstacle. The red vessel pictograms illustrate the point of closest
proximity; the rings around the vessels indicate the inter-vessel safety distance
of 2.0m. The desired trajectories are shown as dotted lines.Note that the vessels
are drawn in their real sizes; the units on abscissa and ordinate axes are meters.
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(b) Surge velocities (vertical axis) vs. time (horizontal axis).

Fig. 5. Three vessels and two obstacles. The scenario was deliberately chosen so
that it initially would be infeasible (desired trajectories crossing obstacles
and causing collisions) to show the planner’s capability.

with i,j ∈ {1, . . . ,Nv} andk ∈ {1, . . .No}, andx
[i]
0 andx

[i]
f are

the initial and final condition on thei-th vehicle.

5. SIMULATION RESULTS

Due to space limitations, we restrict ourselves to one scenario
that shows the capabilities of our motion planning approachin a
scenario with three vehicles and two obstacles: the vehicles start
at three arbitrary points and are required to arrive at threetarget
points at exactly the same timeT , following desired trajectories
while avoiding collisions (see Fig. 5). The example shows that
the projection operator approach is a very robust optimization
method for our area of applictation: desired trajectories can be
defined such that they intersect obstacles and would result in the
vessels crashing into each other; the result in the end, however,
is such that (a) the trajectories are “close” to the desired ones,
while (b) being optimal with respect to energy expenditure,and
(c) avoiding collisions with obstacles and between the vessels.

It is worth stressing that, in order to increase run-time efficiency
and simplify the analytical expressions for first and second
derivatives of a properly defined operator (as required by New-
ton’s method), the four-quadrant thrust and torque coefficients
(originally formulated as 20th order Fourier series) were ap-
proximated with 30-piece periodic cubic spline curves. Once



computed to machine precision, the spline coefficients can be
stored in a C header file and need not to be recomputed at
later runs of the algorithm. Of course, the algorithm can also
be used for trajectory generation purposes by setting the weight
matrices of theL2 minimization part equal to zero.

6. CONCLUSIONS AND OUTLOOK

We presented a novel approach for multiple AMV trajectory op-
timization that is innovative in the following two main aspects:

• It is a solution finding process for a much extended prob-
lem formulation (including collision constraints, a novel
thruster model, battery saving incremental cost, and ex-
plicit incorporation of the vessel model, while achieving
simultaneous times of arrival).
• It is based on a projection operator method that allows

applying a second order descent method, and, due to
the nature of the approach, prior knowledge about the
scenario is not required from the user in order to shape
an initial guess.

In relation to previous work (Häusler et al., 2010) the new
approach has the immediate advantages that (a) the algorithm
can in general be expected to converge much faster than the
previously adopted zero-order optimization, and that (b) we can
quickly obtain a trajectory that is feasible both in terms ofthe
vessel dynamics and in terms of the optimization constraints.

There are several issues that we plan to address in the imme-
diate future: the influence of ocean currents on the paths has
to be evaluated, and there are more constraints that may be
incorporated, like e.g. communication constraints. In obstacle-
rich environments, it would be preferable to only evaluate those
obstacle avoidance constraints which are active to speed upthe
computation, which would require some (perhaps probabilistic)
means of determining the “active obstacles”, e.g Gottschalk
et al. (1996). Aggressive maneuvering might make it necessary
to incorporate constraints on the dynamic states or the inputs.
Self-localization during an ongoing mission at sea (Teixeira and
Pascoal, 2005) will be eased up by including terrain information
already at the planning level, and mission performance metrics
might be included as further terms in the cost function. Finally,
it is highly desirable to soften up the problem associated with
reaching the final boundary conditions by employing a root
finding method Hauser (2003).
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