
Cooperative Path-Following of
Underactuated Autonomous Marine

Vehicles with Logic-based Communication

Francesco Vanni ∗ A. Pedro Aguiar ∗ António M. Pascoal ∗

∗ Institute for Systems and Robotics, Instituto Superior Técnico,
Lisbon, Portugal (e-mail: {fvanni,pedro,antonio}@isr.ist.utl.pt).

Abstract: This paper addresses the problem of steering a group of underactuated marine
vehicles along given spatial paths, while holding a desired inter-vehicle formation pattern
(cooperative path-following). The CPF problem is divided into a motion control task of making
each vehicle track a virtual target moving along the desired path and a dynamic assignment
task of adjusting the speeds of the virtual targets so as to achieve vehicle coordination. At the
path-following level, the controller derived exhibits a inner-outer-loop structure and includes an
observer to estimate the ocean currents and the sway velocity. At the coordination level, the
decentralized control algorithm addresses explicitly the case where the communications among
the vehicles occur with non-homogeneous, possibly varying delays. Convergence and stability of
the overall system are proved formally. Simulations results are presented and discussed.
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1. INTRODUCTION

The past few decades have witnessed considerable inter-
est in the area of motion control of autonomous marine
craft (Aguiar and Pascoal, 2007b; Alonge et al., 2001;
Encarnação and Pascoal, 2000; Fossen, 1994; Jiang, 2002;
Lefeber et al., 2003; Leonard, 1995). For underactuated
vehicles in particular, the problem of control system de-
sign continues to pose considerable challenges. However,
current research goes well beyond single vehicle control.
In a great number of mission scenarios, multiple marine
vehicles must work in cooperation. Considerable effort is
being placed on the deployment of groups of networked
autonomous marine vehicles (AMVs) which can interact
autonomously with the environment and other vehicles,
resulting in a significant improvement in efficiency, per-
formance, reconfigurability and robustness, and in the
emergence of new capabilities beyond the ones of indi-
vidual vehicles. Motivated by the above considerations,
the problem of coordinated or cooperative path-following
(CPF) control has recently come to the forum (Aguiar
and Hespanha, 2007; Aguiar et al., 2007; Ghabcheloo et
al., 2007; Ihle et al., 2006; Skjetne et al., 2002, 2004).
Different approaches to the solution of this and similar
problems have been reported in the literature. They share
a common strategy in that the problem of CFP is partially
decoupled into two: i) path-following, where the objective
is to find local closed loop control laws to steer each vehicle
to its path at a reference speed, and ii) multiple vehicle
coordination, where the goal is to adjust the reference
speeds of the vehicles about the desired formation speed,
so as to reach formation.
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In this paper we derive new nonlinear motion control
strategies for single and multiple underactuated vehicles,
building on the work reported in (Vanni, 2007). The so-
lutions adopted are rooted in Lyapunov-based theory and
address explicitly the vehicle dynamics as well as the con-
straints imposed by the topology of the inter-vehicle com-
munications network. This is particularly relevant in the
case of underwater applications, where vehicles exchange
information over low bandwidth, short range communica-
tion channels that are plagued with intermittent failures,
multi-path effects, and distance-dependent delays.

The path-following problem is solved individually for every
vehicle, each having access to a set of local measurements,
by introducing a “virtual target” that moves along the de-
sired path. We control explicitly the rate of progression of
the virtual target and derive inner-outer-loop control laws
that make the vehicle track the virtual target. Coordina-
tion is then achieved by synchronizing the parametrization
states that capture the positions of the virtual targets. To
cope with asynchronous, discrete-time communications we
exploit the techniques proposed in (Aguiar and Pascoal,
2007a), and expand the circle of ideas advanced in (Xu and
Hespanha, 2006; Yook et al., 2002), where decentralized
controllers for a distributed system were derived by using,
for each system, its local state information together with
estimates of the states of the systems that it communicates
with. To minimize the requirements of inter-vehicle data
exchange we include a logic-based communication strategy
that borrows from the results in (Aguiar and Pascoal,
2007a).

A subset of the results reported here was presented in
(Vanni et al., 2007). Due to space limitations, all the proofs
are omitted. These can be found in (Vanni et al., 2008).

In the following, we define a⊕ b := max{a, b}, and use the
standard definition of class K, K∞ and KL functions (see
for example Khalil (2002)).



2. PROBLEM STATEMENT

In this section we describe the mathematical model of
a class of AMVs used for motion control design and
formulate the cooperative path-following problem.

2.1 Vehicle model

The kinematic equations of motion of a vehicle moving
in the horizontal plane can be developed using a global
inertial coordinate frame {U} and a body-fixed coordinate
frame {B}, the origin of which coincides with the vehicle’s
center of mass, yielding

ẋ = u cos(ψ)− v sin(ψ), (1a)
ẏ = u sin(ψ) + v cos(ψ), (1b)

ψ̇ = r, (1c)
where u (surge speed) and v (sway speed) are the body-
fixed frame components of the vehicle’s velocity, x and
y are the inertial cartesian coordinates of its center of
mass, ψ defines its orientation (heading angle), and r
is the vehicle’s angular speed. Defining p := [x y]′ and
v := [u v]′, equations (1a)-(1b) can be written in compact
form as

ṗ = R(ψ)v
where R(ψ) is the orthonormal transformation matrix
from {B} to {U}. In the presence of a constant and
irrotational ocean current, v is the sum of the vehicle’s
velocity with respect to the water vr := [ur vr]′ and the
water current velocity vc := [uc vc]′, both expressed in the
body-fixed reference frame.

Neglecting the motions in heave, roll, and pitch, the dy-
namic equations of motion of an underactuated marine ve-
hicle for surge, sway and heading yield, under simplifying
assumptions (Aguiar, 1996),

muu̇r −mvvrr + dur
ur = τu, (2a)

mv v̇r +muurr + dvr
vr = 0, (2b)

mr ṙ −muvurvr + drr = τr, (2c)
where mu := m−Xu̇, mv := m−Yv̇, mr := Iz−Nṙ, muv :=
mu −mv are mass and hydrodynamic added mass terms,
and dur

(ur) := −Xu−X|u|u|ur|, dvr
(vr) := −Yv−Y|v|v|vr|,

dr(r) := −Nr − N|r|r|r| capture hydrodynamic damping
effects. The symbols τu and τr denote respectively the
external force in surge and the external torque about the
vertical axis of the vehicle.

2.2 Path-following

To solve the problem of driving a vehicle along a desired
path, the key idea exploited here is to make the vehicle
approach a virtual target that moves along the path with
a desired timing law. Let pd be the position of the target,
and vd its desired rate of progression. We decompose the
motion-control problem into an inner-loop dynamic task,
which consists of making the vehicle’s actuated velocities
ur and r track a desired speed reference ud := [ud, rd]′,
and an outer-loop kinematic task, which i) regulates the
evolution of the virtual target and ii) assigns the reference
speed so as to achieve convergence to the path. This
decomposition is motivated by the fact that it is common
for autonomous vehicles to be equipped with an inner-
loop controller for tracking a speed reference. In principle,
better results could be achieved with control laws designed
directly for τu and τr, based on both the dynamics and the
kinematics of the vehicle motion. However, the approach

proposed here results in greater portability, since the same
outer-loop controller could be run on a wide range of
vehicles, regardless of the parameters that define their
dynamics.

In what follows we assume that the inner-loop controller
satisfies the following stability property:
Property 1. Let ũ := u − ud and r̃ := r − rd be the
speed errors and x0

il the initial condition of the state of
the inner-loop system. There exist functions βũ, βr̃ ∈ KL
and positive constants εũ, εr̃ such that
|ũ(t)| ≤ βũ(‖x0

il‖, t)⊕ εũ |r̃(t)| ≤ βr̃(‖x0
il‖, t)⊕ εr̃.

In addition, we also introduce the following constraint.
Property 2. The measurements of sway velocity vr and the
ocean current vc are not available, as the sensors required
are expensive.

The path-following problem for the outer loop can be
formulated as follows:

Problem 1. (Path-following). Consider the AMV whose
motion is described by (1) and (2), and let pd(γ) ∈ R2

be a desired path parameterized by a continuous variable
γ ∈ R and vd(γ) ∈ R a desired speed assignment. Suppose
that pd(γ) is sufficiently smooth and its derivatives with
respect to γ are bounded. Derive control laws, subject to
Properties 1 and 2, for ud and γ̇, such that the position er-
ror ‖p(t)− pd(γ(t))‖ and the speed error |γ̇(t)− vd(γ(t))|
converge to a small neighborhood of the origin as t→∞.

Notice that the speed vd is not an actual velocity: it
expresses the rate at which the parameter γ changes.

2.3 Coordination

Consider now a group of vehicles I := {1, . . . , n}, each
with its own parametrized path pdi

(γi), i ∈ I. To achieve
coordination among the elements of the group, the paths
have to be designed conveniently and a common speed
profile v̄d(γ) has to be assigned to all the paths, so that the
vehicles move along them while holding a desired, possibly
varying, inter-vehicle formation pattern. The parameter γ
of each vehicle can be seen as a coordination state such
that coordination exists between two vehicles i and j if
and only if γi(t) = γj(t). The key idea in designing the
coordination controller is to introduce a control variable
in the form of a correction term ṽd that is added to the
desired speed of each vehicle, yielding

vd = v̄d(γ) + ṽd. (3)
The approach pursued here is a decentralized one, that
takes into consideration the existing communication con-
straints: the correction speed ṽdi is determined based on
the information available to vehicle i only, that is, on
the coordination states of the vehicles that communicate
with i. Let γ := [γ1, . . . , γn]′ be the vector containing the
coordination states of the n vehicles, and let Ni denote the
set of vehicles that vehicle i exchanges information with
or, in the case of unidirectional communication, receives
information from. The coordination problem can be for-
mulated as follows (Aguiar and Pascoal, 2007a):

Problem 2. (Coordination). For each vehicle i ∈ I derive
a control law for the correction speed ṽdi as a function
of γi and γj , with j ∈ Ni, such that, as t → ∞, for all
i, j ∈ I the coordination error γi − γj approaches zero,
and the formation travels at an assigned speed v̄d, that is,
γi → v̄d ∀i ∈ I.
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Fig. 1. Structure of the PF controller (Strategy I).

3. PATH-FOLLOWING CONTROL DESIGN

In this section we propose two approaches to the path-
following problem stated in Section 2. The difference
between the two strategies lies in the way the virtual target
that the vehicle has to track follows the path. In the first
strategy the speed of the virtual target depends only on
its position along the trajectory; in the second strategy it
also depends on the position of the vehicle, that is, the
motion of the virtual target is regulated so as to “help”
the vehicle to track it.

Define the position error e expressed in body-frame co-
ordinates as the difference between the positions of the
vehicle and of the virtual target,

e := R′(p(t)− pd(γ(t))).
Its dynamics are described by
ė = −S(r)e+vr +vc−R′ṗd(γ), S(r) =

[
0 −r
r 0

]
. (4)

We design an observer to take into account the fact
that the sway velocity vr and the water current speed
are unknown signals. Let vcxy denote the ocean current
expressed in the inertial reference frame {U}, so that

ṗ = Rvr + vcxy
(5)

Using (2b) and (5) we define the following estimation
dynamics

˙̂p = R

[
ur
v̂r

]
+ v̂cxy

+Kp(p− p̂) (6a)

˙̂vcxy
= Kc(p− p̂) (6b)

˙̂vr = −mu

mv
urr −

dv(v̂r)
mv

v̂r (6c)

where Kp and Kc are the observer gain diagonal matrices.
The water current velocity estimate, expressed in the
body-fixed reference frame {B}, is v̂c = R′vcxy

.

To make the desired speed ud := [ud rd]′ appear in the po-
sition error dynamics we let ũ := [ũ r̃]′ := [u− ud r − rd]′
be the speed error and introduce a constant design vector
δ := [δ, 0]′, δ < 0. Following from (4), simple computations
show that the position error dynamics are then given by

ė = −S(r)(e−δ)+∆ (ud + ũ)+
[

0
v̂r + ṽr

]
+v̂c+ṽc−R′ṗd(γ)

where ∆ :=
[

1 0
0 −δ

]
.

3.1 PF Strategy I

The time derivative of the position of the virtual target is

ṗd(γ) =
∂pd(γ)
∂γ

γ̇.

The first strategy we adopt is to force the virtual target
to move at the desired speed, by assigning

γ̇ = vd(γ).
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Fig. 2. Structure of the PF controller (Strategy II).

The resulting control scheme is depicted in Fig. 1. We are
now ready to state the following result.

Proposition 3. Consider the vehicle model described by
(1) and (2) in closed-loop with the output feedback control
law composed by an inner loop that satisfies Property 1,
the estimator (6), and the outer loop given by

γ̇ = v̄d(γ) + ṽd (7)

ud = ∆−1

(
−Kk tanh(e− δ)−

[
0
v̂r

]
− v̂c +R′

∂pd(γ)
∂γ

vd

)
(8)

where Kk := diag{kx, ky} satisfies kx > εũ, ky > |δ|εr̃.
Then, the path-following error e − δ is input-to-output
stable (IOS) with respect to ũ and ṽc, that is, there exist
functions σeũ, σ

e
vc
∈ K∞, and βe ∈ KL such that

‖e− δ‖ ≤ βe(‖χ0
e‖, t)⊕ σeũ(‖ũ‖[0,t])⊕ σevc

(‖ṽc‖[0,t]). 2

The proof is based on the Lyapunov function V = ‖e‖2. In
(8) we have chosen to introduce the nonlinear term tanh(·)
in the outer-loop control law to enforce that the desired
velocity should increase with the position error only up to
a maximum value. If the distance between the positions
of the vehicle and the virtual target is greater than this
limit, the vehicle should approach the desired position at a
constant velocity, until the distance becomes smaller than
the limit and the velocity begins to decrease.

3.2 PF Strategy II

The second strategy we propose borrows from the tech-
nique of backstepping. Defining the virtual target speed
error

z := γ̇ − vd(γ) = γ̇ − v̄d − ṽd (9)
and computing its time derivative yields ż = γ̈− ˙̄vd− ˙̃vd. By
explicitly controlling γ̈ we introduce an additional control
variable, as illustrated in Fig. 2.

Proposition 4. Consider the vehicle model described by
(1) and (2) in closed-loop with the output feedback control
law composed by an inner loop that satisfies Property 1,
the estimator (6), and the outer loop given by

γ̈ = −kz (γ̇ − v̄d) + ˙̄vd(γ) + (e− δ)′R′
∂pd(γ)
∂γ

+ kz ṽd

(10)

ud = ∆−1

(
−Kk tanh(e− δ)−

[
0
v̂r

]
− v̂c +R′

∂pd(γ)
∂γ

vd

)
(11)

where kz > 0 and Kk := diag{kx, ky} satisfies kx > εũ,
ky > |δ|εr̃. Then, the path-following error e − δ is input-
to-output stable (IOS) with respect to ũ, ṽc and ˙̃vd, that
is, there exist functions σeũ, σ

e
vc
, σeṽd

∈ K∞ and βe ∈ KL
such that



‖e− δ‖ ≤ βe(‖χ0
e‖, t)⊕ σeũ(‖ũ‖[0,t])

⊕ σevc
(‖ṽc‖[0,t])⊕ σevd

(| ˙̃vd|[0,t]). 2

The proof is based on the Lyapunov function V = ‖e‖2 +
z2. The difference from the first path-following strategy
is that the evolution of the position of the virtual target
pd also depends on the position error (e − δ), so if the
vehicle is ahead/behind the desired position the virtual
target moves faster/slower.

4. COORDINATION CONTROLLER

In this section we develop a decentralized control law to
solve the coordination problem. We start by assuming
that the communications take place continuously, and then
tackle the situation where they take place at discrete
instants of time and are affected by time delays.

To describe the communication topology it is a natural
choice to resort to graph theory. The vehicles in a for-
mation are the vertices of a graph of which the existing
communication links are the edges (undirected, as we
assume that communications are bidirectional). Letting A
and D denote respectively the adjacency matrix and the
degree matrix associated with the graph that describes the
communication network, we can define an error vector

ξ = Lγ, (12)
where L = D−1(D−A) is the normalized graph Laplacian.
The i-th element of vector ξ is

ξi = γi −
1
|Ni|

∑
j∈Ni

γj ,

that is, the sum of the coordination errors between vehicle
i and the vehicles that communicate with it. The single
variable ξi captures the communication constraints of
the network and can be used for control purposes. The
assumption is made that the communication topology does
not change in time, i.e., the Laplacian is constant. By
construction, L ≥ 0, ‖L‖ ≤ 2 and Lx = 0 iff x = 1
(Godsil and Royle, 2001).

4.1 Continuous communication

Let v̄d, ṽd and z denote the vectors containing the desired
speed, the correction term, and the virtual target speed
error, respectively, for each vehicle in the formation.

Proposition 5. Consider a formation of n vehicles and let L
be the normalized Laplacian of a graph that describes the
inter-vehicle communications network, with L2 its smallest
non-null eigenvalue. Let the desired formation speed v̄d(γ)
be a Lipschitz function with Lipschitz constant κ, and
assume that any two neighboring vehicles communicate in
a continuous manner. The correction terms for the vehicles
in the formation are assigned through the decentralized
control law

ṽd = −kξLγ (13)
where kξ > κ

L2
. Then, for strategy I the coordination error

ξ converges to 0 and vd → v̄d as t→∞. For strategy II, ξ
is ISS with respect to z and ‖γ̇− v̄d‖ is detectable through
z, that is, there exist functions βξ ∈ KL and σξz , σ

γ
z ,∈ K∞

such that
‖ξ‖ ≤ βξ(‖χ0

ξ‖, t)⊕ σξz(‖z‖[0,t])
‖γ̇ − v̄d‖ ≤ σγz (‖z‖[0,t]). 2

The proof is based on the Lyapunov function V = ξ′Lξ.

4.2 Discrete communication

The coordination controller designed in Section 4.1 relies
on the continuous exchange of information among the
vehicles in the formation. This assumption is unrealistic
because underwater communication systems are character-
ized by low bandwidths and require that the exchange of
data take place at discrete instants of time. In (Aguiar and
Pascoal, 2007a), a logic-based communications strategy
is proposed that takes into account both the fact that
communications do not occur in a continuous manner and
the cost of exchanging information. In between commu-
nications, that are regulated by a supervisory logic, each
vehicle runs estimations of the coordination states of the
rest of the formation. This is done through synchronized
estimation blocks, identical for every vehicle, that admit
the following dynamics, based on (3) and (13):

˙̂γ = v̄d(γ̂)− kξ (Lγ̂) . (14)
In particular, every vehicle runs an estimate of its own
state. It is by comparing the actual value of its state with
this estimate that a vehicle decides when to communicate
with the vehicles in its neighborhood. If, at a certain
instant tk, |γi−γ̂i| ≥ ε2, then vehicle i broadcasts the value
of γi. Assuming that no delays affect the communication
links, each vehicle updates its estimate instantly, so that

γ̂i(tk) = γi(tk).
Remembering the expression of the normalized Laplacian,
the control law (13) becomes

ṽd = −kξ
(
γ −D−1Aγ̂

)
, (15)

where it has been explicited that the correction term for
every vehicle is the sum of a term that depends on the
coordination state of the vehicle itself, which is available
at every instant, and a term built on the estimates of the
states of the other vehicles. The control law (15) can be
rewritten as

ṽd = −kξLγ − kξD−1Aγ̃.

In the instants between communication, the estimation
error γ̃ = γ − γ̂ acts as a perturbation input, so ξ is ISS
with respect to z and γ̃, which is bounded by ε2. Selecting
a lower tolerance ε2 reduces the neighborhood of the origin
to which ξ converges but increases the number of messages
exchanged among vehicles.

4.3 Time-delays

Assume that at time t vehicle i broadcasts its coordination
state. Vehicles j and k will receive the message at t+tj and
t + tk respectively. The communication strategy must be
modified, taking into account the network topology, and
the update must take place so as to keep the estimators
synchronized. We consider the case of time-varying and
nonhomogeneous delays that are not known a priori,
and assume that all the agents have synchronized clocks.
Thus, each agent can compute the time-delay when the
timetagged data arrives.

A solution, proposed in (Aguiar and Pascoal, 2007a), re-
quires for each vehicle to be equipped with as many inde-
pendent estimation blocks as the number of its neighbors.
A single vehicle runs |Ni| different estimates of γ. Let γjki
denote the estimate of γi run by vehicle j on the estimator
associated with the link between j and k. If, at a certain
instant tk, |γi − γ̂iji | ≥ ε2, then vehicle i sends a message
containing the actual value γi and the time tk to vehicle j.
Vehicle j receives the message at tk+τ but does not update



its estimate of γi instantly. Instead, it sends a “received”
message back to i, and only updates its estimate at tk+2τ ,
while i does the same upon reception of the reply. This
strategy is based on the assumption that the delay on a
communication channel is the same in both directions. A
small difference τ̃ however will always be present, so an
error exists between the estimates of the two vehicles over
the same link.

An alternative update logic is based on a statistical eval-
uation of the time τmax that is required for the message
to be sent and for the answer to be received. Assume that
at time tk vehicle i communicates γi to j. If i receives an
answer from j before tk + τmax then both vehicles update
their estimates at the instant tk + τmax. If instead the
answer is not received within the time limit, the message
is considered lost and a new message is sent, with the up-
to-date value of γi. In the event that j receives the message
but i does not receive the reply, only j makes an update.
Vehicle i however sends immediately a new message. The
limit τmax has to be choosen so that the probability of a
message being lost is lower than a defined margin.

5. COORDINATED PATH-FOLLOWING

We now state the main result of this work, that shows that
the proposed decentralized control law architecture solves
the coordinated path-following problem and exhibits some
strongly desirable stability properties.

Theorem 6. Consider the overall closed-loop system com-
posed by

(1) a formation of n vehicles, whose motion is de-
scribed by (1) and (2), guided along paths pdi

(γi),
i = 1, . . . , n, where each vehicle uses an inner loop
that satisfies Property 1, the estimator (6), and the
motion control laws (7) and (8) (or (10) and (11));

(2) the coordination law (15) with the estimator (14),
and

(3) the logic-based communication system described in
Section 4.

Suppose that in the presence of time-delays these are
bounded, so that the post-reset value of γ̃i is less than ε2.
Then, the control system proposed solves the coordinated
path-following problem, that is, Problem 1 and Problem 2.
More precisely, all the states of the closed-loop system with
the exception of γ are bounded, the control signals for
the inner-loop are bounded, the coordination error ξ and
the speed error γ̇ − v̄d are IOS with respect to ε2, and
for each vehicle i the path-following error ei − δ is IOS
with respect to ũi and ṽci , that is, there exist functions
σξε , σ

γ
ε , σ

e
ũ, σ

e
vc
∈ K∞, and βξ, βγ , βe ∈ KL such that

‖ξ‖ ≤ βξ(‖χ0
ξ‖, t)⊕ σξε (ε2),

‖γ̇ − v̄d‖ ≤ βγ(‖χ0
γ‖, t)⊕ σγε (ε2),

‖e− δ‖ ≤ βe(‖χ0
e‖, t)⊕ σeũ(‖ũ‖[0,t])⊕ σevc

(‖ṽc‖[0,t]). 2

6. SIMULATION RESULTS

To illustrate the performance of the CPF control strategies
proposed, we consider a group of three underactuated
autonomous underwater vehicles (AUVs) that are required
to follow a lawn mower path (a typical trajectory in ocean
exploration scenarios) while maintaining a formation pat-
tern that consists of having them aligned along a horizon-
tal line perpendicular to the paths. AUV 1 is allowed to
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Fig. 3. Trajectories of the three vehicles in the xy plane
with strategy I (a) and strategy II (b).
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Fig. 4. Evolution of the formation error (a) and of the po-
sition error (b) for the two path-following strategies.

communicate with AUVs 2 and 3, but the latter two do
not communicate between themselves directly. We adopted
the following inner-loop control laws for surge speed and
yaw rate,

τu = −ku(ur − ud) + dur
(ud)ud −mv v̂rr +muu̇d,

τr = −kr(r − rd) + dr(rd)rd −muvurv̂r +mr ṙd,

which make the inner-loop error ũ converge to zero.
The numerical values used for the physical parameters
match those of the Sirene underwater shuttle described in
(Aguiar, 1996). To test the robustness of the proposed con-
trol algorithm we introduced noise in every sensed signal
(the x and y positions, the orientation angle ψ, the linear
velocity u and the angular velocity r) and thruster satu-
ration. Figure 3 shows the trajectories of the AUVs in the
presence of a constant ocean current (which is unknown
from the point of view of the controller). When strategy
I is adopted coordination between the three vehicles is
achieved when, at the end of the first straight line, each of
them reaches its virtual target (Fig. 3a), the speed of which
is statically assigned a priori. With strategy II, however,
the movement of each virtual target is regulated by the
path-following controller of the corresponding vehicle, that
makes it slow down if the vehicle is behind it, and by
the coordination controller, that tries to maintain the
virtual targets synchronized. For this reason, the virtual
targets move slower at the beginning of the trajectory,
to allow the vehicles to reach them, and then reach the
desired speed. The coordination between the true vehicles
is thus achieved earlier along the trajectory, as illustrated
in Fig. 3b. Furthermore, when the path is curved and the
AUVs are required to move at different speeds to maintain
formation, strategy II ensures that the virtual targets move
so that all the true vehicles, including the one that has to
move faster, are able to follow the desired trajectory while
maintaining formation.

To measure of how well the vehicles maintain the desired
configuration, independently of how they follow the as-
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Fig. 5. Communication signal for the three vehicles along
the paths (strategy II). Each impulse corresponds to
a transmission.

signed path, we introduce a measure called formation error
(efi

), defined as the distance of the position of vehicle i
from a virtual point pvi = [pvyi , pvyi ]

′, that is,
efi = pi − pvi .

These virtual points represent the desired formation (in
this case a line) that moves with the center of mass
of the vehicles. Figure 4a clearly shows that strategy
II (a.II) makes this error smaller than strategy I (a.I).
In Figure 4b we compare the sum of the position error
(the distance between the vehicle and the virtual target)
of the three vehicles, for strategy I (b.I) and strategy
II (b.II). The position errors are smaller with strategy
II, since the movement of the virtual targets takes into
account their distance from the vehicles. Figure 5 shows
the communications among the vehicles when strategy
II is adopted. Signal σ = {0, 1} indicates, by switching
its value, when a vehicle communicates with the others.
Notice the reduced number of communications in the
overall period. The need for communication arises, in order
to keep the coordination error bounded, at the beginning of
the trajectory (when the distances of the vehicles from the
virtual targets are large), and along the curved portions of
the paths.

7. CONCLUSIONS

The paper addressed the problem of cooperative path-
following for a group of underactuated autonomous ma-
rine vehicles, moving in the horizontal plane and in the
presence of constant unknown ocean current disturbances.
The solutions proposed are valid for a large class of under-
actuated marine vehicles.

The path-following strategies are based on an inner-outer
structure. The output feedback control laws designed for
the outer loop embody in themselves an observer for the
current and for the sway velocity. Coordination is obtained
through a decentralized control law that takes into account
the constraints imposed by the topology of the inter-
vehicle communications network and the presence of time-
delays, and requires reduced exchange of data among the
vehicles.

Simulations with a nonlinear model of a representative
AUV showed the efficacy of the control laws proposed. The
simulations also indicate that the control laws yield good
performance in the presence of actuator saturation and
measurement noise. The impact of sensor noise on system
performance can be further alleviated by using state filter
estimators. A rigorous analysis of this issue is a topic for
future research.
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