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Abstract: In this paper, we investigate a generalization of the infinite time horizon linear
quadratic regulator (LQR) for systems evolving on the special orthogonal group SO(3). Using
Pontryagin’s Maximum Principle, we derive the necessary conditions for optimality and the
associated Hamiltonian equations. For a special class of weighting matrices, we show that the
optimal feedback can be computed explicitly and we prove that the non differentiable value
function is the viscosity solution of an appropriate Hamiltn-Jacobi-Bellman equation on SO(3).
For arbitrary positive definite weighting matrices, numerical simulations allow us to explore
the relationship between the optimal trajectories and weighting matrices, and in particular to
highlight nontrivial non differentiability properties of the value function.
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1. INTRODUCTION

Given the linear system
z(t) = Az(t) + Bu(t), z(0) =29 € R", (1)
the Linear Quadratic Regulator (LQR) problem

Hul(lgl/o ' (1)Qx(7) + u' (7)Ru(r) dT, (2)

is a standard method to obtain an asymptotic stabilizing
controller. The weighting matrices ) and R affect the
closed loop behavior of the system, and provide a penalty
of the state and input of the system, respectively. In this
paper we address a similar problem but for systems that
evolve on the special orthogonal group SO(3). In this case,
we would like to modify the quadratic incremental cost
in (2) such that it makes intrinsic sense on SO(3) and
resembles on this manifold a quadratic cost. While there is
a rich literature on the optimal stabilization of the attitude
of a rigid body controlled by means of independent input
torques (we refer the reader to, e.g., Tsiotras (1996),
Spindler (1998), Krstic and Tsiotras (1999), Bhat and
Bernstein (1998) and reference therein) we could not find,
as far as the authors know, a study of the problem we
are introducing in this work. The stabilization of rigid
body dynamics is often addressed employing a set of local
coordinates (such as the Cayley-Rodrigues parameters)
or a covering map (such as the 2:1 mapping from unit
quaternions to rotational matrices) to describe rotational
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dynamics. As mentioned in Bhat and Bernstein (1998), a
proof of global convergence in these sets of coordinates
results either in a feedback law which is only defined
locally (in the case that a set of local coordinates is
chosen) or exhibits unwinding phenomenon (when a cover
map is chosen), where the initial attitude may start
arbitrarily close to the desired final attitude and yet
rotate through large angles before coming to rest. In
this paper, we are interested in working explicitly with
the group of rotational matrices SO(3), studying the
properties of the value function (e.g., its continuity and
differentiability) as a mapping from SO(3) to R. Our long
term goal is to give a complete characterization of the
optimal solutions and develop a set of numerical tools
for the exploration of optimal control problem on finite
dimensional Lie group. Due to space limitations, the proofs
have been omitted. A preprint including proofs is available
upon request. A journal and complete version of this paper
is in preparation.

The paper is organized as follow. In Section 2, we present
the notation we use throughout the paper. In Section 3
we introduce the optimal control problem that we are
interested to solve and derive the necessary conditions for
optimality. A discussion on the incremental cost we have
chosen is also provided. In particular, we propose a way to
define a “quadratic function” on SO(3) which replace the
term |z|? in the incremental cost of (2). In Section 4, we
derive the explicit solution of the optimal control problem
defined in the previous section. For a special subset of
weighting matrices, we show that the continuous (but non
differentiable) value function we obtain is the viscosity so-
lution of the Hamilton-Jacobi-Bellman equation on SO(3).
In Section 5, we discuss some properties of the solution
of the optimal control problem on SO(3) and outline the



numerical method we used to compute an arbitrarily ac-
curate solution to it. The theoretical results derived in
the previous sections are illustrated through numerical
simulations. Conclusions and future work are discussed in
Section 6.

2. NOTATION AND DEFINITIONS

In the sequel, SO(3) denotes the special orthogonal group
of dimension 3, defined as the set
SO@3) = {g e R*®: gTg = I, det(g) = 1},

where the group operation is the standard matrix multipli-
cation. SO(3) is a Lie group, i.e., a smooth manifold with
a smooth group operation. We refer to, e.g., (Marsden and
Ratiu, 1999, Chapter 9) for basic definitions and properties
of Lie Groups. The group SO(3) of rotation matrices can
be used, e.g., to describe the attitude of a rigid body with
respect to a reference frame. The group identity is the
identity matrix, usually indicated by e.

We denote by T;SO(3) the tangent space and by T;SO(3)
the cotangent space of SO(3) at g. The disjoint union
of these spaces form the tangent bundle TSO(3) and
cotangent bundle T*SO(3) of the group. Given a vector
space X and its dual X*, the bilinear operator (-, -) : X* x
X = R, (a,v) = {a,v) := «(v) is the natural pairing
between the vector space X and its dual. Thus, given
p € T;50(3) and v € T,80(3), the linear map p(v) will
be written as (p,v).

Given a differentiable mapping between two manifolds
f:M — N, m—n= f(m), we will indicate its tangent
map (i.e., its differential) by Ty, f : To,uM — Tyum)N,
Wy, > Up = Ty f w,,. When clear from the context, we
will drop the subscript m indicating where the differential
is computed.

The maps Ly, : g — hg and Ry, : g — gh, h,g € SO(3), are
called, respectively, left translation and right translation.

Given a vector £ = (£1,&2,£3) in R3, we denote by é the
skew-symmetric matrix

. 0 —& &
f = [ 53 0 —51]
& & 0

The operator A (hat) defines a mapping between R? and
the space of 3 x3 skew-symmetric matrices. Conversely, the
operator V (vee) defines the inverse mapping that given
any 3 x 3 skew-symmetric matrix S returns the associated

vector € = SV such that £ = S.

The Lie algebra of SO(3) and its dual are denoted respec-
tively by s0(3) end s0*(3). The Lie algebra is the set of
tangent vectors at the identity T.SO(3) (the set of skew-
symmetric 3 X 3 matrices) with the Lie bracket being the
matrix commutator
[§: 7] = &7 — €.

We can identify the Lie algebra so(3) with the Lie algebra
R3 with the (cross product) bracket [€,7] = £n. The maps
A (hat) and its inverse V (vee) are used to pass from R3 to
50(3) and vice versa. The adjoint representation of so(3),
denoted by ad, is defined as

adgn = [&, 1)
or, in the equivalent R? notation, aden = [£, 7].

Given p € s0*(3) and £ € s0(3), the linear map p(§) will
be denoted by (u,&). Given a linear mapping L : X — Y
between the vector spaces X and Y, its adjoint mapping
L*:Y* — X* is the unique linear map such that for every
reX,weY”r
(w,Lz)y, = (L*w,z) 5 .

Given p = (TRy-1)"n € TySO(3) and v = TR, €
T,50(3), we have

(p, v>TgSO(3) = <(TR9‘1)*M»TR95> = <M’TR9‘1TR95>
= <M7 £>5o(3)

The set S? denotes the set of unit quaternions. A unit
quaternion in S* C R* is represented as (a,q), with
a € R (the scalar part) and ¢ € R? (the vector part).
By definition, |(a,q)|| = a® + ¢'q¢ = 1. Finally, for any
square matrix M, tr M is the trace of M, the sum of its
diagonal elements.

3. OPTIMAL CONTROL ON SO(3)

In this section we derive the necessary conditions for
optimality of the optimal control problem

ming [ tre—g(r) + () Re(r) ar.

subject to (3)

g(t) = &£(t)g(t),  g(0) =go € SO(3),

with ¢ € SO@3), ¢ € R?, and R = RT > 0. The
main theoretical tool we use is the Pontryagin’s Maximum
Principle (PMP). From a geometric point of view, this
is a statement about the possibility of lifting an optimal
trajectory on a state manifold M to a trajectory of an
associated vector field on the cotangent bundle 7M.
As the manifold of interest is not an arbitrary manifold
but the Lie Group SO(3), we can specialize the result
identifying the cotangent bundle T7*SO(3) with the direct
product SO(3) xs0*(3). Hamiltonian equations originating
from the PMP must be modified as to be well defined
in this new space. This has the advantage of writing the
adjoint equation in the vector space s0*(3) which can be
identified with R3. Also, we show that for the special case
R =rlI, r € R, we can find an explicit expression for the
optimal control and value function for the optimization
problem (3). In Section 5, we report numerical results
obtained for the case of an arbitrary positive definite
matrix R.

The following subset of SO(3) plays an important role in
our discussion.

Definition 3.1. Let II C SO(3) be defined as
II:={g€S0(3) : g =exp(ri),n € R? ||n||=1}.
The set II is the set of all rotation matrices which define

a rotation of 7 radians about some axis.

To provide an insight about the incremental cost

l(g,€) :==1/2tr (e — g) + 1/2¢" RE
introduced in (3), we first discuss the properties of the
function 1/2tr (e — g).

Proposition 3.1. The function 1/2tr (e — g) has a unique
global minimum at ¢ = e and its minimum value is zero.
Also, its maximum value is 2 and is attained at every point
in II.



We can now conclude from the previous proposition,
together with the hypothesis that R = RT > 0, that the
incremental cost (g, &) of the optimal control problem (3)
has a unique minimum for ¢ = e and £ = 0 and that the
minimum value is zero. Note also that for each g € SO(3)
a straightforward computation show that 2tr (e—g) = ||le—
gl|%, where ||A||r denotes, for each matrix A € R"*", the

Frobenius matrix norm defined as /tr (AT A).

The incremental cost I(g,£) provides an appropriate gen-
eralization of the quadratic cost function ||z%/2+ ||ul|%/2
for the considered state-control manifold T'SO(3). Since
this “quadratic” cost function has its unique minimum at
(9,€) = (e,0), it is clear that any trajectory (g(t),£&(t)),
t >0, such that [ I(g(7),&(r)) dr is finite must have the
property that g(¢t) — 0 exponentially fast. Thus, it follows
that every minimizing trajectory from a given initial g
will have this property. As we will see, there are points in
IT such that there is more than one minimizing trajectory.
At those points the value function is not differentiable.

3.1 Necessary conditions for optimality

For unconstrained optimal control problems, the PMP
requires one to form the pre-Hamiltonian function

iH(g.¢.p) = 1/2tr (¢ — 9) +1/2¢"Re + (p.dg)  (4)

where p € T*SO(3) is the adjoint state and (-,-) denotes
the natural pairing between the tangent and cotangent
spaces of SO(3). Then, one defines the Hamiltonian

H(g,p) = Irlginff(g7§7p)
with associated optimal control
£ (g,p) = argmfinH(g,S,p) -

The PMP states that, for extremal trajectories, the state
and adjoint variables must satisfy the Hamiltonian equa-
tions

P dg
with appropriate boundary conditions (that we will specify
further below). Note that an each element of the cotangent
space of SO(3) at g can be uniquely written as p =
(TRy-1)*pu = fig, with p € s0*(3) ~ R®. Thus, we can
conclude that the natural pairing between 7,;SO(3) and
T,S0(3) appearing in (4) satisfies

(P9 s0(3) = <p, €g>SO(3) = (11, €) s0(3) - (6)

Equation (6) allows one to see that the pre-Hamiltonian
(4) is a convex quadratic function with respect to the input
¢ for any (g,p) € T*SO(3) and therefore has a unique
minimum. The minimum is given by

§(9:9) = =Rl yu—(pg—1)~ -

Substituting this expression in the pre-Hamiltonian (4),
we obtain the Hamiltonian

H(g,p) = min H(p,&,9) = H(p,& (9,p),9)

g:

£€s0(3)
1 1 7 4
= 5’61‘ (e—g) — 5:“ R :“luz(pg*l)v (7)

and, as previously mentioned, the PMP states that the
state and adjoint variables must satisfy the Hamiltonian
equations (5) with appropriate boundary conditions. For

a finite time horizon optimal control problem with fixed
initial state, free final state, and no terminal cost, the
boundary conditions are g(0) = go and p(T) = 0. For
an infinite time horizon optimal control problem, the last
boundary condition becomes limy_, o p(T") = 0. It is worth
mentioning that the Hamiltonian equations (5) can be
derived from the variational principle

T
5 / (p,d) — H(g,p)dt =0, (8)

with the variation dg fixed at initial point dg(0) = 0 and
variation dp fixed at final point dp(T") = 0.

3.2 Right-trivialized Hamiltonian equations

Although formally correct, the Hamiltonian equations
written on the cotangent bundle T*SO(3) are difficult to
manipulate. Equivalent necessary conditions for optimality
can be obtained using a right-trivialized version of the pre-
Hamiltonian (4) and Hamiltonian equations (5). This is
possible only because the state space is a Lie group so that
there is a diffeomorphism between T*SO(3) and the direct
product SO(3) x g*. The right-trivialized pre-Hamiltonian
is defined as

IA{+ (ga 57 /’L) = IA{(Q? Eap)|p:(TRg_1)*;L
which in our specific case becomes
H*(g,&,1) =1/2tr (e — g) + 1/26TRE + (1, €)
where p € 50*(3) is the right-trivialized adjoint variable.
Minimizing the pre-Hamiltonian H* with respect to the

input &, we obtain the (right-trivialized) Hamiltonian
H*(g,p) = mginﬁﬂg,ﬁ,u)

= H* (9,6 (g, 1), 1)
=1/2tr(e—g)—1/2p"R'u (9)
where the associated optimal control

€ (g, 1) = argmin H(g,€, ) = ~R™'p (10)

minimizes the pre-Hamiltonian H* for each (g,u) €
SO(3) x g*. The PMP requires the optimal state-adjoint
trajectory to satisfy the right-trivialized Hamiltonian

equations (see, e.g., (Jurdjevic, 1997, Theorem 1, Chapter
12))

., OHT
99 = = ou
= —adjyp+ g, 10— (TRy)” B9

with boundary conditions ¢(0) = go and p(T) = 0
for the finite time horizon optimal control problem and
limp_,oo p(T) = 0 for the infinite time-horizon optimal
control problem.

Note that for the right-trivialized Hamiltonian (9), for any
n € 50(3),

* _ _1 A . T
<(TRg) e ,n>— 5t (79) = w(g)' n,
that is

(12)

1 [tr(gé1)
(TR = ulg) = —5 [tr <gé2>] .
tr (gés)



Direct computation shows also that w(g) = (g — g%)/2.
Using (13) and noting that for the right-trivialized Hamil-
tonian (9)

we see that the right-trivialized Hamiltonian equations
(11) specialize into
99~ = (Rt )"
fo=(-R""p)xp—wg).
In the following, we emphasize an important property of
this Hamiltonian system that it is key to understand the
structure of the infinite time horizon optimal control.

Lemma 3.2. The point (e,0) € SO(3) x g* is an hyperbolic
equilibrium point of (14).

(14)

4. SCALAR CONTROL WEIGHTING

In this section we show that, for the special case R = rl,
r > 0, r € R, we can obtain explicit expressions for
the value function and optimal feedback associated to the
optimal control problem (3). Observe that in this case, the
optimal feedback (10) must satisfy

OH™* _ 1
i ~R'u=—p.
I r
Using the expression for (TR,)* 0H*'/dg derived in (13),
it follows that the right-trivialized Hamiltonian equation
(11) become

dg =1/

G = (fru) < p—w(g) = —u(g).  (15)

We now show that we can explicitly compute the stable
manifold associated to the equilibrium point (e,0) €
SO(3) x s0(3).
Proposition 4.1. The set N,, = {(g, 1) € SO(3) x 50*(3) :
g € SOB\IL, pu = ps(g)}, where

w(g)

f1s(9) = 2v/r——=,
(9) V1+tr(g)
defines the invariant stable manifold of the hyperbolic
equilibrium point (g, u) = (e,0) € SO(3) x s0*(3) of the
left-trivialized Hamiltonian equations (15).

(16)

Let us define

ps(9) := (TRy-1)"ps(g) € T;S0(3). (17)
Due to the diffeomorphism between SO(3) x s0*(3) and
T*SO(3) provided by the mapping (T'R,-1)*, it follows
that the set NV, := {(g,p) € T*SO(3) : g € SOB)\IL,p =
ps(g)} defines the stable manifold associated to the equilib-
rium point (e,0) € T*SO(3) of the Hamiltonian equations
(5). Since the dimension of N, is half the dimension
of T*SO(3), this also implies that N, is a Lagrangian
submanifold of 7*SO(3) on which the canonical symplectic
2-form vanishes. This result can be found in (van der
Schaft, 1991, Lemma 1). Note that the stable manifold
N, is the graph of the 1-form ps(g), defined on SO(3)\IL
The 1-form p4(g) is closed if and only if its graph is a La-
grangian submanifold, see, e.g., (Abraham and Marsden,
1987, Proposition 5.3.15). As N,,, is Lagrangian, then ps(g)
is closed and, since SO(3)\II is simply connected, ps(g) is

also ezact, that is there exists a unique function (modulus
an additive constant) V(g) such that

ps(g) = %(g)

on SO(3)\II. If we choose such an additive constant so that
V(g) is zero at the identity, then V' (g) is the value function
associated to the optimal control problem (3). Indeed, the
next result provides an explicit expression for V(g).

(18)

Proposition 4.2. The function

V(g) =2vr(2—/1+trg). (19)
is the value function of the optimal control problem (3)
for the case R = rI, r > 0, r € R. Moreover, the optimal
control £*(g) is given by the feedback law

1 2 w(g)

£(9) = —~pslg) = - —F——.
(9) ==~ ns(g) NN eI
The optimal control £*(g) is defined for all g in SO(3)\II,
the set of differentiability points of V' (g).

5. GENERAL CONTROL WEIGHTING

(20)

We could not find an explicit expression for the value
function V' when R is not a multiple of the identity matrix.
However, we have solved the optimization problem (3)
numerically in order to explore the relationship between
the weighting matrix R and value function V. We can
restrict our attention without loss of generality to diagonal
positive definite weighting matrix R. Indeed, any positive
definite R € R? can be always decomposed as UTAU,
where A € R3*3 is a diagonal positive definite matrix
and U € SO(3). Let n € s50(3) and § € SO(3) satisfy
¢ =Unand g =UgUT. Substituting these expressions for
¢ and ¢ into (3), we obtain the optimal control problem
(3) rewritten in the form

ming [ (e~ gr) + n(r) An(r) dr.

. (21)
subject to

g(t) = a®)g(t), §(0) =go € SO(3),
where gy satisfies g9 = UgoU”T. In Section 4, for the
special case R = rlI, we concluded that the set of non-
differentiable points for the value function is II. According
to numerical evidence, we claim that this is also true for
an arbitrary positive definite diagonal weighting matrix A.
More precisely, we claim the following.

Claim 1. For any diagonal positive definite matrix R, the
value function V associated to the optimal control problem
(3) is everywhere differentiable with the exception of the
set II.

Remark. If one accepts this claim, then one can prove
that II is the set of non-differentiable points of the value
function V' associated to any positive definite matrix R.
This result easily follows from the equivalence between the
optimal control problems (3) and (21) under the state-
input transformation £ = Un and ¢ = UGU” satisfying
R = UMNUT € SO(3) and from the equality UTIUT = 1II
valid for each U € SO(3). [ |

5.1 How to solve the optimal control problem numerically

The dynamic programming principle (see, e.g., Bardi and
Capuzzo-Dolcetta (1997)) states that for any T° > 0, the
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Fig. 1. Image of the x-z disk of radius one through the

mapping ps(+) : SOBN\I =~ B][%Tl) — 50%(3) ~ R?
for R = diag(1,2,3): Part (a) plots the y — 2z section
Part (b) plots the x — z section; Part (c) plots the
x — y section; Plot (d) has been chosen to highlight

the twisting of the surface

value function V'(-) of the infinite time horizon optimal
control problem (3) satisfies

Vo) = min g [ tta(r).€(r) dr =

1 /T
—uind5 [ ttar). ey ar+ vy | e
where §(t) = £(t)g(t), g(0) = go. Note that for each initial
condition gp, any optimal state trajectory g(t) starting at
go must converge to the group identity e. Following the
approach detailed in Jadbabaie et al. (2001) and reference
therein, we approximate the infinite time horizon problem
(3) with the finite horizon optimal control problem with
terminal cost

. T
min [ 1(9(r).€(r) dr + W(o()

(23)
subject to

g9(t) = &(t)g(t),  9(0) = go € SO(3),
where the terminal cost W is a sufficiently accurate ap-
proximation around the identify of the infinite horizon
optimal control problem (3). The time horizon T must
be chosen large enough to guarantee that for any initial
condition go the optimal trajectory g(-) of (23) at time
T is sufficiently close to the identity so that W(g(T)) is
equal to the infinite time horizon value function V(g(T))

within numerical accuracy. It is straightforward to verify
that each g € SO(3)\II can be identified with the two unit
quaternions (a,q) and —(a, q) that satisfy

a=vV1—-azTx, qg=x, (24)

with 2 = w(g)/+/1 + trg. Equation (24) suggests that we
can use the open ball of radius one in R? (that we write

B%il)(O)) as a set of local coordinates for SO(3)\II. More-

over, we can approximate the optimal control problem (3)
on SO(3)\IT as

wing [ a(r)Qa(r) + &) Re(r) dr + 5 (1) Pa(T)

subject to

1 3
T = 5(\/ L —alal —2)¢, x(0) =m0 € B][%,l)(O) ,
(25)
where Q = 4I, R = RT > 0, and P is the solution of
the algebraic Riccati equation PR~ P+ @ = 0. Note that
2T Qx = 2¢72q = tr (e — g) (see proof of Proposition 3.1).
The quadratic function 1/2 27 Pz is the approximation of
value function of the infinite time horizon version of (25).
This approximation is obtained by solving the infinite time
horizon LQR problem with quadratic cost

% /000 ()T Qx(7) + £(r)T RE(T) dr

and dynamics £ = 1/2¢ obtained by linearizing the nonlin-
ear dynamics of (25) around the equilibrium state-control
trajectory (g(¢),£(t)) = (e, 0). We solved the optimal con-
trol problem iteratively (25) using the Projection Operator
based Optimization Strategy described in Hauser (2002)
and Hauser and Saccon (2006). Remarkably, we found that
the numerical algorithm converges (first order variation
less than 10~7) even when the initial condition is chosen
quite close to II (||z]| = 0.9999999), which is the border of
the domain of definition of the coordinate map (24). In the
following, we discuss the numerical results we obtained.

Remark. One of the first test that we performed was
to check that the numerical values computed with our
method agree, for R = rl, with those predicted by the
theory. With a time horizon T =~ 10 s, numerical solution
agreed within an error of 10~'2 with the explicit solution.
Due to space limitation this is not reported here. |

5.2 Numerical results
For a general weighting matrix R, the adjoint variable

satisfies the following property.
Proposition 5.1. For any optimal trajectory, the associ-
ated (right trivialized) adjoint variable u(t) = T'R;_.p(t)
satisfies for a.e. t > 0

(@)l < 4 (26)
that is, it is contained in the ellipsoid implicitly defined
by the equation pu? Ry = 4.

Proof: The state-adjoint trajectory associated to an opti-
mal trajectory of (3) satisfies for a.e. t > 0

H (g(8), p(t)) = 5 (tx (e — 9(6)) — (1) %) = 0.

Since 0 < 1/2tr (e — g) < 2, Vg € SO(3), it follows (26).
O



Fig. 2. Representation of value function for R =
diag(1,1,3). The different lines represent the value
function for different value of radial distance p.

As previously mentioned, without loss of generality, we
restrict our attention to a positive definite diagonal weight-
ing matrix R = diag(\1, A2, A\3). Numerical results for
(A1, A2, A3) = (1,2, 3) are presented in Figure 1. The figure
provides a graphical representation of the mapping ps that

goes from SO(3)\II ~ B][%i’l) to 50(3)* ~ R3 and that was
introduced, only for the case R = rI, in Proposition 4.1.
This should allow the reader to get some intuition on how
the stable manifold of the Hamiltonian equations looks
like for a general weighting matrix R. The mapping p()
is a mapping from a three dimensional space to a three
dimensional space. For visualization, we found convenient
to show only the image of a two dimensional subset of the
domain of this mapping. The optimal control problem (25)
has been solved on a disk, lying on the z-z plane, centered
at the origin of B][%S’l) and with radius strictly less than one.

More specifically, we solved (25) numerically on a finite set
of points defining a grid the x-z disk. The points on this
grid are parameterized by the the radial distance p € [0, 1]
and angular displacement 6 € [0, 27] so that

xo(p,0) :=[pcosh 0 psinH]T . (27)
Figure 1(d) depicts the image of the x-z disk through the
mapping ps. The image of x-z disk is a twisted surface
which, as predicted by proposition (5.1), is contained in the
ellipsoid p1 /1+p3/2+p3/3 = 4, which is also displayed. To
help the reader to visualize such a surface, we also provide
three sections of this surface in parts (a), (b), and (c) of
the same figure. Very similar pictures can be produced
“slicing” the domain B][%fl) along a plane containing at
least one of the x, y, or z axes. The image of those disk-
shaped “slices” is always a twisted surface quite similar to
that presented in Figure 1.

5.8 Kinks along the ridge

A very interesting phenomenon, which has not an explana-
tion yet, has being noted when the weighting matrix R has
two equal elements. A representation of the value function
for the case R = (1,1, 3) is given in Figure 2. Figure 2 rep-
resents the value function for different value of the radial
distance p € 0.999 x {1072.1.2.3.4.5.6.7.8.85.9.951}
and for 6 € [0,27]. The value function appears to have
two quite interesting kinks in correspondence of the points
exp(méz) and exp(—mé3) in II, which are represented in

polar coordinates (p,8) by (1,7/2) and (1, 37/2), respec-
tively. The value function appear to have a ridge not only
as we approach II (as we claim it always does, according
to Claim 1), but a kink also appears as we consider the
value of V' on a series of concentric spheres whose radius
(p) tends to one.

6. CONCLUSIONS AND FURTHER WORK

We have presented an optimal stabilizing controller for
the driftless dynamics §(t) = £(t)g(t), g(0) = go, showing
that a closed form solution exist for the special case
R = rI and studied the nature of the optimal solution
by means of numerical optimization for a general weight
R. We are interested to further investigate the optimal
solution for an arbitrary weighting matrix R and introduce
a general weighting matrix @ for the rotational matrix
g. Moreover, in another publication, we will show that
the value function we have detailed for the special case
R = rI can be used to obtain a inverse optimal controller
for the stabilization of the dynamics of a rigid body
with arbitrary inertia matrix. This will be done working
directly on T'SO(3), without the need of using a set of local
coordinates as done in, e.g., Krstic and Tsiotras (1999).
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