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Abstract: This paper addresses the problem of moving horizon (MH) state estimation of
discrete lumped nonlinear systems. It is assumed that the measurements of the observed
variables are not available at every sampling instant (decimated observations). An estimation
algorithm is provided for that purpose, together with results on its convergence. It is shown that,
under convenient assumptions, the estimation error is bounded, with a bound that grows with
the number of samples between consecutive observations. The algorithm features are illustrated
by simulations concerning the application to state estimation in a model of the HIV-1 infection.
The simulations show that the MH estimator exhibits superior performance over the extended
Kalman filter. This difference of performance increases with the growth of the time interval

between consecutive measurements.
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1. INTRODUCTION

Although the original idea is old (Y.A. Thomas (1975)),
moving horizon (MH) estimation has received an increased
attention since the past 15 years (Robertson et al. (1996))
up to the present (Haverbeke et al. (2009)) (see also
the references in Alessandri et al. (2008)). Besides its
intrinsic robustness properties, that makes MH adequate
to solve estimation problems in the presence of un-modeled
dynamics, a major advantage is the capacity to incorporate
constraints.

In addition to the above features, the solution of esti-
mation problems in bio-medical applications require the
ability to tackle estimation problems when the measure-
ments of the observed variables are not available at every
sampling instant. This is a situation referred hereafter
as “decimated observations” which is not treated in the
available literature. An example is provided by the control
of HIV-1 infection (Perelson and Nelson (1999)).

The main contribution of the present work consists in
an MH estimation algorithm for nonlinear discrete sys-
tems that copes with decimated observations. It is shown
that, under convenient assumptions, the estimation error
is bounded by a bound that grows with the number of
samples between consecutive observations. The algorithm
features are illustrated by simulations concerning the ap-
plication to state estimation in a nonlinear model of the
HIV-1 infection. The simulations show that the MH es-
timator exhibits superior performance over the extended
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Kalman filter. This difference of performance increases
with the grow of the time interval between consecutive
measurements.

This paper is organized as follows: Section 2 formulates the
state estimation problem and proposes a MH estimator
to deal with decimated observations. Section 3 presents
stability properties. Section 4 provides an interpretation
for the selection of the cost function and Section 5 includes
simulation results that compare the performance with the
extended Kalman filter (EKF) estimator in relation to
a model of the HIV-1 infection. Finally, section 6 draws
conclusions.

Due to space limitations some of the proofs are omitted.
These can be found in Barreiro et al. (2010).

2. MH ESTIMATION WITH DECIMATED
OBSERVATIONS

This section formulates the state estimation problem and
introduces a MH estimator for a discrete (or sampled data
representation) of a nonlinear system whose measurements
are not available at every sampling instant.

2.1 Process Model

Let M be the set of time instants (indexes) where measure-
ments are available, and oy (i) : N — M the index time &
of the kth measurement. We consider a dynamic system
described by the discrete time equations

Tip1 = ¢i(wi, ug, w;) (1)
Yo, = hk(xok) + vg
where x; € X; is the state vector of the system, wu; its

control, y,, denote the measurements, and w; € 6, and
vr € Vi represent input disturbances and measurement



noise, respectively. The sets X;, ©; and Vj are subsets
(with appropriate dimension) of the Euclidean space that
incorporate the constraints associated to (1). The initial
condition xy and the signals w;, vy are assumed to be
unknown. The function o) represents a renumbering of
the time index. It stands for the fact that observations are
not available at every time instant, but only in a subset
of them. A frequent case is when an observation is only
available every ng samples. Then, o := ng k.

2.2 Decimated Observations

Before we describe the MH estimator algorithm, we first
introduce two operators that allow us to work with a more
convenient representation of (1).

The first operator, denoted by X, will permit to write in
an appropriate way the recursive composition of a function
and is defined as

S [{o}s " 2wl ab] =

z, ifa=0b
bp_1 (E [{(ﬁ}g*?, z, {w}Z’Q, a,b— 1} ,ub_l,wb_l), otherwise

where {¢}% denotes a sequence of functions {¢a("),
Bar1(), -y dp()}, 2 is the input and {w}? a sequence of
input disturbances. Note that the state solution of system
(1) at time ¢ + 1 with initial condition 2o can be written
as Tip1 = L[{d}y, o, {wl}h, 0,7+ 1].

The second operator, the accumulated noise Yy, is defined

as the difference between the evolution of state x with

input disturbance and the state x with zero input distur-

bance, that is,

X [{(b}l(fla 2, {w}gia a, b] =X [{Qb}gila 2, {’IU}Zil, a, b]
) [{¢}Z_1a Z, {0}3_15 a, b]

For simplicity of notation the following abbreviations are
used

E [¢7 Z,Ww,a, b] = Z [{¢}2_17 2, {w}2_17 a, b]

X [¢,z,w,a,b] == x [{¢}2717 2, {w}l;717 a, b] .
We are now ready to introduce another representation
of system (1) that will play an important role on the

developments that follow.
Consider the system

Tpy1 = [r(zr) + wi
Yk = hi(z) + v

(2a)
(2b)
where fp(z) =%
Since fi,(zr) +wy, is equal to T[4, 2, w, o, o1 1], it is straight-
forward to conclude that zj in (2) is equal to z,, in
(1). Thus, system (2) describes how the state in (1) is
transfered from a point where a measurement is available
to the next one (where a measurement occurs again). Note
however that in (2) wy might depend on .

Hereafter we use the index k for solutions of system (2)
and 4 for solutions of system (1).

To obtain x; from (2), we have to perform the following
computation

k = max{k : o, < i}

x; =X [¢, 2k, w, 0k, 1] .

3)

[¢,2,0,0k, 0kt1] a0d wy, = X [¢, Toy, , w, Ok, Thop1].

2.8 Mowving Horizon Estimator

Using the notation in Rao et al. (2003), we denote
by x(k;z,l,{w;}) the solution of system (2) at time k
when the initial state is z at time ! and the disturbance
sequence is {w;}¥_;. When w; = 0 we will write z(k; z,1).
Also y(k; 2,1, {w;}) := hi(y(k; 2,1, {w;})) and y(k; 2,1) :=
hi(z(k; 2, 1))

The objective is to find the state sequence {&;} that is
most likely to be in some sense close to the real state {x;},
given the sequence of observations {y,, }, the inputs {u;}
and the model with constraints described in (1).

To this effect, we consider the following objective function
defined in the equivalent system (2),

T—1

=Y Li(wk, vx) + T (x0),

k=0

where T > 0 is the estimation horizon, vy = yr —
y(k, x0,0,{w;}, L, : W x Vi, = R>¢ V>0 is the running
cost and I' : Xy — R>( represents a penalty on the initial
condition. It is assumed that some prior information of
the initial state is known, and this one is captured by I'(-),
that satisfies the following property

[(Z0) =0, I'(x) >0 Vaza,
where &¢ € X is the (a priori) must likely value of xg.
In Section 4, we provide a better insight of how to choose

Ly () and T'(+), but the main idea is that ®7 will penalize
large wy and vy, and xg far from an initial guess Zg.

D7 (0, {w}) :

The optimization problem can now be stated as follows:
Find the pair (2o, {wx};_o) that minimizes &7 (o, {wy})
subjected to (zg,{wr}) € Qr. The constraint set Qp is
given by

Qp =

{(xo,{wk}) :

and it arises from the restrictions X,, , Wy and Vy, where
Wy, inherits restrictions from ©;. The computation of the
set W, can be involved. However, for the particular case
that ©; is a bounded set, Lemma 3 provides a bound for
Wy, although a smaller one might exist.

x(k;20,0,{w;}) € X, k=0,..,T
wy, € Wy, k=0,..,(T—-1)
v = yr — Y(k;20,0,{w;}) € Vi, k=0,..,(T - 1)

In general this optimization cannot be applied online
because the computational complexity grows unbounded
with increasing horizon 7. To account for this problem
and enforce a fixed dimension optimal control problem,
a possible strategy is to explore the ideas of dynamical
programing by breaking the summation in &7 as follows

E Ly (wy, vi )+

k=T-N

Q7 (zo, {wr}) :

T— 1

N-
> Li(wg, vx) + Do)
k=0

Since the first term of the right hand side depends only

on the state xr_ and on the sequences {wk}zz_%_N and

{vx Y=}y, the optimization problem can be reformulated
as



T-1
Oy (wo, {wr}) = min  { > Ly(wp,vg)

T-1
2wkt o N k=T—N

+ Zr_n(2) : (2, {wy}) € OF}

where
Z.(z)= min 1{(IJT(Q:O, {wi}) :
va{wk};;o
(Z'Oa {wk}) € QT, I(Ta Zo, 03 {wj}) = Z}7
and

Q¥ = {(z, {wi}) :

x(k; 2, T — N,{w;}) € Xo,, k=(T-N),...T
wy, € Wy, k=(T—N),...,(T—1) .
vk:ykfy(k‘;szsz{wj})GVk’k:(TfN)vn-v(T*l)
Here Z,(z) is usually called the arrival cost, cost to come
or cost to arrive.

The idea is now to summarize the past information given

by the arrival cost Z,(z) by an approximation of it Z,(z),
and apply a moving horizon strategy by considering rather
the following optimization (for T > N)

T—1
br(z {w}) = min  { ) Li(wk, )
2AWk 2T N p=T-N
+Zr-n(2): (2 {w}) €Y} (4)
From this optimization, we obtain the pair

. T—1
(2" {dwr—1}pZr—N)
that allows to compute the sequence
{Br_Nr—1, 27— N11T—1, s T -1}
by using (2a) with initial condition zp_ N = 2*.

To obtain the estimate of x; of the original system (1) we
use

k =max{k: o <i} 5

.’f¢:2[¢,ﬁk,0,0k,i]. ( )

3. STABILITY RESULTS

In this section we provide conditions under which the state
estimate computed in (5) converges to zero in absence of
disturbances and noise, or to a small neighborhood of the
true values in the presence of bounded disturbances and
noise. To this effect, we first recall the following definitions
that will be used in the sequel.

Definition 1. A function a : Rj — Ry is a Ko-function
if it is continuous, strictly monotone increasing, «(xz) > 0
for all x # 0, ®(0) =0 and lim a(z) = cc.

r—00

We will freely use basic results on K, functions, such as,
the inverse of a(-) € K exists and is a K, function, also
if a(-) € Koo then a <b = a(a) < a(b).

Definition 2. System (1) is uniformly observable if
there exist a positive integer N, and a K, function ¢(-)
such that for any two states x; and xo,

N,—1
plllzr —a2l) < D y(onrsier, on) = y(onrjiez, o0l
j=0

where y(ox; z,01) = hi(z(ok, 2, 01)) with z(oy, 2, 0;) being
the solution of (1) without disturbances at time o, when
the state starts at time o; with value z .

The above definition takes into consideration the fact that
system (1) may not have measurements at each sampling
instant of time. From this definition, we can conclude that
if system (1) is uniformly observable then system (2) is
also uniformly observable, meaning that

No—1
e(llzr = z2ll) < D Nly(k + G5z, k) — y(k + jiwa, k)|
7=0

The stability results presented in this section make use of
the following assumptions:

A0)The vector fields ¢;(-) and hy satisfy the following
growth conditions:
a)
16i (21, uk, wi) — dilz2, uk, wa)|| < cg [|(21,w1) — (22,w2)||
b)

1hn(21) = hie(z2) ]| < enllz1 = 22|
for any 21,20 € X;, up € Ug, wy,we € Wy and some
positive numbers ¢4 and cy,.

A1) Li(-) and T'(+) are left continuous in their arguments
for all £ > 0.
A2) There exist K-functions 7(-) and ~(-) such that

n([[(w, v)[l) < Li(w, v) < (|| (w, v)[])

([l = &oll) < T(x) <(llz - 2oll)

for all (w,v) € (Wi x Vi), z, 2 € Xo, and k > 0.
A3) There exists an initial condition z, disturbance se-
quence {wy }32 , such that, for all k > 0, (xq, {wg }k = 0) €
Q.

A4) The interval of time between two consecutive mea-
surements is finite, i.e. o — orx_1 < Nynae fOr SOME Ny g

A5) There exist Ko-function 4(-) such that
0< Z5(2) — D < (|2 — &)
for all z € X.
A6) Let
RY = {x(1;2,7 — N, {wp}) : (2, {wi}) € OV}
where RY = R, for 7 < N. For a horizon length N, any

time 7 > N, and any p € RY, the approximate arrival
cost Z,(-) satisfies the inequality

Z:(p) < min  { i L (wg, vg)

_Zv{wk}z;ﬂl—_N k=1—N
- . (e {we}) €7,
+ 2N (2): (152, 7 — N, {w;} = p}

subjected to initial condition Zo(-) = I'(:). For 7 < N,
the approximate arrival cost ZT() satisfies instead the
inequality Z, () < Z,().

With exception of A4) all the assumptions stated above
were considered in Rao et al. (2003). Assumption A6)

loosely speaking means that the approximate arrival cost
should not add “information” that is not present in the



data. See details and strategies to choose Z in Rao et al.
(2003).

With this framework adopted, the following preliminary
technical results can be derived.

Lemma 3. If there exist positive constants ¢ and d such
that for any sequence {w;}2~1, with b > a

lwill <6, |21 — 22l <d
and Assumption A0) a) holds, then
b—a
12 [é, 21, w, a,b] — X [@, 22,0, a,b] || < (ZC¢>5+cb aq
i=1

Lemma 3 provides a bound for the difference between two
solutions of system (1) that depends on the difference
between the initial condition of each solution and on the
bounded disturbance at every step. This is an important
Lemma that will be used often. Notice that in particular,
this Lemma gives a bound for wy.

Proposition 4. A0) and A4 imply that

A0%)
a)

Il fe(21) = fu(z2)|l < cp ll21 — 22|
b)

[hr(21) — hi(22]| < cn 21 — 22|

holds for system (2) for some ¢y, cp > 0.

Proof. This is a direct consequence of Lemma 3 and the
definition of fy.

The following Lemma establishes that, under reasonable
assumptions, bounded noises and bounded estimates of the
noises imply bounded estimation error.

Lemma 5. If system (2) is uniformly observable, N > N,,
A0%) holds and Vieyenessx—1 lwesgl, [onssl ey |

and ||0x+;|| are all bounded by b; then there exists a K

function C( ) such that vk-JSkSJ-’—N ||l’k — :L'kH < C( )

The next two propositions taken from Rao et al. (2003)
provide conditions for the existence of the solution to the
optimization (4), and convergence of the estimation error
T — X, respectively.

Proposition 6. (Rao et al. (2003)). If assumptions AO0)-
A3) and A5) hold, system (2) is uniformly observable,
and N > N,, then a solution exists to optimization (4) for
all g € Xg and T' > 0.

Proof. The proof is given in Rao et al.
tion 3.3).

Proposition 7. (Rao et al. (2003)). If assumptions AOQ*,
A1-A3, A5 and A6 hold, system (2) is uniformly ob-
servable, N > N, and wg,vr = 0, then for all Zy € Xo,
|Zx — xk|| — 0 as k — oo.

(2003) (Proposi-

Proof. The proof is given in Rao et al.
tion 3.4).

(2003) (Proposi-

We are now ready to state the main results of this section.
The first one states that if there are no disturbances or
noise, then the estimation error converges to zero.

Corollary 8. If assumptions A1-A6 hold, system (1) is

uniformly observable, N > N, and wg,v; = 0, then for
all &g € Xo, || —x;|| = 0 as i — oo.

Proof. By Proposition 4, A0* holds. Then by Proposi-
tion 7, ||& — x| — 0 as k — oo. Thus, by Lemma 3 we
can conclude that ||z; — &;|| with &; obtained from (5) also
converges to 0 as ¢ — oo.

We now show under the following assumption that the
estimate Z; converges to a neighborhood of the true value.

A'T) There exists positive constants J,, and J, such that
O C Bs, and Vi, C Bs, for all k, where B, = {z : ||z|| <

e}

Proposition 9. Suppose that AQ), A4) and A7) hold, a
solution exists to (4) for all 29 € X9, N > N,, and
system (1) is uniformly observable. Then the estimation
error ||&; — x;|| for i > oy, are bounded by 5(||d. + 0u|)
where §(+) is a K, function.

Proof. By Proposition 4, A0*) holds. Then by A7) and
Lemma 5 it follows that the error ||y — & is bounded.
Using Lemma 3 we can then conclude that ||z; — ;] is
also bounded.

4. IMPLEMENTATION

This section provides an interpretation of the minimization
described in Section 2.3 and proposes a scheme to select
the running cost L(-). We consider the class of systems
where the process noise is only additive (like system
(2)). In this case wy = xp41 — fr(xk). Also, instead of
computing Z7p_q (as in section 2.3) we would like to
compute ch‘T, i.e. we use yr to estimate xp. We suppose
that the input disturbances wj and measurement noises
vk are stationary zero mean white Gaussian sequences of
random variables, mutually independent with covariances
@k and Ry, respectively. The initial priori information
of the initial condition is also assumed to be a Gaussian
random variable with covariance IIj.

In this setup, as done in Goodwin et al. (2005), we would
like to find the estimate that maximizes the probabil-
ity density p(zo, 21, .., ZT|Y0, Y1, ---, y7) given the observa-
tions, that is,

{#k}f—o = arg  max
TO,T1y-XT

{p($07.’171, ceey

.,yT)}.

Performing some straightforward computations and apply-
ing the Bayes Theorem we obtain

33T|3/07y17 -

T
{@k}imo = arg oo pAX {11 pvi (g = ha(r))px, (0)
-
x [T pwi (@rir = fular))}
k=0

where py,, pw, and px, denote the probability density
functions of vy, wg and xg, respectively. Applying loga-
rithm and using the normal probability density function
we get

T
{&r}izo = arg  min {Z [y — hk(ffk)HR—
k=0
T—1
2 _ 12
+ > Mewrs = fulew, un)llg s + llzo = Zoll-1}-
k=0



where ||z||3, = 2TAz. We can now conclude that this
optimization is the same as the one described in Section
2.3 if Ly(+) is chosen to be

Li(w,v) = w'Q; 'w+v' R Mv
and

T(x) = (xo — Zo)'Tly ' (z0 — To)
plus the term U’TR;lvT that arises from taking account yp
to estimate xp.

To compute the arrival cost, one strategy is to approximate
it by employing a first order Taylor series approximation of
the model around the estimated trajectory Zj. This strat-
egy yields the Extended Kalman Filter (EKF) covariance
update formula. Thus,

min
LT —Ns»>TT—N+15+T

{ir}her_ Ny = arg

T
2
R D 7SNl

h=T—N
T-1
+ Z ||$k+1—fk(93kauk)Hi2—1
k
k=T—N
+allzr-n = fr-n-1(@r-n-1)l} 1 iz

T—N|T—N-1
(6)
where « is a forgetting factor and II is computed using the
EKF formula.

Note however that since the original process model is (1)
(with decimated observations) and not (2), an extra step is
needed. Assuming that w; in system (1) is Gaussian with
covariance X!, then we will approximate wy, of system (2)
to be Gaussian with covariance (Ji, as it is described in
the following pseudo code.

Pseudo Code 1

Initialization:
T = Iyp;
E=ij;

Use EKF to compute Qj:
for i=or+1,...,0641 — 1 ‘
[Z,X] = ekfUpdateTime(Z, %, X))

end for
Return:
Qr = %;

where ekfUpdateTime(Z, 3, ¥!) returns one step ahead
of the predicted mean and covariance using the standard
EKF formulas.

The procedure to obtain the estimates is described in the
following pseudo code.

Pseudo Code 2

Initialization:
for 1 =0,1,.... N —1
compute I} using formula (6),
but with 7'— N replaced by 0 everywhere,
and the last term replaced by I'(zg);

end for
E=H0;
T = Zo;

Update estimates:

for k=N,N+1,... and j=1,2,...

Y = ekfUpdateMeasurement (X, Z,y;—1, R;j—1);

T = 35-1;

for [ = 0j—-1,05-1 + 1, -y 05

[X,7] = ekfUpdateTime(X,7,X});
end for
compute I} using formula (6)
with T0 v v =570

end for

where ekfUpdateMeasurement (X, z, y; 1, Rj_1) implements
the measurement update EKF formulas.

5. HIV MODEL

The proposed algorith is illustrated in the estimation of
the concentration of HIV-1 virus, infected T-CD4+ cells
and healthy cells. Our model is the following (Perelson and
Nelson (1999)):

dr

E =s—dIl — e_“lﬁTV
dT*

dt e BTv — poT™ (7)
d

d—; =e “kT* — v

where T is the concentration of healthy T-CD4+ cells,
T* is the concentration of infected cells and v is the
concentration of free virus particles, all in units per [mm3].
The quantities u; and us are the manipulated variables
related to the quantities of drugs administered. The other
symbols, which are described in Table 1, are assumed to
be constant parameters that are related to each individual,
see references in Barao and Lemos (2007).

Par. Description U. Value
d Mortality rate for healthy cells 0.02
k Production rate of virus by infected cells 100
s Production rate of healthy cells 10
B Infection rate coefficient 24 x 1072
Q1 Elimination rate for the virus 2.4
7% Elimination rate for infected cells 0.24

Table 1. HIV model parameters description
and used values.

To apply the MHE method described before we will use

the discretization with the following update formula given

by Euler’s method:

T+ts(s—dT —e " pTv)

T +ts(e ™ BTy — uT*) | (8)
v+ts(e kT — uv)

where t; is the time interval between two consecutive

points in the discretization.

(bk(T? T*7V7u1uu2) =

We consider that we have discrete measurements given by
Yo, = hi(T, T*,v) =v

Figure 1 shows the time evolution of the state (T,7*,v)
and the estimated state using the Extended Kalman Filter
(EKF) and the MH estimator. In the simulation, the unit
of time is day, but the sampling time is ¢, = 0.1. The
measurement data y,, = v is only provided at times (in
days) 0, 1, 3, 5, 7, 10, 15, 30, and 50. The values of the



Parameter Value
300]°

p3 030

00 3]

Ro, 2002

1000

xo 0
5 .

1000 0 o0 ]2
Sz 0 1000 0
0 0 1000
«@ 1

Table 2. Filter and system parameters.

parameters described in Section 4 are described in Table
2. From the figure it can be seen that the MH algorithm
performs slightly better than the EKF (in particular at
the transient phase). This fact is more relevant when the
measurements are less frequent. See Fig. 2 that display
the curve of the mean estimation error as a function of
the size of the interval of time between measurements.
The EKF performance degrades faster when the interval
between measurements increases.
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Fig. 1. Evolution of the state of the system and the
estimates given by the EKF and the MHE, with
N = 3 and measurements at times: 0, 1, 3, 5, 7, 10,
15, 30, and 50

6. CONCLUSIONS

We considered the problem of moving horizon state estima-
tion of discrete lumped nonlinear systems subject to con-
straints and whose measurements of the observed variables
are not available at every sampling instant (decimated ob-
servations). We proposed an estimation algorithm together
with results on its convergence. It was shown that, under
suitable assumptions, the estimation error is bounded in
the presence of bounded disturbances and noise. In partic-
ular, if these ones vanish, the error convergences to zero.
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Time between measurements

Fig. 2. Performance comparison of the MHE versus EKF
for different interval of measurements. The measure-
ments are provided periodically with a period that
ranges .5, 1, 1.5, ..., 4. The simulations end at time
15.

The algorithm features were illustrated by simulations
concerning the application to state estimation in a model
of the HIV-1 infection. From the simulations we could
concluded that the MH estimator exhibits superior perfor-
mance over the extended Kalman filter. This difference of
performance increases with the growth of the time interval
between consecutive measurements.
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