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Abstract: This paper addresses the problem of robust sensor placement for large scale linear
time-invariant systems. Two different concepts of robustness are analyzed: 1) the robustness
with respect to one sensor failure, and 2) the robustness with respect to one link failure. We
show that both aforementioned problems can be posed as a set cover problem. Due economic
constraints we may be interested in considering the minimum robust sensor placement, a much
harder problem, which is partially addressed in this paper. Additionally, we provide the relation
between robust sensor placement with respect to one link failure and the notion of a spanning
tree. Finally, some illustrative examples are presented.
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1. INTRODUCTION

Complex systems infrastructures are commonly required
to be reliable, they must be designed to be redundant
and/or robust with respect to adverse scenarios. Among
the possible failures that affect a dynamic infrastructure
we have the 1) malfunction/loss of sensors and 2) link
failures. For example, consider the electrical power grid
where 1) the phasor measure units (PMUs) or other kind of
sensors can become unreliable or stop forwarding the data
to a central entity, and 2) transmission lines can suddenly
fail. These scenarios have been previously addressed to
ensure static or topological observability of the system, see
for instance Nuqui and Phadke (2005) and Li et al. (2012).
Both, static and topological observability consider steady
state system models, which is a reasonable assumption if
the system variables present slow dynamics. However, the
integration of renewable energy sources in the electrical
power grid of the future, such as wind farms, represent a
shift in the paradigm where steady state models no longer
can be considered (Pulgar-Painemal (2009)). Wind power
presents a fast, intermittent and uncertainty variation,
which contributes with a relative fast dynamics when com-
pared with the old fashion electrical power grids. Hence,
an higher degree of automation is required, where state
estimation is only possible by considering dynamic observ-
ability. Dynamic observability is the standard observability
definition of dynamic systems in modern control theory
(Kalman (1960)), as well as the necessary requirement
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to infer the whole state of a dynamical system from the
output measurements.

In this paper, we address the problem of ensuring dynamic
observability under the adverse scenarios 1)-2). In fact, we
take into consideration the fact that for an actual system,
it is often very hard to obtain the real-time system param-
eters precisely, except the zero parameters that denote the
absence of connection between components of the system,
see Liu et al. (2011). Because most of the parameters of
the system are unknown or considered with uncertainty, we
consider the notion of structural observability ' (see Dion
et al. (2002)), where only the structure of zero/non-zeros of
the system plant is considered. This notion has been previ-
ously explored in several contexts, for instance, Boukhobza
and Hamelin (2011); Boukhobza et al. (2007); Pasqualetti
et al. (2011), just to name a few. Boukhobza et al. (2007)
extends the work of Lin (1974) to linear systems where
unknown input is considered, and provides graphical con-
ditions that ensure structural observability. Some years
later, Boukhobza and Hamelin (2011) extended the results
to the case of dynamical systems in descriptor form, with
unknown input. Later, the relation between structural
observability and observability in dynamical systems in
descriptor form was address by Pasqualetti et al. (2011),
and applied to the analysis of vulnerabilities of the elec-
trical power systems. Pequito et al. (2013a) addressed the
problem of obtaining a minimal subset of state variables

1 A pair (A, C) is said to be structurally observable if there exists a
pair (A’, C") with the same structure as (4, C), i.e., same locations of
zeroes and non-zeroes, such that (A’,C’) is observable. By density
arguments, it may be shown that if a pair (A,C) is structurally
observable, then almost all (with respect to the Lebesgue measure)
pairs with the same structure as (A, C) are observable. In essence,
structural observability is a property of the structure of the pair
(A, C) and not the specific numerical values.



that need to be measured to obtain structural observ-
ability, and in Pequito et al. (2013b) a full description of
the minimum configurations of state variables that ensure
structural observability by assigning to each variable an
output is presented. In the present paper we extend the
results in Pequito et al. (2013b) to the case where a robust
subset of variables has to be measured to obtain structural
observability.

The main contributions of this paper are twofold: firstly,
we show that the structural observability with respect
to one sensor node failure and one link failure can be
reformulated as set cover problems, which are efficiently
solved. Secondly, we explore the minimum robust sensor
placement with respect to one link failure and its connec-
tion with the tree structure.

This paper is organized as follows: Section 2 presents
preliminary results from structurally observability theory
and minimum sensor placement for linear time-invariant
systems. Section 3 formulates mathematically the robust
sensor placement problem. Section 4, presents the main
results, which consist in efficient procedures to identify
subset of variables that need to be measure to either
ensure structural observability with respect to one sensor
failure or one link failure. In section 5, some examples
are presented in synthetic model(s) and a small power
grid model to illustrate the concept and methodology.
Conclusions and further research directions are presented
in Section 6.

2. PRELIMINARIES AND TERMINOLOGY

In this section we recall some classical concepts in struc-
tural systems, introduced in Lin (1974).

Let y=Cr,  z(0) = (1)
represent the large scale LTI dynamical system of interest,
where x € R™ and y € RP denotes the state variable and
measured output, respectively. The structural pattern of
the system in (1) is given by the binary matrices A and
C, where an entry in A (or C) is one if and only if the
corresponding entry in A (or C) is non-zero.

T = Ax,

Given a dynamical system (1), an efficient approach to the
analysis of its structural properties is to associate it with
a digraph (i.e., a directed graph) D = (V, E), in which
V denotes a set of wvertices and E represents a set of
edges, such that, an edge (vj,v;) is directed from vertex

v; to vertex v;. Denote by X = {z1,---,z,} and Y =
{y1, -+ ,yp} the set of state vertices and output vertices,
respectively. Denote by Ex x = {(wi,7;) : [A];; # 0} and

5_;(7)} = {,(‘Tﬁ’y]) : [C]]z # O}7 to define D(A) = (X,(€X7x)
and D(A,C) = (XY U Y, Ex x U &y x). In addition, we
will require the following graph theoretic notions: Given
a graph D = (V,E), Ds = (Vg, Eg) is a subgraph of D if
Ve C V and Eg C E. A digraph D is said to be strongly
connected if there exists a directed path between any pair
of vertices, see Able et al. (2001). A strongly connected
component (SCC) is a maximal subgraph Dg = (Vg,Es)
of D such that for every v, w € Vg there exists a path from
v to w and from w to v. In addition, we denote by |V| the
number of elements in the set V.

An undirected graph U = (V, Eyy) can be represented as a
digraph Dy (M) = (V, Ep,,) associated with a symmetric
matrix M. In other words, for some v,w € V we have
that an undirected edge (v,w) € Ey if and only if the
directed edges (v, w), (w,v) € Ep,,. Therefore, we can say

that an undirected graph U spans a directed graph D,
if the digraph associated with the undirected graph U,
i.e., Dy spans the digraph D. A particular instance of an
undirected graph is a tree, denoted by T = (Vp, Er) with
|Vr| vertices, |Ep| = |Vp| — 1 undirected edges and such
that every vertex v € Vi belongs to an edge in Erp. If there
exists a tree 7 that spans a digraph D we say that 7 is a
spanning tree. In this paper we assume that the digraph
have no self-loop, which implies that the undirected graph
is loopless. Finally, given an undirected graph U = (V, Ey)
we introduce the notion of a degree of a node v € V,
denoted by deg(v) = |[{(v,w) € Ey : w € V}|. In addition,
we say that v € V is a leaf (of an undirected graph) if and
only if deg(v) = 1.

For any two vertex sets Sy, 52 C V, we define the bipartite
graph B(S1, 52, Es, s,) associated with D = (V, E), to be
a directed graph (bipartite), whose vertex set is given by
S1 U Sy and the edge set Eg, s, by Es,.s, = {(s1,52) €
E : s 651,52 € Sy }

Given B(S1,S2, Es,.s,), a matching M corresponds to a
subset of edges in Eg, s, that do not share vertices, i.e.,
given edges e = (s1, $2) and ¢ = (s, s5) with s1,5] € 51
and sg,85 € S9, e,e’ € M only if s1 # s} and sy # sh. A
maximum matching M* may then be defined as a match-
ing M that has the largest number of edges among all
possible matchings. The maximum matching problem may
be solved efficiently in O(1/]S1 U S2||Es,,s,|)- Vertices in
S1 and S5 are matched vertices if they belong to an edge in
the maximum matching M*, otherwise, we designate the
vertices as unmatched vertices. If there are no unmatched
vertices, we say that we have a perfect match. A maximum
matching M* may not be unique.

The term left-unmatched vertices (w.r.t. B(S1, Se, Es, s,))
will refer to only those vertices in S; that do not belong
to a matched edge in M*.

Our results in Section 4.1 and Section 4.2 consist in
constructing and solving the set cover problem (Feige,
1998), that may be described as follows: given a finite
collection of k sets W; with ¢ € I = {1,--- ,k}, and a
set Z find a minimum number of sub-collections {W; }ic 7,
with J C Z, of subsets W; that cover Z, i.e.,

zc|Jw; (2)
jeJ
such that J C Z.
2.1 Previous results on structural system design

Recall that a dedicated output is an output (sensor) that
measures the state of a single state variable. For a system
consisting of a single SCC, consider the notions on dedi-
cated output configurations (measurement configurations
that consist of collections of dedicated outputs). These can
be obtained as follows.

Definition 1. ((Pequito et al., 2013b)). A feasible dedicated
output configuration Sy C X is a collection of state vari-

ables such that assigning dedicated outputs (sensors) to

the variables in S, ensures structural observability. In

other words, denoting by C the structural output matrix

corresponding to the assignment of dedicated outputs to

the state variables in Sy, the configuration S, is said to be

a feasible dedicated output configuration if the pair (4, C)

is structurally observable. O

A feasible dedicated output configuration with the min-

imal number of state variables is said to be a minimal
feasible dedicated output configuration.



Theorem 2. (Pequito et al. (2013b)). (Minimal Number
and Placement of Dedicated Outputs) Let the system
digraph D(4A) = (X,Exx) be an SCC and B =
B(X,X,Ex x) its bipartite representation. Let S, C X,
then the following statements are equivalent:

(1) The set Sy is a feasible dedicated output configuration
(2) There exists a subset Uy, C S, corresponding to
the set of left-unmatched vertices of some maximum
matching of B, and a subset A, C S, comprising one

state variable from D(A).

In particular, if Uy # 0, then S, = U corresponds
to a minimal feasible dedicated output configuration else
S. = {z} for some x € X is a minimal feasible dedicated
output configuration. O

Note that minimal feasible dedicated output configura-
tions are not unique due to the non-uniqueness of max-
imum matchings (and hence left-unmatched vertices).

3. PROBLEM FORMULATION
Let
i = Az,

be a given system plant, where x € R™ denotes the state,
and let A denote the structural pattern (i.e., location of
zero-nonzero entries) of A. In this paper, we are interested
in two robust output placement problems, namely P1 and
P2, corresponding to preserving structural observability
in the face of sensor failures and link failures respectively.
Formally, these problems may be described as follows:

P1 Robustness with respect to sensor failure:

Design a (canonical) p X n output matrix C, with
p being some positive integer (preferably p < n),
such that (A,C) is structurally observable and the
pair (A,C_;) is structurally observable for each ¢ €
[, ,N].

In the above, C_; = [¢f ---¢l ¢y - ¢ "
corresponds to the structure of the reduced (p—1) xn
output matrix resulting from the removal of the row
Ci, 1.e., loss of sensor (output) .

P2 Robustness with respect to link failure:

Design a (canonical) p X n output matrix C, with p
being some positive integer (preferably p < n), such
that (A,C) is structurally observable and the pair

(Airnjr, C) is structurally observable for each possible
(link) pair (¢, 7).
In the above,
A= Aij foLJ 7é 0 and (Za]) 7é (i/,j/)a (jlai/)
v~ 0 otherwise,
corresponds to the structure resulting from the loss
of the phsyical coupling (link) (¢/, 5).

The following mild assumptions on the system structure
will be imposed:

A1 The matrix A is symmetric, i.e., the system digraph
D(A) is in fact an undirected graph.

A2 The digraph D(A) is strongly connected.

Note that, in most large scale systems of interest the cou-
pling between states (agents) is bi-directional, justifying
A1l. Also, note that under Al, D(A) is an undirected
graph, and hence A2, i.e., strong connectedness, reduces

to connectivity of D(A). Finally, note that as long as A1l

holds, A2 may be relaxed. Indeed, by relaxing A2 we may
get multiple disconnected components (with no coupling)
and our design methodology may be applied independently
to each of these components. However, we still enforce A2
as it simplifies the presentation.

4. MAIN RESULTS

In this section we present the main results of the paper
addressing the solutions of P1 and P2. Specifically, in
Section 4.1 we elaborate on the solution to P1. The
solution to P2 is presented in Section 4.2-4.3, where
we present sufficient design criteria for general systems
in Section 4.2 and investigate in detail more specific
structures in Section 4.3.

4.1 Robustness with respect to sensor failure

We note upfront that under Assumptions A1-A2 the prob-
lem P1 has a trivial (but interesting nonetheless) solution
if the bipartite graph B = B(X, X, x x) associated with
A has a perfect match. In fact, in this case, by Theorem 2
it follows that robust structural observability (in the sense
of P1) may be achieved by placing dedicated outputs at
any two state variables; moreover, such placements of two
dedicated outputs are also minimal for robust structural
observability with respect to a single sensor (dedicated
output) failure.

Hence, in the following, we focus on the (non-trivial)
scenario in which the system bipartite graph B does not
have a perfect match.

In this section we show that the solution to P1 may be
cast as a set cover problem.

Now, consider a minimal feasible dedicated output con-
figuration & = {v1,---,vp} and note that (since, by
assumption, B has no perfect match), by Theorem 2, S
corresponds to the set of left-unmatched vertices of a max-
imum matching of B. In addition, consider the following
sets:

L={zc X\{v;}:S,,(z) = S\{v;} U{z} is a set of

left-unmatched vertices w.r.t. max. matching of B}

where i € Z ={1,---,|S|}. ®)
Note that, by Theorem 2, we can construct new minimal
feasible dedicated output configurations using (3) - in
other words, S, (x) is a minimal feasible dedicated output
configuration for any i € Z and z € Q%. Now, consider
the following scenario: suppose there exists z* € X such
that z* € Q% for all ¢ € Z, then §* = S U {z*} is
an s-robust feasible dedicated output configuration, i.e., a
feasible dedicated output configuration robust w.r.t. sensor
failures. In other words, S*\{z} is a feasible dedicated
output configuration for all x € §*. Moreover, in such a
scenario, S* is also a minimal s-robust feasible dedicated
output configuration since any s-robust feasible dedicated
output configuration should have at least |S|+1 dedicated
outputs.

In general, let X = {z1, - ,z,} and denote by

Vi={i€T:2; €05}, j=1,,n (4)
the indices of the sets Q5’s to which the state variable z;
belongs to. We then have the following result.

Theorem 3. Let S be a minimal feasible dedicated output
configuration and consider the sets (3)-(4). If there exists
J C {1, -+ ,n} such that



IcC U Vj,
FISVe
i.e., the family {V;};ecs covers Z, then

S*=|J{z} us
JjET
is an s-robust feasible dedicated output configuration. [

Proof. It suffices to verify that S* — {z} is a feasible
dedicated output configuration for all x € S*. To this end,
we consider two cases, as to whether z € S*\S or z € S:

e Let © € S§*\S. Then, clearly § € §* — {z} and S;
since, § is a feasible dedicated output configuration, we
conclude that 8* — {z} is also a feasible dedicated output
configuration.

e Let z € S and let S be given by S = {v1,v2,--+ , vz}
Suppose that = = v;, then, note that, by the hypothesis
that (J;c;V; is a set cover for Z, there exists a state

variable y € Q%N Ujes{z;}. Clearly, S\{z} U{y} C S* —
{z} and, hence, §* — {x} is a feasible dedicated output
configuration since S\{z} U {y} is a feasible dedicated
output configuration (by definition of Q%). |

We now show that an s-robust feasible dedicated output
configuration, i.e., a solution to P1, may be determined
efficiently.

Theorem 4. (Complexity). An s-robust feasible dedicated
output configuration may be computed using a polynomial
complexity (in the number of state variables) algorithm.[J

Proof. From Pequito et al. (2013b), we have that a
minimal feasible dedicated output configuration & can
be efficiently determined using a polynomial complexity
algorithm (see Theorem 5 in Pequito et al. (2013b)), as

well as Qfg for j = 1,---,|S|]. Remark that V; can be

efficiently implemented in at most O(]X|?) since it consists
in verifying if each of the |X| state variables belongs to at

most |X| sets Q%’s. Finally, remark that finding a set cover
may easily be implemented by a polynomial complexity
algorithm (Able et al., 2001). |

Remark that in practice we may want to measure the
smallest number of state variables, which implies that we
want the minimum set cover with the smallest number
of state variables. Nevertheless, this problem is known to
be NP-hard (Cormen et al., 2001), and even a simpler
formulation as the minimum set cover is NP-complete.
There exist approximation algorithms that achieve (with
theoretical guarantees) bounded errors, see for instance
Feige (1998) and Levin (2006). Although our solution
does not guarantee a minimal s-robust dedicated output
configuration, illustrative examples provided in Section 5
show that our set cover based design approach leads to
s-robust dedicated output configurations with number of
outputs much smaller than the total number of states
variables.

4.2 Robustness w.r.t. link failure: set cover approach

This is the first of two sections where we explore the
robustness with respect to link failure. Let a link between
z; and z; be denoted by L; ;, given by the subset of edges
Li; = {(zi,x;),(z;,z;)}. Provided the original system
digraph D(A) = (X,Ex x), once a link fails, a new sys-
tem system A;.; is obtained. The digraph representation

D(Ainj) = (X, Ex x — L; ;) and the associated bipartite
graph given by B(X, X, Ex x — L; ;). Note that, although
D(A) is strongly connected by A1, the digraph D(A;~;)
may lead to a digraph comprising two SCCs (connected
components in this case as all structures are undirected),
which results from the fact that £;; is the only link

connecting the two different SCCs.

Now, starting with a minimal feasible dedicated output
configuration S, a link failure may or may not preserve
structural observability. Therefore, let us introduce the
notion of sensitive link w.r.t. S: given a minimal feasible
dedicated output configuration S for A, £; ; is a sensitive
link w.r.t. S if and only if S is not a minimal feasible
dedicated output configuration for A, ;. In other words,
L; ; is not a sensitive link if & continues to be a minimal
feasible dedicated output configuration for A;.;. In order
to determine if a link £;; is sensitive or not w.r.t. S,
we consider the bipartite graphs Bs = B(X,X,Ex x —
{(z,.) : 2z € §}) and B = B(X, X, Exx — {(2,.) 2z €
S} — L;;), where the removal of all the edges starting
in a specific vertex, enforces that same vertex to be a
left-unmatched vertex in all possible maximum matchings
w.r.t. the corresponding bipartite graph. Hence, we should
state conditions about these maximum matchings by, first,
recovering Theorem 2, and second, considering the SCCs
that compose the system A;.; as stated in the next result.

Lemma 1. A link £;; is not a sensitive link w.r.t. a
minimal feasible dedicated output configuration S if and
only if there exists a common maximum matching M*" of

Bs and BZ such that each SCC of D(A;~;) has at least
one left-unmatched vertex from M™*. O

Proof. [«<] If there exists a common maximum matching

M* of Bs and B¢ such that each SCC of D(4;.;) has at
least one left-unmatched vertex from M* then we have two
cases: 1) there is only one SCC and the set left-unmatched
vertices can be considered as the minimal feasible output
configuration S as consequence of Theorem 2; and 2)
there exist two SCCs, then because these are disjoint we
can consider M* = M7 U My', where M} (for i =
1,2) corresponds to the edges belonging to the ith SCC.
Therefore, we can associate to each maximum matching
M a set of left-unmatched vertices U; (non-empty since
there exists at least one left-unmatched vertex in each
SCC), which implies that S; = U; is a possible minimal
feasible output configuration (by Theorem 2). Hence, S =
S1 U Sy is a minimal feasible output configuration and
by definition of sensitive link, follows that £;; is not a
sensitive link.

[=] To verify that this implication holds, we just need
to verify that the contra positive holds. Which follows by
reasoning as in the reverse implication, and by arguing
that Theorem 2 does not hold. |

The above characterization provides us with an intuitive
procedure to obtain an [-robust feasible dedicated output
configuration, i.e., a feasible dedicated output configu-
ration that is robust w.r.t. the failure of a single (but
arbitrary) link, starting with a minimal feasible dedicated
output configuration.

Similarly to the procedure in Section 4.1, given a minimal
feasible dedicated output configuration S, we will reduce
the problem of constructing an [-robust feasible dedicated
output configuration (not necessarily minimal) to a set
cover problem. For each of the (possibly two) SCCs in



D(A;~;) we verify if S is a feasible dedicated output
configuration. In fact, due to a sensitive link failure (as
consequence of Lemma 1) we have two cases:

(i) A state vertex that is a left-unmatched vertex with
respect to all possible maximum matchings (but not
belonging to S) in the SCC has to be considered
to place a dedicated output to make the system
structurally observable, see the example in Fig. 1-b);

(ii) An SCC has no left-unmatched vertex belonging to S
and w.r.t. any possible maximum matching. Hence,
any state variables in the SCC may be considered
to place a dedicated output to make the system
structurally observable (as consequence of Theorem
2), see the example in Fig. 1-c).

C
O
a)
C—Lsa
' %0
b)
C—La3

c)

Fig. 1. This figure depicts a chain C where the edges
blue represent the edges belonging to some maximum
matching of the digraph represented. The red squares
represents the state variables belonging a possible
feasible output configuration. In a) we show that
S = {1} is a minimal feasible output configuration;
b) under the failure L3 4, the original chain originates
two SCC, where z4 is a stand alone vertex which
is required to belong to the [-robust feasible output
configuration; finally, ¢) depicts the scenario where a
failure Lo 3 occurs and the SCC comprising {z3, x4}
requires one of its variables to belong to a [-robust
feasible output configuration.

Now, consider the collection of all possible SCCs satisfying
conditions (i)-(ii), which we refer from now as non struc-
trually observable SCCs, that may be originated due to
a linked failure. Let v be the number of such SCCs and
denote these SCCs by {A;}iez with Z = {1,--- ,~}. Also,
recall X = {z1,--- ,z,} and define the subsets

Vi={iel:z; e}, j=1,---,n (5)

We have the following result.

Theorem 5. Let S be a minimal feasible dedicated output
configuration, {A;};cz with Z = {1,--- ,v} be the collec-
tion of all possible non-structurally observable SCCs and
consider the sets {V;}]_; defined in (5). If there exists

J c{1,---,n} such that
IcC U Vj
JjeT
i.e., the family {V;};cs covers Z, then
S*=|J{z} us
JET
is an [-robust feasible dedicated output configuration. O

Proof. Since §* C S, it suffices to show that for each
sensitive link £;; (w.r.t. S) the set S* is a feasible ded-
icated output configuration for A;.;, which follows by
construction. To this end consider a sensitive link £;; and
note that, by the classification in (i)-(ii), the failure of £;;
leads to at most two SCCs (say, indexed by ~y1,72) that
require additional state variables to be measured, i.e., to
which we need to assign additional dedicated outputs to
ensure structural observability. From the set cover we know
that there exist sets V, with p € P C J that cover the
SCCs 71, y2; therefore we only need to assign additional
dedicated outputs to state variables z, with p € P. Hence,
Upep{zp}US is a feasible dedicated output configuration.

The same reasoning applies for any arbitrary link sensitive
failure, hence the result follows. |

The discussion in Section 4.1 about the complexity easily
extends to the case of the [-robust feasible output dedi-
cated configuration. Similar to Section 4.1, we still have
that a minimal feasible dedicated output configuration
S can be efficiently determined using a polynomial com-
plexity algorithm. Also, determining the set of sensitive
links, which is equivalent to determining the structural
observability of at most |Ex x| systems, can be done in
polynomial time, since verifying if a system is structural
observable can be done in polynomial time Murota (1987).
Remark that V; can be efficiently implemented in at most
O(|X|3) since it consists in verifying if each of the | X| state
variables belongs to at most 2|Ex x| sets A;’s. Finally,
remark that finding a set cover may easily be implemented
by a polynomial complexity algorithm Able et al. (2001).

4.3 Robustness w.r.t. link failure: spanning tree approach

In this section we provide upper and lower bounds on
the size of l-robust feasible dedicated output configura-
tions. We first provide results for specific system structures
(trees) and then extend the bounds to general structures.
Specifically, upper and lower bounds on the size of an
[-robust feasible dedicated output configuration for tree
structured system are presented in Theorem 7, whereas,
bounds for general system structures are obtained in The-
orem 8 which shows that the number of state variables
in an [-robust feasible dedicated output configuration is
lower and upper bounded by the number of leaves of the
system graph and those of a tree that spans it, respectively.
Since a spanning tree may be determined with polynomial
implementation complexity, the bounds obtained in The-
orem 8 are efficiently computable. Moreover, the proofs
are constructive, in that, while providing a spanning tree
based upper bound, we explicitly construct an [-robust
feasible dedicated output configuration (with polynomial
complexity). Some of the results in this section are inspired
by techniques developed in Deri et al. (2013), although in
a different context.

In a sense, based on the spanning tree arguments de-
scribed above, the best upper bound may be obtained by
considering the spanning tree with the minimum number
of leaves; however, we also illustrate that such an upper
bound (obtained by minimizing over all possible spanning
trees) is not necessarily tight in general. To provide bet-
ter intuition into our construction, we first consider the
simplest tree structured system: D(A) corresponds to a
chain, i.e., an elementary undirected path (without vertex
repetitions) that covers all the vertices. We first show
that by assigning dedicated outputs to the end vertices of
the chain, we obtain an [-robust feasible dedicated output



configuration that is also minimal, since no other I-robust
feasible dedicated output configuration can have less than
two monitored state variables.

In this section we present the following results: first 1) we
show that the minimum number of state variables in a
l-robust feasible dedicated output configuration must be
comprised between the number of leaves of the graph and
those of a tree that spans it. Second, although the intuition
would say that we need to find the spanning tree with the
minimum number of leaves, we show that it only provides
an upper-bound.

Lemma 2. Let the system graph C = D(A) = (X,Ex x

corresponds to a chain with |X| = n, where X =
{z1,-+,zp} and E = {(xs,2i41) : ¢ =1,--- ,n—1} U
{(zit1,2;) : i=1,-+- ,n—1}. Then

(i) S, = {x1} and S = {x,} are minimal feasible

dedicated output configurations;
(ii) Sy = {z1, 2, } is a minimal [-robust feasible dedicated
output configuration. O

Proof. Let B = B(X,X,Ex x) denote the bipartite rep-
resentation of C. We have two cases:

e If C has even length, then n = 2k + 1 for some k € N
and we can consider as a maximum matching the set
M = {(z2i—1,22:) : i = 1,--,[5]} U {(x2:,72-1) :
i = 1,---, %]}, which has size n. Hence, all vertices in
X belong to a matched edge and the set of left-unmatched
vertices is empty. Therefore, from Theorem 2, it follows
that S, = {«} for any 2 € X is a minimal feasible dedi-
cated output configuration. In particular, S; = {z1} and

S; = {x,} are feasible dedicated output configurations.

e If C has odd length, then n = 2k for some £ € N
and we can consider as a maximum matching the sets:
1) M' = {(ziz1,2) © i = 1,---,n — 1}, which has
size N — 1 and the set of left-unmatched vertices consists
of ={x1}. Hence, from Theorem 2 we have that S, =
{z1} is a feasible dedicated output configuration; and 2)
M? = {(zj,x;11) : i = 1,---,n — 1}, which has size
N — 1,which has size n — 1 and the set of left-unmatched
vertices consists of V = {x,}. Hence, from Theorem 2
we have that Sp = {z,} is a feasible dedicated output
configuration.

Remark that both S; and S are also minimal by Theorem
2. Up to this point, we have shown that in a chain, by

considering its ending vertices, we can obtain a feasible
dedicated output configuration. Therefore, by considering

S; = {z1,z,} we have an [-robust feasible dedicated
output configuration, since the elimination of any link
Liiv1 = {(xi,xiy1), (®ip1,x;)} originates two chains,

where each has one of its ending vertices given by Syl and
SS, i.e., feasible dedicated output configuration. Finally,
remark that there cannot exist a smaller I-robust feasible
dedicated output configuration. Suppose on the contrary
it is possible to have a smaller l-robust feasible dedicated
output configuration S;, then we have only one state

variable in 5; = {z} for some z € z € X. By considering a
link failure £; ;41 we have two chains: one has z belonging
to it and the other does not have any of its state variables
belonging to Sé, hence leading to a contradiction by
Theorem 2. ]

We now extend the previous result to a general tree as
follows.

Theorem 6. Let the system graph T = D(A) = (X, Ex x)
correspond to a tree and let Ly C X be its set of leaves.
Then,

(i) Foreachz € Ly, S, = Ly—{x} is a feasible dedicated
output configuration;

(ii) S; = L7 is an l-robust feasible dedicated output
configuration. O

Proof. Note that in a tree, given any two leaves, there
exists a chain with those leaves as the end vertices, and
any tree can be decomposed into a union of disjoint
chains where each chain has at least one vertex in L.
To prove (i), fix z € Ly , and consider a disjoint spanning
decomposition of T given by 7 = CUJ,.cc Cr with K C N,
such that C is a chain whose end vertices are in L with one
of the end vertices being x, and {Cx} is a disjoint family
of chains (also disjoint from C) each of which has one end
vertex in L. By Lemma 1 and Theorem 2, we just need to
assign one of the end points in each chain with a dedicated
output to obtain a feasible dedicated output configuration.
Note that, by construction (the decomposition of T), the
configuration S, = L7 — {z} achieves this, and hence S,
is a feasible dedicated output configuration.

Now, to prove (ii), let £;; C E be an arbitrary link
failure. Therefore, consider the following disjoint spanning
decomposition of T: Tj; = Cij U Ui Cx where Cyj is a
chain that contains £;; with vertices in the leaves of T
(i.e., L7), and {Cx} is a disjoint family of chains (also
disjoint from C) each of which has one end vertex in
L. Therefore, if link failure £;; occurs, we have that C;;
originates two disjoint chains C};,C?; each of which one of
its end vertices in L. Hence, each of the chains Cilj, C?j, Ck
for k € K is structurally observable by invoking Lemma
1 (if dedicated outputs are assigned to all the leaves) and
hence by Theorem 1 the configuration S], = L preserves
structural observability when link £;; fails. Noting that the
same reasoning applies to any link failure, we conclude that
Szl/ is an [-robust feasible dedicated output configuration.

Following Theorem 6, we can now characterize minimal I-
robust feasible output configurations for general system
structures in terms of spanning trees of the associated
system graph.

Theorem 7. Let the system digraph G = D(4) =
(X,Ex.x) satisfy assumptions A1-A2 and let 7 be a
spanning tree of D(A). Then, a minimal l-robust feasible
dedicated output configuration S, satisfies the following

inequalities
[Lg| < |5y < L]

where Lg, LT C V represent the set of leaves of G and T,
respectively. O

Proof. Note that |S;| < |L7| follows directly from The-
orem 6. By definition of leaf we have that deg(z;) = 1
for x; € Lg, which implies that £;; € Ex x for some
xz; € X and hence, z; becomes isolated if the link L;;
fails. Therefore z; must belong to S for S to be l-robust
feasible. Hence |Lg| < [S;|. |

In particular, we have the following result



Corollary 8. Let the digraph G = D(A) = (X, Ex.x)
satisfy assumptions A1-A2, T be a spanning tree of D(A)
and denote by Lg and L the corresponding sets of leaves.
Then if [Lg| = [L7| then S; = Lg is a minimal [-robust
feasible dedicated output configuration. O

Intuitively, to obtain a minimal /-robust feasible dedicated
output configuration we need to obtain a spanning tree
with the minimum number of leaves. However, this in-
tuition is wrong, since it only provides an upper bound
(not necessarily tight) to the minimal l-robust feasible
dedicated output configuration. This fact is illustrated
by the example depicted in Fig. 2, where any possible
spanning tree achieves the minimum number of leaves (in
a total of three leaves) is depicted by the blue edges, but it
turns out that by assigning dedicated outputs only to the
leaves of the original graph (two in number) we obtain a
minimal [-robust feasible dedicated output configuration.
Finally, remark that we can find spanning trees efficiently
(i.e., using algorithm with polynomial complexity in the
number of state variables in the original graph), but to
find a spanning tree with the minimum number of leaves
is an NP-complete problem (Salamon and Wiener, 2008).
Nevertheless, as we illustrate in Section 5.3, we can find
spanning trees with a number of leaves much smaller than
the total number of state variables.

Fig. 2. This example depicts a system with a minimal [-
robust feasible dedicated output configuration com-
prising the state variables in red, whereas the span-
ning tree (with edges represented in blue) with the
minimum number of leaves, has three leaves which
implies that a l-robust feasible dedicated output con-
figuration that comprises three state variables (its
leaves) is not minimal.

5. ILLUSTRATIVE EXAMPLE

In this section we provide some illustrative examples,
where the main results are used. As in Section 4, we first
explore the set cover problems to achieve a s-robust and
l-robust dedicated output configuration in Section 5.1 and
5.2, respectively. Followed by Section 5.3 where we use the
spanning tree construction to obtain a [-robust dedicated
output configuration.

5.1 Robustness with respect to sensor failure

We start by providing a s-robust feasible dedicated output
configuration to the case of a five-vertex star network,
depicted in Fig. 3-a). From Theorem 2, since a star network
is an SCC, we first need to compute a maximum matching,
for instance M = {(z1,x3), (z3,22)} (depicted in Fig. 3-
b)), with set of left-unmatched vertices given by U =
{x2,x4,25}. Hence, Sy = {x2, x4, x5} is a minimal feasible
dedicated output configuration.

We now construct the sets Qs = {Q5,0%, 0%} as we
defined in (3) and given by: QL = {z1}, Q% = {21} and
Q3 = {371}

Fig. 3. In a) we depict the five-vertex star network and
in b) the blue edges consist of a possible maximum
matching associated with the five-vertex star network
bipartite graph.

Invoking Theorem 3, observe that exist three left-unmatched
vertices, hence Z = {1, 2, 3} and the covering sets are given
as in (4) by V1 ={1,2,3} and V5 = {}.

As a result, V; is a solution to the set cover problem in
Theorem 3, which implies that 8* = {z1,z2, 24,25} is a
s-robust feasible dedicated output configuration.

5.2 Robustness with respect to link failure

Consider a IEEE standard 14-bus power system depicted
in Fig. 4-a). From Theorem 2, we first need to compute
a maximum matching. One of the possible maximum
matching with respect to the associated bipartite graph
given by the blue edges is depicted in Fig. 4-b), with set of
left-unmatched vertices given by Uy, = {zs}. Hence, S, =
{zs} is a minimal feasible dedicated output configuration.

|
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Fig. 4. In a) we depict the 14-bus system and in b) we
depict in blue the edges belonging to a possible max-
imum matching associated with the bipartite graph
representation of the 14-bus system.

The set of sensitive links corresponding to S,, as we
defined in Section 4.2, is:

L ={L7s,La7,Lo10,L10,11, L1312, L1413, Lo 14}

Invoking Theorem 5, we have that the number of SCCs
originated due to a linked failure is 9, hence 7 =
{1,2,3,4,5,6,7,8,9} (only the failure of Ly g and L7
creates two SCCs, and only one SCC is created resulting
from the failure of other sensitive links). Denote the two
SCCs created by the failure of L7 g as A; (the smaller one)
and As. Denote the two SCCs created by the failure of L4 7
as Ag (the smaller one) and A4. And denote the SCCs
created by the failure of Lg’lo, L10,117 L13}127 L14’137 L9’14
as As, Ag, Ay, Ag, Ay, respectively.

And we can construct the covering sets {V;}, j €
{1,2,...,14}, as given in 5:



V) = {579}7 Vo = {47579}7 Vs = {27579}7 Vy = {4}7
Vs =1{5,9}, Ve =0, Vs ={2,3,5}, Vs = {1,3,5},
Vo ={2,4,5,7,8,9}, Vio = {2,4,5,6,8},

Vi1 =1{2,4,5,6,7,8,9}, Vio = {2,4,5,6,7,8,9},

Vi ={7,8}, Vi4a ={7,8,9}.

The solution for this set cover problem as given in Theorem
5is {Vg,V12} or {Vs,V11}. Hence we will have J = {8,12}
(or {8,11}) such that the family {V;};cs covers .

According to Theorem 5, the [-robust sensor placement
configuration is (J;c /{z;} U S. Two possible [-robust
feasible dedicated output configuration are: ST = {xg, 12}
and Sg = {$8,LE11}.

5.8 Robustness with respect to link failure: spanning tree
structure

Let’s try to solve the problem of Section 5.2 in a different
way, illuminated by the property of spanning tree intro-
duced in Section 4.3.

According to Theorem 7, any minimal [-robust feasible
dedicated output configurations of a system & satisfies:
|La| < |S;| < |L7|. For the IEEE standard 14-Bus power
system shown in Fig. 4, Lg = {zs}, |Lg| = 1, hence
|S;| > 1. For this system, we can easily find that |S;| > 1,
i.e. |S;| > 2, by simply checking the situation of the failure
of Ly g in Fig. 4-a).

Since |S;| < [L7], let’s consider the lower bound of |L,
namely, consider the spanning trees that have minimum
number of leaves. One structure of the spanning trees with
minimum number of leaves is shown in Fig. 5.

Fig. 5. Depicts the 14-bus system and the spanning tree
with the minimum number of leaves composed by the
red edges.

In this spanning tree of the original system, Ly =
{xs,x12}. Hence |Ly| = 2, which is equal to the lower
bound of |S;|, as we found in our previous discussion.
According to Theorem 7, |L| is also the upper bound
of §;. As aresult, we can come to the conclusion that any
minimal [-robust feasible dedicated output configurations

of the IEEE standard 14-Bus power system S, satisfies
|S;| = 2, and one minimal [-robust feasible dedicated
output configurations is {xg,z12}.

Although the result is not general, we can tell from this
example that the property of spanning tree can help us
design the minimal [-robust feasible dedicated output con-
figurations, or at least [-robust feasible dedicated output
configurations, in some cases.

6. CONCLUSIONS AND FURTHER RESEARCH

This paper provided systematic methods to reformulate
the robust observability problem w.r.t. one sensor failure
and one link failure as a set cover problem. Additionally,
we showed how to find [-robust feasible dedicated output
configurations by determined the spanning tree of the
system graph. Both reductions allow us to use efficient
methods to find a solution to the proposed problems. In
addition, we have shown that such reduction that finding
the minimal robust configuration to either sensor/link
failure implies to solve NP-hard problems. A natural
extension consists in the combination of two kinds of
failure (i.e., considering one sensor node failure and one
link failure at the same time) and to find the solution to a
more general class of graphs, i.e., where assumptions A1l-
A2 are waived.
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