
COORDINATED PATH-FOLLOWING IN THE PRESENCE OF
COMMUNICATION LOSSES AND TIME DELAYS∗

R. GHABCHELOO† , A. P. AGUIAR† , A. PASCOAL†

C. SILVESTRE† , I. KAMINER‡ , AND J. HESPANHA§

Abstract. This paper addresses the problem of steering a group of vehicles along given spatial
paths while holding a desired time-varying geometrical formation pattern. The solution to this
problem, henceforth referred to as the Coordinated Path-Following problem, unfolds in two basic
steps. First, a path-following control law is designed to drive each vehicle to its assigned path, with
a nominal speed profile that may be path dependent. This is done by making each vehicle approach
a virtual target that moves along the path according to a conveniently defined dynamic law. In the
second step, the speeds of the virtual targets (also called coordination states) are adjusted about
their nominal values so as to synchronize their positions and achieve, indirectly, vehicle coordination.

In the problem formulation, it is explicitly considered that each vehicle transmits its coordination
state to a subset of the other vehicles only, as determined by the communications topology adopted.
It is shown that the system that is obtained by putting together the path following and coordination
subsystems can be naturally viewed either as the feedback or the cascade connection of the latter two.
Using this fact and recent results from nonlinear systems and graph theory, conditions are derived
under which the path following and the coordination errors are driven to a neighborhood of zero in
the presence of communication losses and time delays. Two different situations are considered. The
first captures the case where the communication graph is alternately connected and disconnected
(brief connectivity losses). The second reflects an operational scenario where the union of the com-
munication graphs over uniform intervals of time remains connected (uniformly connected in mean).
To better root the paper in a non-trivial design example, a coordinated path-following algorithm is
derived for multiple underactuated Autonomous Underwater Vehicles (AUVs). Simulation results
are presented and discussed.

Key words. Coordination control, communication losses and time delays, path-following, au-
tonomous underwater vehicle

AMS subject classifications. 93A14, 93D15, 93C85, 93C10, 93A13

1. Introduction. Increasingly challenging mission scenarios and the advent of
powerful embedded systems, sensors, and communication networks have spawned
widespread interest in the problem of coordinated motion control of multiple au-
tonomous vehicles. The types of applications considered are numerous and include
aircraft and spacecraft formation control [6], [23], [29], [35], [38], [48], [49], [59], [61],
[4], [64], coordinated control of land robots [16], [51], [22], [57], control of multiple
surface and underwater vehicles [17], [26], [33], [63], [13], and networked control of
robotic systems [15], [14], [32], [40], [36], [42], [47]. To meet the requirements im-
posed by these and related applications, a new control paradigm is needed that must
necessarily depart from classical centralized control strategies. Centralized controllers
deal with systems in which a single controller possesses all the information required
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to achieve desired control objectives, including stability and performance require-
ments. In many of the applications envisioned, however the highly distributed nature
of the vehicles’ sensing and actuation modules and the constraints imposed by the
inter-vehicle communication network make it impossible to tackle the problems in the
framework of centralized control theory. In part due to these reasons, there has been
over the past few years a flurry of activity in the area of multi-agent networks with
application to engineering and science problems. The list of related research topics
is vast and includes parallel and distributed computing [7], distributed decision mak-
ing [60], synchronization in oscillator networks [45], flocking of mobile autonomous
agents [5], [18], [28], [53], state agreement and consensus problems [20], [37], [50], [39],
[43], [41], [11], asynchronous consensus protocols [9], [60], graph theory and graph
connectivity [44], [55], [31], rigidity and persistence in autonomous formations [62],
adaptive and distributed coordination algorithms for mobile sensing networks [12],
[11], and concurrent synchronization in dynamic system networks [47]. See also [54]
and the references therein for general expositions on large-scale dynamical systems
and decentralized control of complex systems, respectively that bear affinity with the
issues addressed in this paper.

In spite of significant progress made in these areas, much work remains to be
done to develop strategies capable of yielding robust performance of a fleet of vehicles
in the presence of complex vehicle dynamics, severe communication constraints, and
partial vehicle failures. These difficulties are specially challenging in the field of marine
robotics for two main reasons: i) often, the dynamics of marine vehicles cannot be
simply ignored or at least greatly simplified for control design purposes; ii) underwater
communications and positioning rely heavily on acoustic systems, which are plagued
with intermittent failures, latency, and multipath effects.

Inspired by recent theoretical and practical developments in the areas of multiple
vehicle control, we consider the problem of coordinated path-following control where
multiple vehicles are required to follow pre-specified paths while keeping a desired,
possibly time-varying geometric formation pattern. These objectives must be met in
the presence of communication losses and delays. The problem arises for example in
the operation of multiple autonomous underwater vehicles (AUV) for fast acoustic
coverage of the seabed [46]. In this application, two or more vehicles maneuver above
the seabed at the same or different depths, along geometrically similar spatial paths,
and map the seabed using identical suites of acoustic sensors. By requesting that the
vehicles move along the paths so that the projections of the acoustic beams on the
seabed have a certain degree of overlapping, large areas can be mapped in a short
time. These objectives impose strict constraints on the vehicle formation pattern.

A number of other scenarios can be envisioned that require coordinated path
following control of marine vehicles. Examples include underwater vehicle formation
control for 3D vision-based marine habitat mapping, ship underway replenishment
[33], and missions where temporal and spatial path deconfliction are critical [61].
Similar problems arise in the area of air vehicle control. All of the scenarios share
the requirement that a number of vehicles maneuver along pre-determined paths, at
nominal speed profiles that may be path dependent, and keep a possibly time-varying
formation pattern. Absolute time requirements are not part of the problem. As such,
they depart considerably from other related problems such as vehicle rendez-vous
maneuvers and swarm formation control. The manner in which the paths and the
formation are planned depend on the specific problem at hand. For example, using
a time optimality criterion when fast coordinated maneuvering between initial and
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final positions is required, minimizing an energy-related criterion when the objective
is to scan a certain area or volume densely and energy is at a premium, or using a
combination of criteria that include geometric constraints when collision avoidance is
important. See for example [61] for the case of unmanned air vehicles.

In this paper we formulate and solve the problem of coordinated path following by
taking explicitly into account the vehicle dynamics and the topology of the underlying
communication network, subject to communication losses and delays. The reader is
referred to [17], [21], [22], [34], [57] and the references therein for an historical overview
of the topic and a perspective of the sequence of motion control problem formulations
and solutions upon which the present work builds. See also [19], [56], [46] for in
depth introductory expositions to the topic at hand. For the sake of clarity, it is
important to point out that in the scope of the the problem at hand, path following
and coordinated path following have also been referred to as output maneuvering and
synchronization of multiple maneuvering systems, respectively [57]. A comprehensive
survey of related results on consensus in multivehicle cooperative control can be found
in [41], [43], and [50].

The solution to the problem of Coordinated Path Following that we propose un-
folds in two basic steps. First, a path-following control law is designed to drive each
vehicle to its assigned path, with a nominal speed profile that may be path depen-
dent. This is done by making each vehicle approach a virtual target that moves along
the path according to a conveniently defined dynamic law. Each vehicle has access
to a set of local measurements only. In the second step, the speeds of the virtual
targets (also called coordination states) are adjusted about their nominal values so
as to synchronize their positions and achieve, indirectly, vehicle coordination. The
vehicles are only allowed to exchange limited information with its immediate neigh-
bors. Without being too rigorous, it can be said that the strategy proposed abides
by a separation principle whereby the path following and coordinated motion control
designs are almost decoupled. This simplifies the overall design process. Furthermore,
it has the virtue of leaving essentially to each vehicle the task of dealing with external
disturbances acting upon it, directly at the path following level.

The mathematical set-up adopted in the paper is well rooted in Lyapunov sta-
bility and graph theory. At the pure path following level, two types of control laws,
henceforth referred to as Type I or Type II, are developed. The difference between
them lies in the types of dynamics chosen for the virtual targets along the paths.

Key concepts from input-to-state (ISS) stability theory [58] are also used to derive
results on the stability, performance, and robustness of the overall system that results
from putting together the path-following and vehicle coordination subsystems. Here,
we use the fact the combination of the above systems takes either a feedback intercon-
nection or a cascade form, depending on whether the underlying path following laws
are of Type I or Type II, respectively. The results are quite general in that they apply
to a large class of path following control systems satisfying a certain ISS property.
For the sake of clarity and completeness, the paper derives a path-following strategy
for a class of underactuated autonomous underwater vehicles that meets the required
ISS property.

The key contribution of the paper is the study of the combined behavior of the
path following and coordination systems in the presence of temporary communication
losses and transmission delays. To deal with communication losses, the paper pro-
poses two frameworks to study the effect of communication failures and delays on the
performance of the overall vehicle formation. The first framework, referred to as Brief
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Connectivity Losses (BCLs), refers to the situation where the communication graph
changes in time, alternating between connected and disconnected graphs. Here, we
borrow from and expand previous results on systems with brief instabilities, namely
by deriving a new small gain theorem that applies to the feedback interconnection of
these systems. See [25] and the references therein for an introduction to systems with
brief instabilities and their application to control systems analysis and design. The
second framework, called Uniformly Connected in Mean (UCM), applies to the case
where the communication graph may even fail to be connected at any instant of time;
however, we assume there is a finite time T > 0 such that over any interval of length
T the union of the different graphs is connected. This framework is motivated by the
work in [36, 37, 39]. To the best of our knowledge, this is the first time that the impact
of intermittent failures on coordinated path following is analyzed from a quantitative
point of view and estimates on the rate of decay of all closed-loop error signals are
obtained. The impact of communication delays on the overall system performance is
also analyzed for the case of homogeneous delays and path following systems of Type
II. Conditions are derived under which the path following errors become arbitrarily
small and the cooperation errors approach zero exponentially. For related results on
the consensus problems for systems with non-homogeneous delays see [20].

The paper is organized as follows. Section 2 formulates the path-following and
vehicle coordination problems and describes general stability-related properties that
are met by the path-following closed-loop subsystem of each vehicle. Section 3 in-
troduces some basic notation, summarizes important results on graph theory, and
develops the tools that will be used to study the different types of communication
topologies considered in the paper. Section 4 derives a useful small gain theorem for
the feedback interconnection of systems with brief instabilities. Section 5 studies the
coordinated path-following problem in the case where the communications network is
subjected to communication losses with no time delays. Section 6 extends some of the
results of Section 5 to deal with switching communication networks and time delays.
An illustrative example is presented in Section 7, where a coordinated path-following
control algorithm for a general class of underactuated underwater vehicles is derived.
The results of simulations are also described. Finally, Section 8 contains the main
conclusions and describes problems that warrant further research.

2. Problem statement. This section provides a rigorous formulation of the
path following and coordination problems that are the main subjects of the paper.
Consider a group of n vehicles numbered 1, .., n. We let the dynamics of vehicle i be
modeled by a general system of the form

ẋi = fi(xi, ui, wi),
yi = hi(xi, vi),

(2.1)

where xi ∈ R
n is the state, ui ∈ R

m is the control signal, and yi ∈ R
q is the output

that we require to reach and follow a path ydi
(γi) : R → R

q parameterized by γi ∈ R.
Signals wi and vi denote the disturbance inputs and measurement noises, respectively.
Later in Section 7, an example will be given where the dynamics of (2.1) are those of
a very general class of autonomous underwater vehicles. In that case, the output yi

corresponds to the position of the vehicle with respect to an inertial coordinate frame.
For any continuous, differentiable timing law γi(t), define the path-following and

speed tracking error variables

ei(t) := yi(t) − ydi
(γi(t)) (2.2)
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and

ηi(t) := γ̇i(t) − vri
(t) (2.3)

respectively, where vri
(t) ∈ R denotes a desired temporal speed profile to be defined.

Inspired by the work in [3, 22, 56], we start by defining the problem of path-
following for each vehicle. In what follows, ‖.‖ denotes both the Euclidian norm of a
vector and the spectral norm of a matrix.

Definition 2.1 (Path-following (PF) problem). Consider a vehicle with dynam-
ics (2.1), together with a spatial path ydi

(γi); γi ∈ R to be followed and a desired,
pre-determined temporal speed profile vri

(t) to be tracked. Let the path following error
and the speed tracking error be as in (2.2) and (2.3), respectively. Given ǫ > 0, design
a feedback control law for ui such that all closed-loop signals are bounded and both
‖ei‖ and |ηi| converge to a neighborhood of the origin of radius ǫ.

Stated in simple terms, the problem above amounts to requiring that the output
yi of a vehicle converge to and remain inside a tube centered around the desired path
ydi

, while ensuring that its rate of progression γ̇i also converge to and remain inside
a tube centered around the desired speed profile vri

(t).

We assume that the path-following controllers adopted meet a number of technical
conditions described next. In Section 7, as an example, we introduce a path-following
controller for a general underactuated vehicle that meets these conditions. The in-
terested reader will find in [22], [56] and the references therein related material on
path-following control of nonlinear systems. See also [3] for an interesting discus-
sion on the possible advantages of path following versus trajectory tracking control.
Namely, the fact that path-following control for non-minimum phase systems removes
the performance limitations that are inherent to trajectory tracking schemes.

In preparation for the development that follows, we set vri
(t) = vL(γi(t), t) +

ṽri
(t), where vL(γi, t) is a nominal pre-determined speed profile and ṽri

can be seen
as a perturbation component of vri

about vL. Later, it will be shown that vL(., .) is
common to all the vehicles and known in advance and

ṽri
(t) = vri

(t) − vL(γi(t), t) (2.4)

(the remaining component of vri
(t)) is not known beforehand. We assume that ydi

(.)
is sufficiently smooth with respect to its argument. We further assume that vL(., .) is
bounded and globally Lipschitz with respect to the first argument, that is, ∃ vM , l > 0,
such that |vL(γi, t)| ≤ vM and |vL(γi, t) − vL(γj , t)| ≤ l|γi − γj |.

Consider vehicle i and assume a feedback control law ui = ui(xi, ydi
, vL) exists

that solves the path-following problem of definition 2.1. Let the corresponding closed-
loop path-following system be described by

ζ̇i = fci
(t, ζi, ṽri

, di), (2.5)

where di subsumes all the exogenous inputs (including disturbances and measurement
noises), ṽri

is defined in (2.4), and state vector ζi includes necessarily ei but may or
may not include ηi. Two types of path-following strategies will be considered:

1. Type I - in this strategy, variable ηi plays the role of an auxiliary state for
the path following algorithm and specifies the evolution of γi. In this case ηi

is a state of the closed-loop PF system, that is, ζi includes ηi.
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2. Type II - this strategy is equivalent to making ηi = 0. The dynamics of γ̇i

are simply γ̇i = vri
. Clearly, in this case ζi does not include ηi.

We now recall the definitions of input-to-state stability and input-to-state prac-
tical stability (ISpS) for a dynamical system. See [58] and [30, pp. 217] for details
on ISS and ISpS and their relation to Lyapunov theory. System (2.5) is said to be
ISpS if there exist a class KL function β(., .), class K functions 1 ρi(.); i = 1, 2, and a
constant ρ3 > 0 such that for any inputs ṽri

and di and any initial condition ζi(t0),
the solution of (2.5) satisfies

‖ζi(t)‖ ≤ β(‖ζi(t0)‖, t−t0)+ρ1

(

sup
t0≤s≤t

‖ṽri
(s)‖

)

+ρ2

(

sup
t0≤s≤t

‖di(s)‖
)

+ρ3, ∀t ≥ t0.

System (2.5) is said to be ISS if it satisfies the conditions of ISpS with ρ3 = 0.
Assumption 2.2. We assume there exists a Lyapunov function Wi(t, ζi) for (2.5)

satisfying

α1‖ζi‖2 ≤ Wi ≤ ᾱ1‖ζi‖2 (2.6)

Ẇi ≤ −λ1Wi + ρ1|ṽri
|2 + ρ2d

2
i , (2.7)

where λ1, ρ1, ρ2, α1, and ᾱ1 are positive values and Ẇi is computed along the solutions
of (2.5), that is,

Ẇi =
∂Wi

∂t
+

∂Wi

∂ζi

fci

With this assumption, the closed loop path-following system (2.5) is ISS with
input (di, ṽri

) and state ζi. To verify this, integrate (2.7) and use (2.6) to obtain

α1‖ζi(t)‖2 ≤ ᾱ1‖ζi(t0)‖2e−λ1(t−t0) +
ρ1

λ1
sup |ṽri

|2 +
ρ2

λ1
sup |di|2

and therefore

‖ζi(t)‖ ≤ α‖ζi(t0)‖e−0.5λ1(t−t0) + ρv sup |ṽri
| + ρd sup |di|,

with α =
√

ᾱ1/α1, ρv =
√

ρ1/(λ1α1), and ρd = ρ2/(λ1α1).

Assuming a path-following controller has been implemented for each vehicle, it
now remains to coordinate (that is, synchronize) the entire group of vehicles so as
to achieve a desired formation pattern compatible with the paths adopted. As will
become clear, this will be achieved by adjusting the desired speeds of the vehicles as
functions of the “along-path” distances among them. To better grasp the key ideas
involved in the computation of these distances, consider as a simple example the case
of a fleet of vehicles that are required to move along parallel straight lines and keep
themselves aligned along a direction perpendicular to the lines. See see Figure 2.1 for
the case of two vehicles.

Let Γi denote the desired path to be followed by vehicle i and assume Γi is simply
parametrized by si, the path length. In other words, γi = si. Because each vehicle

1Function ρ is of class K if it is strictly increasing and ρ(0) = 0. Function β(r, s) belongs to class
KL if the mapping β(r, s) is of class K, for a fixed s, and is decreasing with respect to s, for a fixed
r, and β(r, s) → 0 as t → ∞.
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Fig. 2.1. Along-path distances: straight
lines
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Fig. 2.2. Along-path distances: circum-
ferences

approaches the path as close as required, that is, because yi(t) becomes arbitrarily
close to to ydi

(γi), it follows that the vehicles are (asymptotically) synchronized if
γij(t) := γi(t) − γj(t) → 0 ∀i, j ∈ N := {1, ..., n}. This shows that in the case of
translated straight lines γi,j = si − sj is a good measure of the along-path distances
among the vehicles. Similarly, in the case of vehicles that must be aligned along
the radii of nested circumferences as in Figure 2.2, an appropriate measure of the
distances among the vehicles is angle γi = si/Ri where si denotes path length and
Ri is the radius of circumference i. Clearly, this corresponds to adopting different
parameterizations for the paths that correspond to normalizing their lengths. In
both cases, we say that the vehicles are coordinated if the corresponding along-path
distance is zero, that is, γi−γj = 0. Coordination is achieved by adjusting the desired
speed of each vehicle i as a function of the along-path distances γij ; j ∈ Ni where Ni

denotes the set of vehicles that vehicle i communicates with. For arbitrary types of
paths and coordination patterns, an adequate choice of path parameterizations will
allow for the conclusion that the vehicles are coordinated or, in equivalent terms, are
synchronized / have reached agreement, iff γi,j = 0; ∀j, i ∈ N , see [22, 16]. Since the
objective of the coordination is to coordinate variables γi, we will refer to them as
coordination states.

We will require that the formation as a whole (group of multiple vehicles) travel
at an assigned speed profile vL(γi, t) when coordinated, that is, γ̇i = vL; ∀i ∈ N ,
where vL is allowed to be a function of path parameter γ and time t. This follows
from the fact that vL(γi, t) = vL(γj , t) when γi = γj . This issue requires clarification.
Note that the desired speed assignment is given in terms of the time derivatives of the
coordination states γi, not in terms of the inertial speeds (actual time derivative of
the positions) of the vehicles undergoing synchronization. In the limit, as shown later,
the combined path-following and coordination algorithms will ensure that the coordi-
nation states will be equal and the vehicle speeds will naturally approach dsi

dt
; i ∈ N

so that dγi

dt
= dγi

dsi

dsi

dt
= vL. Thus, dsi

dt
= vL/dγi

dsi
which shows clearly how coordination

states speed and inertial speeds depend on the path parametrizations adopted . In
the case of the circumferences above, the latter relationship yields simply dsi

dt
= RivL.

Notice how the speed assignment in terms of the coordination states avoid the need
to specify the actual inertial speeds of the vehicles in inertial frame, which would
be quite cumbersome. Instead, all that is required is to specify the speeds of the
coordination states which are equal and degenerate simply into vL.
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From (2.3), the evolution of the coordination state γi; i ∈ N is governed by

γ̇i(t) = vri
(t) + ηi(t), (2.8)

where the speed tracking errors ηi are viewed as disturbance-like input signals and the
speed-profiles vri

are taken as control signals that must be assigned to yield coordina-
tion of the states γi. To achieve this objective, information is exchanged through an
inter-vehicle communication network. Typically, all-to-all communications are impos-
sible to achieve. In general, γ̇i will be a function of γi and of the coordination states
of the so-called neighboring agents defined by set Ni. For simplicity of presentation,
throughout this paper, we assume that the communication links are bidirectional,
that is i ∈ Nj ⇔ j ∈ Ni. Equipped with the above notation we are now ready to
formulate the problem of coordinated path following.

Definition 2.3 (Coordinated Path Following). Consider a set of vehicles Vi; i ∈
N with dynamics (2.1), together with a corresponding set of paths ydi

(γi) parameter-
ized by γi and a formation speed assignment vL(γi, t). Assume that for each vehicle
there is a feedback control law ui(xi, ydi

, vL) such that the closed-loop systems (2.5)
satisfy Assumption 2.2. Further assume that γi and γj; j ∈ Ni are available to ve-
hicle i ∈ N . Given ǫ > 0 arbitrarily small, derive a control law for vri

such that the
path-following errors ‖ei‖, the coordination errors γi − γj, and the formation speed
tracking errors γ̇i−vL; ∀i, j ∈ N converge to a ball of radius ǫ around zero as t → ∞.

3. Preliminaries and basic results. With the set-up adopted, Graph Theory
becomes the tool par excellence to model the constraints imposed by the communi-
cation topology among the vehicles, as embodied in the definition of sets Ni; i ∈ N .
We now recall some key concepts from algebraic graph theory [24] and agreement
algorithms and derive some basic tools that will be used in the sequel.

3.1. Graph theory. Let G(V, E) (abbv. G) be the undirected graph induced by
the inter-vehicle communication network, with V denoting the set of n nodes (each
corresponding to a vehicle) and E the set of edges (each standing for a data link).
Nodes i and j are said to be adjacent if there is an edge between them. A path of
length r between node i and node j consist of r + 1 consecutive adjacent nodes. We
say that G is connected when there exists a path connecting every two nodes in the
graph. The adjacency matrix of a graph, denoted A, is a square matrix with rows
and columns indexed by the nodes such that the i, j-entry of A is 1 if j ∈ Ni and
zero otherwise. The degree matrix D of a graph G is a diagonal matrix where the
i, i-entry equals |Ni|, the cardinality of Ni. The Laplacian of a graph is defined as
L := D − A. It is well known that L is symmetric and L1 = 0, where 1 := [1]n×1

and 0 := [0]n×1. If G is connected, then L has a simple eigenvalue at zero with an
associated eigenvector 1 and the remaining eigenvalues are all positive.

We will be dealing with situations where the communication links are time-varying
in the sense that links can appear and disappear (switch) due to intermittent failures
and/or communication links scheduling. The mathematical set-up required is de-
scribed next.

A complete graph is a graph with an edge between each pair of nodes. A complete
graph with n nodes has n̄ = n(n − 1)/2 edges. Let G be a complete graph with
edges numbered 1, ..., n̄. Consider a communication network among n agents. To
model the underlying switching communication graph, let p = [pi]n̄×1, where each
pi(t) : [0,∞) → {0, 1} is a piecewise-continuous time-varying binary function which
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indicates the existence of edge i in the graph G at time t. Therefore, given a switching
signal p(t) the dynamic communication graph Gp(t) is the pair (V, Ep(t)), where pi(t) =
1 if i ∈ Ep(t) and pi(t) = 0 otherwise. For example, p(t) = [1, 0, ..., 0]T means that
at time t only link number 1 is active. Denote by Lp the explicit dependence of the
graph Laplacian on p and likewise for the degree matrix Dp and the adjacency matrix
Ap. Further let Ni,p(t) denote the set of the neighbors of agent i at time t.

We discard infinitely fast switchings. Formally, we let Sdwell denote the class
of piecewise constant switching signals such that any consecutive discontinuities are
separated by no less than some fixed positive constant time τD, the dwell time. We
assume that p(t) ∈ Sdwell.

3.2. Brief connectivity losses. Consider the situation where the communica-
tion network changes in time so as to make the underlying dynamic communication
graph Gp(t) alternatively connected and disconnected. To study the impact of tempo-
rary connectivity losses on the performance of the coordination algorithms developed,
we explore the concept of “brief instabilities” developed in [25]. In particular, this con-
cept will be instrumental in capturing the percentage of time that the communication
graph is not connected.

Recall that the binary value of the element pi in p declares the existence of
edge i in Graph Gp. We can thus build 2n̄ graphs indexed by the different possible
occurrence of vector p. Let P denote the set of all possible vectors p and let Pc and
Pdc denote the partitions of P that give rise to connected graphs and disconnected
graphs, respectively. That is, if p ∈ Pc, then Gp is connected, otherwise disconnected.
Define the characteristic function of the switching signal p as

χ(p) :=

{

0 p ∈ Pc

1 p ∈ Pdc
(3.1)

For a given time-varying p(t) ∈ Sdwell, the connectivity loss time Tp(τ, t) over [τ, t] is
defined as

Tp(t, τ) :=

∫ t

τ

χ(p(s))ds. (3.2)

Definition 3.1 (Brief Connectivity Losses). The communication network is said
to have brief connectivity losses, BCL for short, if

Tp(t, τ) ≤ α(t − τ) + (1 − α)T0, ∀t ≥ τ ≥ 0 (3.3)

for some T0 > 0 and 0 ≤ α ≤ 1. In this case, p(t) ∈ PBCL(α, T0) ⊂ Sdwell, where
PBCL(α, T0) is identified with the set of time varying graphs for which the connectivity
loss time Tp(τ, t) satisfies (3.3).

In (3.3), α provides an asymptotic upper bound on the ratio Tp(τ, t)/(t − τ), as
t−τ → ∞ and is therefore called the asymptotic connectivity loss rate. When p ∈ Pdc

over an interval [τ, t], we have Tp(τ, t) = t − τ and the above inequality requires that
t − τ ≤ T0. This justifies calling T0 the connectivity loss upper bound. Notice that
α = 1 means that the communications graph is never connected.

We now introduce a special coordination error vector and some preliminary results
that will play an important role in the sections that follow. As will be shown later,
the error state thus introduced will be zero iff the coordination states are equal. To
this effect, start by stacking the coordination states in a vector γ := [γi]n×1. Given a
diagonal matrix K > 0, define β := K−11 and the error vector

γ̃ := Lβγ, (3.4)
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where

Lβ := I − 1

βT 1
1βT (3.5)

and I is an identity matrix. The following Lemma holds true.
Lemma 3.2. The error vector γ̃, the matrix Lβ, and the graph Laplacian Lp

satisfy the following properties:
1. Lβ has n − 1 eigenvalues at 1 and a single eigenvalue at zero with right and

left eigenvectors 1 and β, respectively such that Lβ1 = 0 and βTLβ = 0T .
2. LβKLp = KLp for all p ∈ Pc ∪ Pdc

3. νLT

βK−1Lβν ≤ νK−1ν; ∀ν ∈ R
n

4. γ̃ = 0 ⇔ γ ∈ span{1}
5. βT γ̃ = 0
6. Lpγ̃ = Lpγ for all p ∈ Pc ∪ Pdc

7. if ‖γ̃‖ < ǫ, then |γi − γj | <
√

2ǫ and ‖KLpγ‖ < nǫ‖K‖
8. Let

λ2,m := min
p∈Pc

1
T ν=0

νT ν 6=0

νT Lpν

νT ν
, λm := min

p∈Pc

βT ν=0

νT ν 6=0

νT Lpν

νT ν
, λ̄m := min

p∈Pc∪Pdc

Lpν 6=0

νT ν 6=0

νT Lpν

νT ν
.

Then, λm = (βT
1)2

nβT β
λ2,m > 0 and λ̄m > 0.

9. If z = Lp(t)γ, then the i’th component of z is zi =
∑

j∈Ni,p(t)
γi − γj.

10. ‖LβvL(γ, t)‖ ≤ √
n min(2vM ,

√
2 l‖γ̃‖), where vL(γ, t) = [vL(γi, t)]n×1.

Proof. See the Appendix.
Property 4 allows for the conclusion that if γ̃ tends to zero, then |γi − γj | → 0;

∀i, j ∈ N as t → ∞ and coordination is achieved. Property 7 gives a bound on the
coordination errors γi − γj given a bound on the error vector γ̃. In the literature, the
connectivity of a graph with Laplacian L is defined as the second smallest eigenvalue
λ2 of L. The term λ2,m defined in property 8 is an extension of the concept of
connectivity in a collective sense, defined as the smallest graph connectivity over all
connected graphs Gp. Given λm, the lower bound estimate γ̃T Lpγ̃ ≥ λmγ̃T γ̃, when
p ∈ Pc, applies. An identical interpretation applies to λ̄m. Notice from property 9
that if the control signal of vehicle i is computed as a function of zi, then the proposed
control law meets the communication constraints embodied in the sets Ni.

3.3. Connected in mean topology. In the previous situation, we considered
the case where the communication graph changes in time, alternating between con-
nected and disconnected graphs. We now address a more general case where the
communication graph may even fail to be connected at any instant of time; however,
we assume there is a finite time T > 0 such that over any interval of length T the
union of the different graphs is somehow connected. This statement is made precise in
the sequel. We now present some key results for time-varying communication graph
that borrow from [36, 37, 39].

Let Gi; i = 1, ..., q be q graphs defined on n nodes and denote by Li their cor-
responding graph Laplacians. Define the union graph G = ∪iGi as the graph whose
edges are obtained from the union of the edges Ei of Gi; i = 1, ..., q. If G is connected,
L =

∑

i Li has a single eigenvalue at 0 with eigenvector 1. Notice that L is not
necessarily the Laplacian of G, because for an edge e, if e ∈ Ei and e ∈ Ej for i 6= j,
then e is counted twice in L through Li + Lj while we only consider one link in G
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as representative of e. However, L has the same rank properties as the Laplacian of
G. Since p ∈ Sdwell (only a finite number of switchings are allowed over any bounded
time interval), the union graph is defined over time intervals in the obvious man-
ner. Formally, given two real numbers 0 ≤ t1 ≤ t2, the union graph G([t1, t2)) is the
graph whose edges are obtained from the union of the edges Ep(t) of graph Gp(t) for
t ∈ [t1, t2).

Definition 3.3 (Uniformly Connected in Mean). A switching communication
graph Gp(t) is uniformly connected in mean (UCM), if there exists T > 0 such that
for every t ≥ 0 the union graph G([t, t + T )) is connected.

For a given t > 0, let s0 = t and the sequence si; i = 1, ..., q be the time instants at
which switching happens over the interval [t, t + T ). If the switching communication
graph is UCM, then the union graph ∪q

i=0Gi is connected and
∑q

i=0 Lp(si) has a single
eigenvalue at origin with eigenvector 1.

Consider the linear time-varying system

γ̇ = −KLpγ (3.6)

where K is a positive definite diagonal matrix and Lp is the Laplacian matrix of a
dynamic graph Gp. The following theorem holds; see for example [37].

Theorem 3.4 (Agreement). Coordination (agreement) among the variables γi

with dynamics (3.6) is achieved uniformly exponentially if the switching communica-
tion graph Gp(t) is UCM. That is, under this connectivity condition all the coordination
errors γij(t) converge to zero and γ̇i → 0 as t → ∞.

We now consider the delayed version of (3.6). Let the coordination states γi evolve
according to

γ̇(t) = −KDp(t)γ(t) + KAp(t)γ(t − τ) (3.7)

where Dp(t) and Ap(t) are the degree matrix and the adjacency matrix of Gp(t), re-
spectively. The following theorem can be derived from the results in [39].

Theorem 3.5 (Agreement-delayed information). The variables γi with dynamics
(3.7) agree uniformly exponentially for τ ≥ 0 if the switching communication graph
Gp(t) is UCM, that is, under this connectivity condition all the coordination states
γi(t) converge to the same value and γ̇i → 0 as t → ∞.

A version of Definition 3.3 for directed graphs was first introduced in [37], where
the term “Uniformly Quasi Strongly Connected” was used. Here, we adapt this
definition to undirected graphs, thus the term “Uniformly Connected in Mean” seems
to be more adequate. It is interesting to point out that Theorem 7 follows naturally
from the work in [37] or from Theorem 3.4 in [36], which recovers some of the results
in [37] for linear systems. Theorem 7 can also derived from Theorem 1 in [39] by
using the fact that p(t) ∈ Sdwell with a dwell time τD > 0. Finally, Theorem 8 can be
derived from Theorem 2 in [39] by noticing that −KLp is a matrix with non-negative
off-diagonal elements (Metzler matrix) with all its row-sums equal to zero.

4. System interconnections. Systems with brief instabilities. This sec-
tion introduces a lemma that will be instrumental in deriving the performance measure
(error decay rate) associated with the coordination algorithm that will be later derived
for multi-vehicle systems communicating over networks with brief connectivity losses
(Definition 3.1). Here, we avail ourselves of some important results on brief instabili-
ties [25]. We start with basic definitions. A switching linear system S : ẋ = Apx+Bpu



12 R. Ghabcheloo et. al.

is a dynamical system where Ap and Bp are functions of some time varying vector
function p(t). The characteristic function of S, denoted χ, is defined as χ(p) = 0 if S
is stable and χ(p) = 1 otherwise. Let the instability time Tp(t, τ) of S be defined in
a manner similar to (3.2). Then, S is said to have brief instabilities with instability
bound T0 and asymptotic instability rate α if Tp satisfies (3.3).

Lemma 4.1 (System interconnection and brief instabilities). Consider the coupled
system consisting of two subsystems

ż1 = φ1(t, z1, z2, u1),
ż2 = φ2(t, z1, z2, u2),

where z1 and z2 denote the state vectors and u1 and u2 the inputs. Assume there exist
Lyapunov functions V1(t, z1) and V2(t, z2) satisfying

α1‖z1‖2 ≤ V1 ≤ ᾱ1‖z1‖2,
α2‖z2‖2 ≤ V2 ≤ ᾱ2‖z2‖2,

(4.1)

and

∂V1

∂t
+ ∂V1

∂z1
φ1 ≤ −λ1V1 + ρ1‖z2‖2 + u2

1,

∂V2

∂t
+ ∂V2

∂z2
φ2 ≤ −λ2(t)V2 + ρ2‖z1‖2 + u2

2,
(4.2)

where αi, ᾱi, ρi; i = 1, 2, and λ1 are positive values. Let system 2 have brief instabil-
ities characterized by

χ(p(t)) =

{

0, λ2(p(t)) = λ2

1, λ2(p(t)) = −λ̃2,
(4.3)

where λ2 > 0, λ̃2 ≥ 0, with asymptotic instability rate α and instability bound T0.
Define

λ0 :=
1

2
(λ1 + λ2) −

√

1

4
(λ1 + λ2)2 − λ1λ2 +

ρ1ρ2

α1α2

(4.4)

that satisfies

min(λ1, λ2) −
√

ρ1ρ2

α1α2

≤ λ0 ≤ max(λ1, λ2) −
√

ρ1ρ2

α1α2

.

Assume that α < λ0/(λ2 + λ̃2) and

ρ1ρ2 < α1α2λ1λ2. (4.5)

Then,
1. the interconnected system is ISS with respect to state z = col(z1, z2) and input

u = col(u1, u2),
2. there is a Lyapunov function V (t, z) such that

α‖z‖2 ≤ V ≤ ᾱ‖z‖2,
V (t) ≤ cV (t0)e

−λ(t−t0) + g sup[t0,t] u
2,

(4.6)

where c = e(λ2+λ̃2)(1−α)T0 , g = c
λ

max(1, α1(λ1 − λ0)/ρ2), and the rate of

convergence λ is given by λ = λ0 − α(λ2 + λ̃2).
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In particular, if ρ2 = 0 and ρ1 > 0 then the interconnected system takes a cascade form
and is ISS with input u and state z. Furthermore, the system exhibits convergence
rate λ = min(λ1, (1 − α)λ2 − αλ̃2). The conclusions are also valid with α = 0 for the
case where system 2 has no instabilities, that is, λ2(t) = λ2.

Proof. An indication of the proof for the case where ρ1 and ρ2 are nonzero is
given next. See the Appendix for the proof in the general case.

Define V = V1 + aV2 for some a > 0 to be chosen later. Taking the derivative of
V yields

V̇ ≤ −(λ1 −
aρ2

α1

)V1 − a(λ2(t) −
ρ1

aα2

)V2 + g‖d‖2,

where g = max(1, a). Given any constant λ2 > 0, there exists a > 0 such that

λ1 −
aρ2

α1

= λ2 −
ρ1

aα2

, (4.7)

if (4.5) is satisfied (small-gain condition). Then, V̇ ≤ −λ0V + g‖d‖2 where λ0 is
given by (4.4) and the interconnected system is ISS with input d. Furthemore, its
convergence rate is λ = λ0.

Consider now the situation where λ2(t) is time-varying. In this case, V̇ ≤ −λ0V +
a(λ2 − λ2(t))V2 + g‖d‖. Because system 2 has brief instabilities with characteristic
function χ(p), using the relationship aV2 = V − V1 yields

V̇ ≤ −(λ0 − λ3χ(p(t)))V + g‖d‖2,

where λ3 := λ2 + λ̃2. Integrating the above differential inequalities it can be shown
that

V (t) ≤ V (t0)e
−λ0(t−t0)+λ3Tp+

g sup[t0,t]‖d‖2
∫ t

t0
e−λ0(t−τ)+λ3Tpdτ

Using (3.3) concludes the proof.
In is interesting to notice how the lemma invokes two conditions: i) the small

gain condition (4.5), which is sufficient to guarantee that the results stated hold true
when system 2 is stable and ii) the extra inequality α < λ0/(λ2 + λ̃2), that must
also be satisfied when system 2 has brief instabilities. In this respect, the above
lemma generalizes the results derived in [27] for the case where system 2 has no
brief instabilities. As an example of application of the lemma, assume λ1 = λ2 =

λ̃2 = 1
k

√

ρ1ρ2

α1α2
, where 0 < k < 1. Then the small-gain condition is satisfied and the

interconnected system of the lemma above is ISS if α < 1−k
2 , which is smaller than

0.5 for any admissible k.

Equipped with the results derived so far, the next two sections offer solutions to
the coordinated path-following problem formulated in Section 2.

5. Coordinated path following in the absence of communication delays.
Consider the coordination control problem introduced in Section 2 with a switching
communication topology parameterized by p : [0,∞) → {0, 1} and with no communi-
cation delays. Recall that the coordination states γi are governed by (2.8). Inspired
by the work in [28, 60], we propose the following decentralized feedback law for the
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reference speeds vri
as a function of the information obtained from the neighboring

vehicles:

vri
= vL − ki

∑

j∈Ni,p(t)

(γi(t) − γj(t)), (5.1)

where vL(γi, t) is the common, nominal speed assigned to the fleet of vehicles and
ki > 0. Let km := mini ki and kM := maxi ki. Notice that with this choice of control
law, the term ṽri

= vri
− vL for which the time derivative is not available is given by

ṽri
= −ki

∑

j∈Ni,p(t)

(γi(t) − γj(t)). (5.2)

Using (2.8), (5.1), and Lemma 3.2 - property 9, the coordination control closed-
loop system can be written in vector form as

γ̇ = −KLp(t)γ + vL(γ, t) + gηη, (5.3)

where K =diag[ki]. The auxiliary term gη was added for simplicity of exposition:
gη = 1 when the closed-loop PF system is of type I (η is considered a state), and
gη = 0 when the PF system is of type II (η = 0), see Assumption 2.2. Using
properties 2 and 6 of Lemma 3.2, the coordination dynamics (5.3) take the form

˙̃γ = −KLpγ̃ + LβvL(γ, t) + gηLβη. (5.4)

Notice from (5.3) that η can be viewed as a coupling term from the path-following to
the coordination dynamics.

At this stage, in preparation for the following sections, we state a lemma on an
ISS property that applies to a collection of path following systems.

Lemma 5.1. Consider n path following subsystems, each satisfying Assumption
2, and let ζ = [ζi]n×1. Then there exists a single Lyapunov funciton V1 satisfying

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2,

V̇1 ≤ −λ1V1 + ρ1n
2k2

M‖γ̃‖2 + u2
1,

(5.5)

where u2
1 :=

∑n
i=1 d2

i . In addition, the ISS property

‖η(t)‖ ≤ ‖ζ(t)‖ ≤ e−λ̄1(t−t0)‖ζ(t0)‖ + ρ̄1 sup
τ∈[t0,t)

‖γ̃‖ + ρ̄2‖u1‖ (5.6)

holds with λ̄1 =
α1

2ᾱ1
λ1, ρ̄1 =

√

ρ1n2k2
M

λ1ᾱ1
, and ρ̄2 = 1√

λ1ᾱ1
.

Proof. See the Appendix.
Close inspection of the ISS property (5.6) and the dynamics (5.4) shows that the

path following and the coordination systems form a feedback interconnected system.

To deal with switching communication topologies, two approaches are introduced
next: “uniform switching topologies”, and “brief connectivity losses”, as defined in
Section 2. We now derive conditions under which the overall closed-loop system
consisting of the path-following and coordination subsystems is stable. We also derive
some convergence properties for the complete system.
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5.1. Uniformly connected in mean topology. This section addresses the
case where the communication network changes but the underlying communication
graph is uniformly connected in mean (see Definition 3.3). Recall in this case that
there is T > 0 such that for any t ≥ 0, the union graph G([t, t+T )) is connected. The
section starts with some preliminary results leading to the statement of Theorem 12,
a proof of which is included in the Appendix.

Consider the unforced coordination closed-loop dynamics derived from (5.4), that
is,

˙̃γ = −KLpγ̃. (5.7)

First, we will show that if the switching communication graph is UCM (with parameter
T > 0), then ∀t > 0,∃τ ∈ [t, t + T ), such that Lp(τ)γ̃(τ) 6= 0. To this effect, we let

V = 1
2 γ̃T K−1γ̃ whose time derivative along the solutions of (5.7) is

V̇ = −γ̃T Lpγ̃.

Notice that V̇ is negative semi-definite, the graph being connected or not. Thus, γ̃
remains bounded. Consider now the sequence si; i = 1, ..., q of switching times in the
interval [t, t + T ), with t < s1 < sq < t + T and si ≤ si+1 − τD; i = 1, ..., q − 1, where
τD is the dwell time. Let s0 = min(t, s1 − τD) and T1 = max(sq + τD, t + T ) − s0.
With this construction T ≤ T1 ≤ T + 2τD, s1 − τD ≥ s0, and sq + τD ≤ s0 + T1. We
now show that2 ∃τ ∈ T := [s0, s0 + T1) such that Lp(τ)γ̃(τ) 6= 0.

Assume by contradiction that Lpγ̃ = 0 ∀τ ∈ T and discard the trivial solution
γ̃ = 0. Then, from (5.7) it follows that ˙̃γ = 0, that is, γ̃ remains unchanged over T.
Therefore,

0 =

q
∑

i=0

Lp(si)γ̃(si) =

(

q
∑

i=0

Lp(si)

)

γ̃(s0).

As shown in Section 3, since the graph is UCM the matrix
∑q

i=0 Lp(si) has rank n−1
and its kernel is span{1}. As a consequence, γ̃(s0) ∈ span{1}, which contradicts the
fact that βT γ̃ = 0.

Without loss of generality, assume Lp(s0)γ̃(s0) 6= 0 and define TD := [s0, s0 +τD).
Clearly, ∀t̄ ∈ TD the inequality Lp(t̄)γ̃(t̄) 6= 0 applies because (5.7) is a linear time
invariant system during the interval considered and its solutions cannot tend to zero
in finite time. It follows that

V̇ (t̄) ≤
{

−2kmλ̄mV (t̄), t̄ ∈ TD

0, t̄ ∈ T\TD
(5.8)

with λ̄m as defined in Lemma 3.2–property 8. We can now conclude that system (5.7)
with UCM switching communication graphs has brief instabilities with asymptotic
instability rate ᾱ = 1 − τD/T1 ≤ 1 − τD/(T + 2τD) and instability upper bound
T̄0 = T1 − τD ≤ T + τD. That is, if a characteristic function χ̄ is defined as

χ̄(t) =

{

0, t ∈ TD

1, t ∈ T\TD

2Notice that if ∃τ ∈ T such that Lp(τ)γ̃(τ) 6= 0, then ∃τ1 ∈ [t, t + T ) such that Lp(τ1)γ̃(τ1) 6= 0

because t ≤ s0 + τD and t + T ≥ s0 + T − τD.
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then V̇ (t) ≤ −2kmλ̄m(1 − χ̄(t))V (t). Integrating this differential inequality yields

V (t) ≤ cV (τ)e−2λα(t−τ); ∀t ≥ τ ≥ 0,

with

λα = (1 − ᾱ)kmλ̄m, c = e2λαT̄0 (5.9)

and where we used the fact that
∫ τ

t

χ̄(s)ds ≤ ᾱ(t − τ) + (1 − ᾱ)T̄0; ∀t ≥ τ ≥ 0.

Therefore, ‖γ̃(t)‖ ≤ c1e
−λα(t−τ)‖γ̃(τ)‖ and

‖Φp(t, τ)‖ ≤ c1e
−λα(t−τ), (5.10)

where Φp(t, τ) denotes the state transition matrix of (5.7) and c1 =
√

ckM

km
. Notice

that the above inequality is valid for all p(t) ∈ Sdwell such that the graph Gp is UCM.
For a given switching signal p(t), input η(t), and initial state γ(t0), the solution of
(5.4) is given by [52, pp. 87]

γ̃(t) = Φp(t, t0)γ̃(t0)+

∫ t

t0

Φp(t, τ)LβvL(γ(τ), τ)dτ +gη

∫ t

t0

Φp(t, τ)Lβη(τ)dτ ; ∀t ≥ t0.

Letting

λ̄α = λα − c1

√
2nl = λα − eλαT̄0 l

√

2n
kM

km

(5.11)

and using (5.10) and property 10 of Lemma 3.2, an upper bound for γ̃(t) can be
derived as

‖γ̃(t)‖ ≤ c1e
−λα(t−t0)‖γ̃(t0)‖ + c1l

√
2n

∫ t

t0

e−λα(t−τ)‖γ̃(τ)‖dτ + gη

c1

λα

sup
τ∈[t0,t)

‖η(τ)‖

(5.12)
if λ̄α > 0 and

‖γ̃(t)‖ ≤ c1e
−λα(t−t0)‖γ̃(t0)‖ +

2vMc1
√

n

λα

+ gη

c1

λα

sup
τ∈[t0,t)

‖η(τ)‖ (5.13)

otherwise. It is now straightforward to multiply both sides of (5.12) by eλαt and to
use Gronwall-Bellman theorem [30, pp. 66] to arrive at

‖γ̃(t)‖ ≤ c1e
−λ̄α(t−t0)‖γ̃(t0)‖ + gη

c1

λ̄α

sup ‖η(τ)‖ (5.14)

provided that λ̄α > 0. Notice from (5.11) that λ̄α cannot be made arbitrary large.
It can be shown that there are control gains (km = kM ) that make λ̄α > 0 if the
Lipschitz constant l of vL satisfies

l <
1

(T + τD)
√

2ne
. (5.15)
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For each such l, the corresponding maximum value of λ̄α can be easily computed.

Equipped with these introductory results, we now state the main theorem of this
section.

Theorem 5.2 (CPF with UCM). Consider the interconnected system Σ depicted
in Figure 5.1, consisting of n path following subsystems satisfying Assumption 2.2
together with the coordination subsystem (5.3) supported by a communication network
that is uniformly connected in mean with parameter T and switching dwell time τD.
Then, Σ is Input-to-state practical stable (ISpS) with respect to the states γ̃ and ζ,
the input u1, and the constant 2vMc1

√
n/λα, if

{

c1

√

ρ1n2k2
M

λ1ᾱ1
< λ̄0, PF of type I

always, PF of type II,
(5.16)

where λ̄0 = λα defined in (5.9). If (5.15) holds, the control gains can be chosen such
that λ̄α > 0. In this case, Σ is ISS with respect to the states γ̃ and ζ and input
u1 under condition (5.16) with λ̄0 = λ̄α defined in (5.11). Furthermore, the path
following error vectors ei, the speed tracking errors |γ̇i − vL|, and the coordination
errors |γi − γj |,∀i, j ∈ N converge exponentially fast to some ball around zero as
t → ∞, with rate at least min(λ̄0, λ̄1).

Proof. A proof of (5.15) is given in the Appendix. Using the ISS version of the
small gain theorem for the interconnection of (5.14) and (5.6) in the case of λ̄α > 0
and for the interconnetion of (5.13) and (5.6) otherwise leads to the result.

From the above, under the UCM assumption, it follows that the complete coor-
dinated path following control system is ISS if condition (5.15) is satisfied. In the
absence of disturbances and noise, the origin of the system becomes globally asymp-
totically stable (in fact, exponentially stable). In case condition (5.15) is not satisfied,
all that can be shown is that the complete system is ISpS.

5.2. Brief connectivity losses (BCLs). This section addresses the situation
where the communication network has brief connectivity losses, see Definition 4. In
this case the underlying communication graph switches between connected and discon-
nected configurations with known asymptotic connectivity loss rate α and connectivity
loss upper bound To.

The following result provides conditions under which the overall closed-loop sys-
tem consisting of the path-following and coordination subsystems is ISS.

Theorem 5.3 (CPF with BCLs). Consider the interconnected system Σ depicted
in Figure 5.1, consisting of n path following subsystems that satisfy Assumption 2.2
and the coordination subsystem (5.3) with a communication network subjected to BCLs

characterized by (3.3). Let λ2 := kmλm − kM l
√

2n
km

. Define kg :=
kmλ2

2

n2k3
M

and

λ0 = λ̃0 −
√

λ̃2
0 − λ1λ2(1 − ρ1

kgα1λ1
),

where λ̃0 = 1
2 (λ1 + λ2) and λm is defined in Lemma 3.2–property 8. Assume

k2
m

kM

>
l
√

2n

λm

. (5.17)

Further assume the following conditions hold:
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γ̃

η

u1

ζ

γ

P.F.

C.C.

Fig. 5.1. Σ: Overall closed-loop system consisting of the path following and coordination control
subsystems

a) [PF of type I] The asymptotic connectivity losses rate α satisfies

α <
λ0

2kmλm

and

ρ1

α1λ1
< kg.

b) [PF of type II] α < 1 − kM l
√

2n
λmk2

m
.

Then, Σ is ISS with respect to the states γ̃ and ζ and input u1 (see Figure 5.1).
Furthermore, the path following error vectors ei, the speed tracking errors |γ̇i − vL|,
and the coordination errors |γi − γj |,∀i, j ∈ N converge exponentially fast to some
ball around zero (depending on the size of u1) as t → ∞, with rate at least

λ =

{

λ0 − 2αkmλm, PF of type I
min(λ1, λ2 − 2αkmλm), PF of type II.

Proof. Choose the Lyapunov candidate function

V2 :=
1

2
γ̃T K−1γ̃

whose time derivative along the solutions of (5.4) is

V̇2 = −γ̃T Lpγ̃ + γ̃T K−1LβvL(γ, t) + gηγ̃T K−1Lβη

≤ −γ̃T Lpγ̃ + l
√

2n
km

‖γ̃‖2 + gηθ1γ̃
T K−1γ̃ +

gη

4θ1
ηTLT

βK−1Lβη,

where we used Young’s inequality and property 10 of Lemma 3.2. Using properties 3
and 8 of Lemma 3.2 yields

V̇2 ≤
{ −λ2V2 + ρ2‖η‖2, p ∈ Pc

λ̃2V2 + ρ2‖η‖2, p ∈ Pdc
(5.18)

with λ̃2 = 2kM l
√

2n
km

+2gηθ1, λ2 = 2λmkm − λ̃2, ρ2 =
gη

4kmθ1
. In order for λ2 and λ̃2 to

be positive, θ1 must satisfy 0 < θ1 < λmkm − l
√

2nkM

km
. It is straightforward to check

that this condition holds if
k2

m

kM
> l

√
2n

λm
.

Close inspection of (5.5) and (5.18) shows that the path-following and coordina-
tion subsystems form a feedback interconnected system with η and γ̃ as interacting
signals, as shown in Figure 5.1. We now use Lemma 4.1 and the fact that System 2
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has BCLs as defined in (3.3) to find conditions under which the interconnected system
is ISS from input u1. We consider the cases where the path following algorithms are
of type I or type II.

[PF of type I] Consider the feedback interconnection of (5.5) and (5.18) for the case
where gη = 1, that is, with ρ2 > 0. Resorting to Lemma 4.1 for interconnected
systems with brief instabilities and applying the small gain condition (4.5) we obtain

(ρ1n
2k2

M )(
1

4kmθ1
) < (α1)(

1

2kM

)(λ1)(2λmkm − 2
l
√

2nkM

km

− 2θ1),

or equivalently

ρ1

α1λ1
<

4km

n2k3
M

θ1(λmkm − l
√

2nkM

km

− θ1),

the right hand side of which is maximized for θ1 = 1
2km

(λmk2
m − l

√
2nkM ). Inserting

the latter value of θ1 in the inequality above, the conditions of the theorem for PF
strategies of type I follow immediately.

[PF of type II] In this case the interconnection of (5.5) and (5.18) take a cascade form,
that is, gη = 0 and (5.18) simplifies to

V̇2 ≤
{ −λ2V2, p ∈ Pc

λ̃2V2, p ∈ Pdc

where λ̃2 = 2 l
√

2nkM

km
and λ2 = 2λmkm − λ̃2. Using Lemma 4.1 with ρ2 = 0 the

conditions of the theorem for PF strategies of type I are easily obtained.

At this point, it is interesting to work out a simple numerical example to illustrate
some of the results derived. To this effect, consider the coordinated path following
problem for 3 vehicles (n = 3). In this case, λm = 1. We consider both the case where
the speed profile vL is constant and vL(γi) = 2 + sin(γi), for which l = 0 and l = 1,
respectively. Choose K = 2

√
6I3 to guarantee condition (5.17) for both cases of vL.

Further assume the ISS property of system 1 is satisfied with λ1 =
√

6 and α1 =
√

6.
It is now straightforward to compute the following parameters consecutively. For
l = 0: λ2 = 2

√
6, kg = 4/36, and λ̃0 = 3/2

√
6. The small gain condition (4.5) will

require that ρ1 < 4/6. For l = 1: λ2 =
√

6, kg = 1/36, and λ̃0 =
√

6. The same
small gain condition will yield ρ1 < 1/6 in this case. As expected, ρ1 (which can be
viewed as a stability margin) is reduced when the vL depends on the path parameter.
Let ρ1 = 1/24 to ensure stability for both cases of vL above. We can now compute
λ0 = 0.54

√
6 for l = 0 and λ0 = 0.5

√
6 for l = 1. It follows from the above that when

PF is of type I the interconnected system will be ISS if the asymptotic connectivity
loss rate α < 13.5% for l = 0 and α < 12.5% for l = 1. When PF is of type II, the
bounds are relaxed to α < 100% for l = 0 and α < 50% for l = 1. Better convergence
rates could be guaranteed if one were to aim for ISpS rather than ISS.

6. Coordinated Path Following: delayed information. In this section we
study the problem of coordinated path following in the presence of communication
delays. We consider the case where all communication channels have the same delay
τ > 0. We further assume that the path following closed-loop subsystems are of type
II, that is, η = 0.
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Motivated by (5.1), we assume the control law for the reference speed vri
of each

vehicle is given by

vri
= vL − ki

∑

j∈Ni,p(t)

(γi(t) − γj(t − τ)). (6.1)

Using (2.8) and (6.1), the closed-loop coordination subsystem can be written as

γ̇(t) = vL(γ, t) − KDp(t)γ(t) + KAp(t)γ(t − τ), (6.2)

where Dp and Ap are the degree matrix and the adjacency matrix of the communi-
cation graph, respectively. We now determine conditions under which coordination
is achieved, that is, under which there exists a signal γ0(t) such that γ = γ0(t)1 is a
solution of (6.2). Should such a solution exist, then substituting it in (6.2) and using
the fact that Ap = Dp − Lp yields

γ̇01 = vL(γ0, t)1 − KDpγ0(t)1 + K(Dp − Lp)γ0(t − τ)1,

which simplifies to

γ̇01 − vL1 = −(γ0(t) − γ0(t − τ))KDp1. (6.3)

The equality above is verified iff all elements of the right-hand side vector are equal.
For this to be true, one of the two conditions below must apply.

[C1] γ0(t) is either a constant or a periodic signal with period τ . In this case
γ0(t)− γ0(t− τ) = 0 for all t and (6.3) holds with γ̇0 = vL. This condition is
not relevant from a practical standpoint.

[C2] ∀t,KDp(t) = kI for some k > 0. This requires that the degrees of
the nodes of the switching communication graph Gp never vanish, that is,
|Ni,p| 6= 0 for all t, so that the degree matrix Dp is always nonsingular and
we can set the control gains to K = kD−1

p . In this case, the control gains
become piecewise constant functions of p.

In view of the above discussion we consider condition C2 only. To lift the constraint
|Ni,p| 6= 0 and have the coordinated path-following algorithm applicable to more
general types of switching topologies, we will later modify the control law (6.1). In
the sequel, we assume vL is constant. We start by studying the convergence properties
of the coordination dynamics only, in Lemmas 6.1 and 6.2 below. This is followed
by the analysis of the combined path following and coordination systems in Theorem
6.3.

Lemma 6.1. Consider the coordination system dynamics (2.8) with the con-
trol law (6.1). Assume that |Ni,p(t)| 6= 0 for all time, and let the control gains be
ki(t) = k/|Ni,p(t)|. Then, the states γi uniformly exponentially agree if the underlying
communication graph Gp is UCM. In this situation, |γi − γj | → 0 and γ̇i → γ̇0 as
t → ∞, where γ0 is a solution of the delay differential equation

γ̇0 = −k(γ0(t) − γ0(t − τ)) + vL. (6.4)

Proof. As explained before, with the control law (6.1) the coordination system
takes the form (6.2). Let

γ̃(t) = γ(t) − γ0(t)1 (6.5)
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and substitute γ from (6.5) in (6.2) to obtain

γ̇0(t)1 + ˙̃γ = −K(t)Dp(t)γ̃(t) + K(t)Ap(t)γ̃(t − τ)+
−K(t)Dp(t)γ0(t)1 + K(t)Ap(t)γ0(t − τ)1 + vL1,

(6.6)

which simplifies to

˙̃γ = −kγ̃(t) + kD−1
p Apγ̃(t − τ) (6.7)

if γ0(t) is the solution of (6.4) and K(t) = kD−1
p . From Theorem 3.5, states γ̃i in

(6.7) agree uniformly exponentially. In particular, γ̃ → 0 as t → ∞. Thus, from (6.5)
γ → γ01 and the results follow.

In general, if vL is not constant the delayed differential equation (6.4) has no
closed form solution. However, for the particular case of vL constant, one solution is
γ0(t) = v∗

Lt where v∗
L = vL

1+kτ
. Notice that due to the transmission delay τ there is a

finite error in the speed tracking, that is, γ̇i converges to v∗
L and not to vL.

Consider now the case where there are instants of t time at which |Ni,p(t)| = 0
for some i ∈ N . Notice that with the set-up adopted in the paper, this condition
will necessarily hold over a countable number of disjoint intervals of time, where the
length of each interval is bounded above and below by T0 and τD, respectively.

In this case, (6.2) can be rewritten in terms of γ̃ defined in (6.5) as

˙̃γ = −K(t)Dp(t)γ̃(t) + K(t)Ap(t)γ̃(t − τ) + v∗
Lτ(kI − K(t)Dp)1. (6.8)

Clearly, when τ = 0 agreement is achieved for any choice of positive definite K due
to Theorem 3.5. However, this is not necessarily the case when τ 6= 0. To see this,
assume for example that the agreement dynamics (6.8) are at rest, that is, ˙̃γi = 0
∀i ∈ N . Then, if |Ni,p(t)| = 0 for some i and t in a given interval of time, the dynamics

of the i-th row of (6.8) become ˙̃γi = vL−v∗
L. This problem can be resolved by applying

different desired speeds when vehicle i has no neighbors. The solution is stated next.
Lemma 6.2. Consider the coordination system dynamics with control law

vri
=

{

vL + k
|Ni,p|

∑

j∈Ni,p
γi(t) − γj(t − τ), Ni,p 6= ∅

v∗
L, Ni,p = ∅ (6.9)

where k > 0. Then, the states γi uniformly exponentially agree if the underlying
communication graph Gp is UCM. In this case, |γi −γj | → 0 and γ̇i → v∗

L as t → ∞.
Proof. The closed-loop coordination dynamics can be expressed in vector form as

γ̇ = −KDpγ(t) + KApγ(t − τ) +
vL − v∗

L

k
KDp1 + v∗

L1.

Letting γ(t) = v∗
Lt1 + γ̃(t) simplifies the closed-loop dynamics to

˙̃γ = −KDpγ̃(t) + KApγ̃(t − τ).

Theorem 3.5 implies that γ̃ and ˙̃γ will converge to the span{1} and to 0 respectively,
as t → ∞. This concludes the proof.

Notice that in order to implement the control law (6.9) the vehicles need to know
the delay τ in order to compute v∗

L. This raises the practical issue of how to estimate
τ . This issue is not addressed in the paper. The following theorem concludes this
section.
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Fig. 6.1. Coordination of 3 AUVs, with communication failures and delay

Theorem 6.3. [CPF-delay] Consider system Σ that is obtained by putting to-
gether the n path-following subsystem satisfying Assumption 2.2 and the coordination
subsystems studied in Lemma 6.1 or 6.2. Then, the complete system Σ is ISS with
input u1. In particular, the path-following errors ‖ei‖ tend to some ball around zero,
and the coordination errors |γi − γj | and the speed tracking errors |γi − v∗

L| converge
to zero exponentially.

Proof. Using Lemma 6.1 or 6.2, we conclude that ṽri
= vri

− vL = γ̇i − vL

converges to vL − v∗
L exponentially. Close examination of (2.7) shows that the path-

following and coordination control subsystems form an interconnected cascade system
where ṽri

is the output of the CC subsystem and the input to the PF subsystems.
Since that latter is ISS from input ṽri

, the results follow.
The exposition in this section was strongly motivated by previous work on agree-

ment problems for systems with delays. Specially relevant are the results available
in [39] and [8, 10] for continuous-time and discrete-time, respectively. In particular,
the results in [39] address the unforced version of (6.2), that is, with vL(γ, t) = 0.
The results in the section reformulate those in [39] to the case where the agreement
dynamics are forced by vL(γ, t).

7. Illustrative example. This section presents an example that illustrates the
application of the coordinated path following techniques developed to the control of
three autonomous underwater vehicles.

7.1. CPF of 3 underactuated AUVs. Consider the problem of CPF control
of three underactuated AUVs (Autonomous Underwater Vehicles). Vehicle 2 is al-
lowed to communicate with vehicles 1 and 3, but the latter two do not communicate
between themselves directly. To simulate losses in the communications, we considered
the situation where both links fail 75% of the time, with the failures occurring period-
ically with a period of 10[sec]. Moreover, the information transmission delay is 5[sec].
Notice that during failures all the links become deactivated. Since in this scenario the
valencies of the nodes vanish periodically, we apply the results of Lemma 6.2. In the
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simulations, we used the control law (6.9) with k = 0.1[sec−1].

7.1.1. AUV model. Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. See

[19] for details on vehicle modeling. Let {I} be an inertial coordinate frame and
{B} a body-fixed coordinate frame whose origin is located at the center of mass of the
vehicle. The configuration (R,p) of the vehicle is an element of the Special Euclidean
group SE(3) := SO(3) ×R

3, where R ∈ SO(3) := {R ∈ R
3×3 : RRT = I3,det(R) =

+1} is a rotation matrix that describes the orientation of the vehicle and maps body
coordinates into inertial coordinates, and p ∈ R

3 is the position of the origin of {B}
in {I}. Denote by ν ∈ R

3 and ω ∈ R
3 the linear and angular velocities of the vehicle

relative to {I} expressed in {B}, respectively. The following kinematic relations apply

ṗ = Rν, (7.1a)

Ṙ = RS(ω), (7.1b)

where

S(x) :=
[ 0 −x3 x2

x3 0 −x1
−x2 x1 0

]

, ∀x := (x1, x2, x3)
T ∈ R

3.

We consider underactuated vehicles with dynamic equations of motion of the form

Mν̇ = −S(ω)Mν + fν(ν,p, R) + B1u1, (7.2a)

Jω̇ = fω(ν, ω,p, R) + B2u2, (7.2b)

where M ∈ R
3×3 and J ∈ R

3×3 denote constant symmetric positive definite mass
and inertia matrices; u1 ∈ R and u2 ∈ R

3 denote the control inputs, which act upon
the system through a constant nonzero vector B1 ∈ R

3 and a constant nonsingular
matrix B2 ∈ R

3×3, respectively; and fν(·), fω(·) represent all the remaining forces
and torques acting on the body. For the special case of an underwater vehicle, M
and J also include the so-called hydrodynamic added-mass MA and added-inertia JA

matrices, respectively, i.e., M = MRB + MA, J = JRB + JA, where MRB and JRB

are the rigid-body mass and inertia matrices, respectively.
A solution to the path-following problem (defined in Section 2) of an AUV was

given in [1, 2] where the control laws require that γ̇i and γ̈i be known. Recall that
we decomposed the desired speed profile in two parts as vri

= vL + ṽri
in which

only the derivatives of vL can be computed accurately. However, it can be shown
that in the control laws of [1, 2], if the terms γ̇i and γ̈i are replaced with vL and v̇L,
respectively, the resulting path-following closed-loop system becomes input-to-state
practical stable (ISpS) from ṽri

as an input. This leads to the following result.
Theorem 7.1 (PF-AUV). Consider an underactuated AUV with the equations of

motion given by (7.1) and (7.2) and a desired path pd(γ) in 3D-space to be followed.
There is a control law for u1 and u2 as functions of the local states pd and vL that
makes the closed-loop system satisfy Assumption 2.2.

Proof. See the appendix.
Remark 7.2. It is important to notice that the particular path following algorithm

that we derive yields ISpS, not ISS. However, the key results obtained in the paper
hold true, for ISpS can always be viewed as an ISS condition with an extra constant
input.
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Fig. 7.1. 75% of temporal communication failures; time delay 5[sec]

7.1.2. Simulations. In the simulations, the AUVs are required to follow three
similar spatial paths shifted along the depth coordinate, that is, the paths are of the
form

pdi
(γi) =

[

c1 cos( 2π
T

γi + φd), c1 sin(2π
T

γi + φd), c2γi + z0i

]

,

with c1 = 20m, c2 = 0.05m, T = 400, φd = − 3π
4 , and z01

= −10m, z02
= −5m, z03

=
0m. The initial conditions are p1 = (5m,−10m,−5m), p2 = (5m,−15m, 0m),
p3 = (5m,−20m, 5m), R1 = R2 = R3 = I, and v1 = v2 = v3 = ω1 = ω2 = ω3 = 0.
The reference speed vL was set to vL = 0.5[sec−1].

The vehicles are also required to keep a formation pattern that consists of having
them aligned along a common vertical line. Figure 6.1 shows the trajectories of
the AUVs. Figure 7.1 illustrates the evolution of the coordination and path-following
errors when the communication links fail periodically. Clearly, the vehicles adjust their
speeds to meet the formation requirements and the coordination errors γ12 := γ1 −γ2

and γ13 := γ1 − γ3 converge to zero.

8. Conclusions. This paper addressed the problem of steering a group of vehi-
cles along given paths while holding a desired inter-vehicle formation pattern (coor-
dinated path-following), all in the presence of communication losses and time delays.
The solution proposed builds on Lyapunov based techniques and addresses explicitly
the constraints imposed by the topology of the inter-vehicle communications network.
The problem of temporary communication failures was addressed under two scenar-
ios: “brief connectivity losses” and “connected in mean” communication graphs. With
the framework adopted, path following and coordinated control system design become
partially decoupled. As a consequence, the dynamics of each AUV can be dealt with
by each vehicle controller locally, at the path following control level. Coordination can
then be achieved by resorting to a decentralized control law whereby the exchange of
data among the vehicles is kept at a minimum. The system obtained by putting to-
gether the path-following and the vehicle coordination strategies proposed was shown
to be either a feedback interconnection or a cascade of two ISS systems. Stability
and convergence properties of the resulting interconnected system were studied for-
mally by introducing a new small gain theorem for systems with brief instabilities.
Simulations illustrated the efficacy of the solution proposed.

Further work is required to extend the methodology proposed to tackle more
complex coordination control problems. Namely, coordinated control in the presence
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of stringent communication constraints that arise in the underwater world such as
non-homogeneous time variable delays, tight energy budgets, and reduced channel
capacity. In particular, the study of coordinated path following control systems yield-
ing quantifiable measures of performance in the case of unidirectional, event driven
communications, is warranted.

Appendix.

Proof of Lemma 3.2.
1. Since Rank(I − Lβ) = 1, Lβ has n − 1 eigenvalues at 1. Using the definition

of Lβ , it can be easily verified that Lβ1 = 0 and βTLβ = 0T , that is, zero is
an eigenvalue. Therefore, we can conclude that zero is a single eigenvalue.

2. LβKLp = (K − 1
βT 1

11T )Lp = KLp, since 1T Lp = 0T .

3. Straightforward computations show that LT

βK−1Lβ = K−1− 1
βT 1

ββT . There-

fore, νTLT

βK−1Lβν = νT K−1ν − 1
βT 1

νT ββT ν ≤ νT K−1ν for any ν ∈ R
n and

the equality holds for βT ν = 0, thus proving the result.
4. The result follows from the fact that γ̃ = Lβγ, Lβ1 = 0, and RankLβ = n−1.
5. Follows from the definition of γ̃ in (3.4).
6. Follows from the definition of γ̃ and the fact that Lp1 = 0.
7. From

|γ̃i − γ̃j |2 = γ̃2
i + γ̃2

j − 2γ̃iγ̃j ≤ 2(γ̃2
i + γ̃2

j ) ≤ 2‖γ̃‖2 < 2ǫ2

and γ̃i − γ̃j = γi − γj it follows that |γi − γj | <
√

2ǫ. Furthermore, from
KLpγ = KLpγ̃ it follows that ‖KLpγ‖ ≤ ‖K‖.‖Lp‖.‖γ̃‖ ≤ nǫ‖K‖, where we
used the fact that ‖Lp‖ ≤ n and equality happens for a complete graph, that
is, for p = [1, ..., 1]T .

8. Recall the fact that if a graph is connected (p ∈ Pc) then Lp has a single
eigenvalue at zero associated to the (right and left) eigenvector 1, and the rest
of the eigenvalues are positive. Let L be a representative graph Laplacian of
Lp for p ∈ Pc. Then, there is a unitary matric U = [u1, ..., un] with u1 = 1√

n
1

and a diagonal matrix Λ = diag[λ1, λ2, ..., λn] with 0 = λ1 < λ2 ≤ ... ≤ λn

such that L = UΛUT . For any ν ∈ R
n

νT Lν =
∑n

i=1 λi(u
T

i ν)2

=
∑n

i=2 λi(u
T

i ν)2

≥ λ2

∑n
i=2(u

T

i ν)2

= λ2

∑n
i=1(u

T

i ν)2 − λ2(u
T

1 ν)2

= λ2ν
T ν − λ2

1
n
(1T ν)2.

To compute λ2,m, simply observe that the second term on the right-hand side
of the inequality above is zero. Therefore, λ2,m is the minimum λ2 over p ∈ Pc.
If β 6= 1, a standard minimization of the vector function νT ν − 1

n
(1T ν)2 with

constraints βT ν = 0 and νT ν = 1 yields the results. Similarly, it can be shown
that λ̄m > 0. Simple numerical computations show that λ2,m = λ̄m.

9. Recall that the graph Laplacian is L = D−A. Using the definitions of degree
matrix D and adjacency matrix A the result follows easily.

10. Because vL(γi, t) is bounded and Lipschitz, |vL(γi, t) − vL(γj , t)| ≤ 2vM and
|vL(γi, t) − vL(γj , t)| ≤ l|γi − γj | = l|γ̃i − γ̃j | ≤

√
2l‖γ̃‖. Then, using

‖LβvL(γ, t)‖2 =

n
∑

i=1





n
∑

j=1

vL(γi, t) − vL(γj , t)

σj





2

,
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where σj = kj

∑

i
1
ki

, it is easy to show that ‖LβvL(γ, t)‖ ≤
√

2nl‖γ̃‖ and

‖LβvL(γ, t)‖ ≤ 2
√

nvM and the result follows.

Proof of Lemma 5.1. First we show that

n
∑

i=1

|ṽri
|2 = γ̃T LpK

2Lpγ̃ ≤ n2k2
M‖γ̃‖2, (8.1)

where ṽri
and γ̃ are defined in (5.2) and (3.4), respectively. Denote by li,p the i’th

column (or row) of Lp. Then ṽri
= kil

T

i,pγ and

∑

i |ṽri
|2 =

∑

i k2
i γT li,pl

T

i,pγ
= γT

∑

i k2
i li,pl

T

i,pγ
= γT LpK

2Lpγ
= γ̃T LpK

2Lpγ̃.

Now, consider n path following subsystems, each satisfying Assumption 2.2 and let
ζ = [ζi]n×1 and V1 =

∑

i Wi. Using (2.6), (2.7), and (8.1) yields

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2

V̇1 ≤ −λ1V1 + ρ1n
2k2

M‖γ̃‖2 + u2
1.

Integrating the above differential inequality, the ISS property (5.6) follows.

Proof of Proposition 4.1 (system interconnection). Define V = V1 + aV2

for some a > 0 to be chosen later. Clearly, V satisfies the first condition of (4.6) for
some α > 0, ᾱ > 0. Next, we will show that the second condition is also satisfied.
Taking the derivative of V yields

V̇ ≤ −(λ1 −
aρ2

α1

)V1 − a(λ2 −
ρ1

aα2

)V2 + g‖d‖2,

where g = max(1, a). At this stage assume ρ1 and ρ2 are nonzero and let

λ0 = λ1 −
aρ2

α1

= λ2 −
ρ1

aα2

. (8.2)

Consider the case where λ2(t) = λ2 > 0 is constant. If ρ1ρ2 < α1α2λ1λ2, there
exist positive numbers λ0 and a satisfying (8.2). As consequence V̇ ≤ −λ0V + g‖d‖2,
the interconnected system is ISS with input d, and the convergence rate is λ = λ0.

Consider now the case where λ2(t) is not constant and system 2 has brief instabil-
ities characterized by χ(p) and λ2(t) as in (4.3). Using the same Lyapunov function
V = V1 + aV2 and λ0 as in (8.2), compute the derivative of V to obtain

V̇ ≤ −λ0V + a(λ2 − λ2(t))V2 + g‖d‖2

that yields

V̇ ≤
{

−λ0V + g ‖d‖2, χ(p) = 0
(λ3 − λ0)V + g ‖d‖2, χ(p) = 1

where λ3 := λ2 + λ̃2. Again, λ0 exists if ρ1ρ2 < α1α2λ1λ2. Rewrite

V̇ ≤ −λ0V + a(λ2 − λ2(t))V2 + g‖d‖
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and use aV2 = V − V1 to derive

V̇ ≤ −(λ0 − λ3χ(p))V + g‖d‖2,

where λ3 := λ2 + λ̃2. Integrating the above differential inequalities, it is easy to show
that

V (t) ≤ V (t0)e
−λ0(t−t0)+λ3Tp + g sup[t0,t]‖d‖2

∫ t

t0

e−λ0(t−τ)+λ3Tpdτ.

This yields

V (t) ≤ V (t0)e
−(λ0−αλ3)(t−t0)+λ3Tα +

eλ3Tα

λ0 − αλ3
g sup[t0,t]d

2,

where Tα = (1− α)T0 if the system has brief instabilities defined in (3.3). Therefore,
the interconnected system is ISS with d as input if α < λ0/λ3.

Suppose now that ρ2 = 0 and ρ1 > 0. In this case, the interconnected system
takes a cascade configuration and the dynamics of system 2 are reduced to

V̇2 ≤
{ −λ2V2 + d2

2, χ(p) = 0

λ̃2V2 + d2
2, χ(p) = 1

whose solution takes the form

V2(t) ≤ V2(t0)e
−(λ2−αλ3)(t−t0)+λ3Tα +

eλ3Tα

λ2 − αλ3
sup[t0,t]d

2
2.

Using the above inequality together with (4.1) and (4.2) it is easy to obtain

V1(t) ≤ a1e
−λ1t + a2e

−(λ2−αλ3)t + a3sup[t0,t]‖d‖2.

for some ai ≥ 0; i = 1, 2, 3. Therefore, the cascade system is ISS with d as input if
α < λ2/λ3 and the convergence rate will be min(λ1, λ2 − αλ3).

Proof of (5.15). The objective is to make λ̄0 > 0, that is, λα − c1l
√

2n > 0.
Replacing c1 =

√

ckM/km in the above inequality yields

λα − l
√

2neλαT̄0

√

kM

km

> 0.

The left hand side of the inequality takes its maximum at

λα =
1

T̄0
ln(

1

l
√

2nT̄0

√

km

kM

),

from which it follows that

max λ̄0 =
1

T̄0
ln(

1

el
√

2nT̄0

√

km

kM

).

To make λ̄0 positive it is required that

1

elT̄0

√

km

2nkM

> 1.

Using T̄0 ≤ T + τD gives

l

√

kM

km

<
1

e(T + τD)
√

2n
,

from which the result follows.
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Proof of Theorem 7.1. Path following of an underactuated vehicle. The
methodology adopted for path following control system design is rooted in Lyapunov-
based and backstepping techniques. The exposition that follows is based on the work
in [2].

Step 1. Define the global diffeomorphic coordinate transformation

e := RT [p − pd(γi)]

which expresses the path tracking error p − pd in body-fixed frame. For simplicity
of presentation, we will for the most part drop the index i in this section. Recall the
definition of speed tracking error η = γ̇i − vr, where vr is a reference speed profile.
Recall also how the reference speed vr is decomposed as vr = vL + ṽr, where the
derivatives of vL are known but those of ṽr are not. The derivative of e yields

ė = −S(ω)e + ν − vLRTpγ
d − η̃RTpγ

d ,

where η̃ := η + ṽr (or equivalently γ̇i = vL + η̃) and superscript γ stands for partial

derivative with respect to γ. For example, pγ
d = ∂pd

∂γ
and pγ2

d = ∂2
pd

∂γ2 .

We define the Lyapunov function W1 := 1
2e

T e and compute its time derivative to
obtain

Ẇ1 = eT (ν − vLRTpγ
d) − η̃eT RTpγ

d ,

where we used the fact that eT S(ω)e = 0 ∀e, ω ∈ R
3. We regard ν as a virtual control

signal and introduce the virtual control tracking error variable

z1 := ν − vLRTpγ
d + keM

−1e.

Then, Ẇ1 can be rewritten as

Ẇ1 = −kee
T M−1e + eT z1 + α1η̃,

where α1 := −eT RTpγ
d . Ideally, in the absence of η̃ one would like to drive z1 to zero

so as to render Ẇ1 negative. This motivates the next step.

Step 2. The time derivative of z1 yields

Mż1 = vLΓω + S(Mz1)ω + B1u1 + η̃h1 + h2,

where

Γ := MS(RTpγ
d) − S(MRTpγ

d),

h1 := −vLMRTpγ2

d − vγ
LMRTpγ

d − keR
Tpγ

d ,
h2 := fν + keν + vLh1.

It turns out that due to lack of actuation, it is not always possible to drive z1

to zero. Instead, we drive z1 to a constant design vector δ ∈ R
3. To this effect, we

define a new error vector φ := z1 − δ and the augmented Lyapunov function

W2 := W1 +
1

2
φT M2,

whose derivative is

Ẇ2 = −kee
T M−1e + eT δ + φT M(Bζ + M−1e + h2) + α2η̃,
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with α2 := α1 + φT Mh1,

B :=
(

B1 S(Mδ) + vLΓ
)

, and ζ :=

(

u1

ω

)

,

where we used the fact that φT MS(Mz1)ω = φT MS(Mδ)ω. Matrix B can be always
made full rank, see [2] for details. Let

β1 := BT (BBT )−1(−h2 − M−1e − kφφ).

To complete this step, we set u1 to be the first entry of β1, that is u1 =
(

1 01×3

)

β1

and introduce the error variable

z2 := ω − Πβ1, Π :=
(

03×1 I3×3

)

that should be driven to zero. It follows that

Ẇ2 = −kee
T M−1e + eT δ − kφφT Mφ + φT MBΠT z2 + α2η̃.

Step 3. Let β̇1 := h3 + h4η̃, where h3 collects the terms in β̇1 not containing η̃. For
simplicity we do not expand h3 and h4. Define

W3 := W2 +
1

2
zT

2 Jz2,

whose time derivative, after applying the control law

u2 = B−1
2 (−fω + JΠh3 − ΠBT Mφ − kzz2),

yields

Ẇ3 = −kee
T M−1e + eT δ − kφφT Mφ − kzz

T

2 z2 + α3η̃, (8.3)

where α3 = α2 − zT

2 JΠh4. At this point it is important to notice that

|α3| ≤ k1‖e‖ + k2‖φ‖ + k3‖z2‖ (8.4)

for some ki > 0, i = 1, 2, 3 that are functions of vL, vγ
L, M , pγ

d and pγ2

d . The design
phase is concluded at this step for the case where η = 0 simply by making γ̇i = vr.
In this case, η̃ = ṽr and

Ẇ3 ≤ −λW3 + ρ1‖δ‖2 + ρ2|ṽr|,

for some λ > 0, ρ1 > 0 and ρ2 > 0. That is, the path-following closed-loop system is
ISpS with input ṽr, state x1 = (e, φ, z2)

T , and constant ρ1‖δ‖2.

Step 4. This extra step contemplates the situation where η 6= 0. To this effect,
augment the Lyapunov function W3 to obtain

W4 := W3 +
1

2
η2 =

1

2
eT e +

1

2
φT M2φ +

1

2
zT

2 Jz2 +
1

2
η2.

Set the feedback law

η̇ = −α3 − kηη
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to make

Ẇ4 = −kee
T M−1e − kφφT Mφ − kzz

T

2 z2 − kηη2 + eT δ + α3ṽr,

which can be rewritten as

Ẇ4 ≤ −λW4 + ρ1‖δ‖2 + ρ2|ṽr|, (8.5)

for some λ > 0, ρ1 > 0 and ρ2 > 0. Again, this makes the closed-loop system ISpS
with input ṽr, state x1 = (e, φ, z2, η)T , and constant ρ1‖δ‖2.
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