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Abstract: We propose a four-quadrant propeller model suitable for energy-efficient motion planning of
autonomous marine vehicles. The model can be used to capturethe main features of experimental thrust and
torque curves by using a small number of parameters. We explore the connection between the propeller thrust,
torque, and efficiency curves and the lift and drag curves of the propeller blades.
The model originates from a well-known four-quadrant model, based on a sinusoidal approximation of the
propeller curves, nontrivially modified in this paper to account for the typical drop off in the efficiency curve in
correspondence to thrust inversion. Connections with the standard first-quadrant open-water model are drawn.
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1. INTRODUCTION

Despite being available for almost half a century, four-quadrant
propeller models are not widely used in the marine robotics
community. The method of choice in the vast majority of
publications continues to be theopen-water model

T = ρd4kT(Jo)n2 (1)

Q = ρd5kQ(Jo)n2 (2)

in which the propeller thrustT and torqueQ are character-
ized by the (dimensionless) open-water coefficientskT (Jo)
and kQ(Jo), respectively, whereJo = va/nd is the advance
ratio andn is the propeller rotational velocity,d the propeller
diameter,va the vessel’s advance speed, andρ the water density.

The above model is adequate for the case of marine vehicles
designed to keep a minimum speed with respect to the water and
to maneuver using control surfaces. This is in striking contrast
to the situation that arises during the operation of marine vehi-
cles that are purely thruster propelled. In this case, the forces
and torques required to maneuver the vehicle must necessarily
be obtained by recruiting the common and differential modesof
paired-up propellers. For example, a vehicle moving in the 2D
horizontal plane will recruit the common and differential thrust
Tc = 1

2
(Tps+Tsb) andTd = 1

2
(Tps−Tsb), whereTps andTsb are

the thrust generated by the starboard and port side propellers,
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respectively. Clearly, during station keeping or cruisingmaneu-
vers that require fast turnings, the thrusters will be required
to operate in regions that are not covered by the first-quadrant
model (1) and (2), which contemplates only the situation where
bothn andva are positive. As such, the model fails to describe
other regions of operation (e.g.n < 0 and va > 0) and, in
particular, the behavior caused by sign changes in the propeller
speedn (0-crossing) that make the advance ratioJ0 go through
infinity.

Thus, for small ocean vehicles, especially those steered by
differential thrust from two or more propellers (and not by
changing the deflection of a rudder), a different model should
be used, since it is highly likely that the propellers will change
their rotational direction for maneuvers that involve curved
trajectories. Thefour-quadrant model, described in the seminal
paper ofvan Lammeren et al.(1969), is valid for operations in
all regions of motion (those regions are commonly referred to
as ahead, crash-back, back, and crash-ahead in reference tothe
four quadrants of the advance angleβ, as shown in Fig. 1). The
coefficients of this model are given in terms of the advance
angleβ at the propeller blade (see Fig. 1 and the definition
below), and experimental data are available in the form of a
20th order Fourier series for various (ducted) propellers and
nozzles; see the original work ofvan Lammeren et al.(1969)
as well as the Ph.D. thesis ofOosterveld(1970). An extensive
discussion of the four-quadrant model in relation to control and
thrust estimation is given inPivano(2008).

In the four-quadrant model, the propeller thrust and torqueare

T =
1

2
ρcT(β)

(

v2

a +v2

p

)

πR2 (3)

−Q =
1

2
ρcQ(β)

(

v2

a +v2

p

)

πR2d (4)
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Fig. 1. Forces and velocities acting on a propeller blade. The propeller is
assumed to be left-rotating for forward-thrust generation,i.e. the vehicle
(and thus the propeller) is moving upwards in this picture, while the
propeller to the left (i.e. into the page).

whereR and d = 2R are the propeller radius and diameter,
respectively,va is the ambient water velocity, andvp is the
tangential velocity of the propeller at a distance of0.7R from
the propeller axis1 . The propeller tangential velocityvp is
related to the propeller angular speedω via

vp = 0.7Rω. (5)

Becauseω = 2πn, the above equation can also be written as
vp = 0.7dπn. The minus sign appearing in front ofQ in the left
hand side of (4) ensures that moments and forces are consistent
with the right-hand rule with the conventions depicted in Fig. 1.
The thrust and torque coefficientscT and cQ are functions
of the propeller blade advance angleβ, classically defined
in the literature as atan2(va,vp). Notice, however, that this
definition is appropriate just for propellers that rotateclockwise.
In this paper we are interested in an anticlockwise rotating
propeller, as the one depicted in Fig. 1, and it is important
at this point to explain the impact this has on the standard
four-quadrant expressions that consider a clockwise rotating
propeller. By convention, whenn is positive, the propeller is
rotating clockwise (seen from behind the vessel) and whenn
is negative, the propeller is rotating anticlockwise. From(5),
remembering thatω = 2πn, we see that the sign ofn determines
the sign ofvp, which in turn influences the value ofβ. In order
to computeβ in accordance with what is shown in Fig. 1, we
thus have to define the advance angleβ as

β = π −atan2(va,vp).

The terms of the periodic functionscT(β) andcQ(β) are given
as Fourier series invan Lammeren et al.(1969) andOosterveld
(1970) for ducted and ductless propellers, with various com-
binations of nozzles and pitch ratios. The data published are
sufficiently vast to be of practical use for a large number of
commercially available thrusters. This applies to the Seabotix
HPDV 1507 thrusters with a type 37 Kort nozzle that are used
in IST’s MEDUSASvehicles (Häusler et al., 2012) and are taken
as a case study here.

The pitch angle of the Seabotix propellers isϕ = 23.2◦, and the
pitch ratiop/d, with p being the (unknown) propeller pitch, can
be computed as (Fig. 3.4 inCarlton, 2007)

p

d
= π tanϕ ≈ 1.3465 (6)

1 Rooted in blade geometry considerations (Carlton, 2007, Sec. 3.3), the four-
quadrant model, by definition, describes the interaction of the propeller blade
with the water at0.7R.

The closest pitch ratio value to (6) inOosterveld(1970) is
p/d = 1.4 for a Wageningen Ka 4-70 propeller running in a
duct of the same shape as the Seabotix propellers, so we make
use of the corresponding Fourier series in this paper.
Remark 1.A correction factor can be applied to achieve the
bollard-pull conditions that Seabotix indicates for its HPDC
1507 thruster model in the following manner: from the ma-
nufacturer’s specifications, the maximum propeller velocity
can be obtained, which is sufficient to compute the values of
thrust (3) and torque (4) at bollard-pull conditions (i.e.va =
0.0 m

s ) for the Wageningen Ka 4-70 propeller withp/d = 1.4,
running in a Type 37 Kort nozzle (Oosterveld, 1970). These val-
ues can be compared with the manufacturer data of maximum
continuous thrust and torque at bollard-pull conditions achiev-
able with the Seabotix thrusters, which leads to a multiplicative
correction factor forcT andcQ. For clarity of the presentation,
the correction factor is not accounted for in this work; however,
our trajectory planning work (see e.g.Häusler et al.(2013))
does indeed implement these correction factors. ✷

Remark 2.According to (Carlton, 2007, Sec. 3.3), the Wa-
geningen propeller series were designed using the face pitch
line to measure the pitch angle, and not, as assumed here, the
nose-tail line of the blade. The difference can be assumed tobe
on the order of±5◦. ✷

2. THE SIMPLIFIED FOUR-QUADRANT MODEL BY
HEALEY ET AL.

The key motivation for the work reported here stems from
our interest in developing algorithms for the computation
of energy-optimal trajectories for multiple vehicles acting in
cooperation, with due account for full vehicle and actuator
dynamics—seeHäusler et al.(2013) and the references therein.
In the case of purely propelled vehicles, this requires the use
of a complete propulsion model (consisting of a model of the
propeller plus the electric motor ensemble) allowing for the
computation of the actual energy that is spent for vehicle mo-
tion.

The optimizer at the core of our trajectory planning framework
is a Newton descent method that makes use of a twice con-
tinuously differentiable (C2) cost functional (Hauser, 2002),
which requires thatboth the cost and dynamics beC2. If one
extends, by symmetry, the first quadrant open-water model to
four-quadrant operation, the result is not even continuousevery-
where and is thus not appropriate for use in derivative basedop-
timization. Direct use of the Wageningen series four-quadrant
model has also proved to be problematic, wherein the optimiza-
tion is not able to switch to second order descent, indicating that
the dynamically constrained problem either does not possess a
minimizing trajectory or that the second order approximation
at the minimizer is not positive definite in an appropriate sense.
We suspect that the roughness or non-monotonicity of the cor-
responding thrust and torque curves, shown in the leftmost plots
of Fig. 2, may play a role.

Idealized curves such as those in (Fossen, 1994, Fig. 4.3)
are appealing for use in optimization, and the approxima-
tion of the four-quadrant model published byHealey et al.
(1995), and used in the work of Whitcomb and coworkers
(Whitcomb and Yoerger, 1999; Bachmayer et al., 2000) pro-
vides such an idealized model.Healey et al.suggest a model
(called the “H-model” from here on) where the lift and drag
coefficients of the propeller are described by
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Fig. 2. Level curves of four-quadrant thrustT and torqueQ as obtained from the original data published byOosterveld, the approximation ofHealey et al., and the
L-model. The plots show thrust and torque for different valuesof the advance velocity (va ∈ [−2,2] m

s with a step size of0.5 m
s ; darker colors are negative,

lighter colors are positiveva).

cH
L (α) = cmax

L sin2α (7)

cH
D(α) = cmax

D (1− cos2α)/2 (8)

whereα = φ−β is the angle of attack of the propeller blade (cf.
Fig. 1). In (8), we have introduced a factor of1/2, not present
in the original, so that the maximum drag coefficient is indeed
cmax

D .

The propeller thrustT and torqueQ are related to propeller
lift L and dragD through a rotation by the advance angleβ,
namely

[

L
D

]

=

[

cosβ −sinβ
−sinβ −cosβ

][

T
−Q/(0.7R)

]

. (9)

The above relationship can be inferred by geometric consider-
ations from Fig. 1. It is assumed, in accordance with the four-
quadrant model detailed in the introduction, that the propeller
torqueQ is related to the tangential force acting on the propeller
blade through a lever arm with length0.7R.

Substituting the expressions forT andQ given by (3) and (4)
in (9), we obtain

L =
1

2
ρ
(

v2

a +v2

p

)

R2
(

cT(β)cosβ +
d

0.7R
cQ(β)sinβ

)

,

D =
1

2
ρ
(

v2

a +v2

p

)

R2
(

− cT(β)sinβ +
d

0.7R
cQ(β)sinβ

)

.

Sinceβ = ϕ − α, we can determinecmax
L andcmax

D by rotating
the thrust and torque coefficients into the lift-and-drag frame,
that is, obtaining

cO
L (α) = cO

T (ϕ−α)cos(ϕ−α)

−
2

0.7

(

− cO
Q(ϕ−α)

)

sin(ϕ−α),

cO
D (α) = −cO

T (ϕ−α)sin(ϕ−α)

−
2

0.7

(

− cO
Q(ϕ−α)

)

cos(ϕ−α),

and finding the maxima of these expressions. The result is
shown as dashed lines in Fig. 4. We call this the “O-model”
in reference toOosterveld(1970). The lift and drag coefficients
obtained in this manner can now be rotated back into the thrust
and torque frame, yielding
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Fig. 3. Four-quadrant thrust and torque coefficients, scaled for MEDUSAS. The
figure showsOosterveld’s original Fourier series (dotted), the simplifica-
tion of Healey et al.(rotated from the lift-and-drag frame into the thrust-
and-torque frame; dashed), and our own sinusoidal model (solid).

cH
T(β) = cH

L (β)cosβ − cH
D(β)sinβ

cH
Q(β) = −

0.7

2

(

− cH
L (β)sinβ − cH

D(β)cosβ
)

which results in the coefficient curves shown in Fig. 3.
Remark 3.Clearly, the rotations between the lift-and-drag and
the thrust-and-torque frame ignore results from the vorticity of
the propeller, as well as the induced velocityvi at the propeller
blade (Breslin and Andersen, 1994). In contrast to the results
presented here, the rotations should be done about theinduced
advance angleβi and the coefficients then be obtained through
integration along the blade, using the propeller radius (Glauert,
1947). It remains an open question how significant the resulting
higher accuracy of the model would be; for now, we ignore
these considerations in favor of simplicity of the model. ✷

3. THEL-MODEL

Closer examination of theH-model, i.e. the approximation
of the original four-quadrant data by coefficients obtainedby
rotation of sinusoidal lift and drag curves into the thrust-and-
torque frame, may fail to capture some physical constraints,
resulting from the fact that the lift and drag curves (Fig. 4,
dashed lines) are somewhat “synchronized”: they go through
the origin at exactly the same angle of attack (α = 0◦ andα =
−180◦). This propagates into the thrust and torque coefficient
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Fig. 4. Lift and drag coefficients. The figure shows the original Fourier series
data (theO-model, dotted), theH-model (dashed), and theL-model
(solid).

curves (Fig. 3, dashed lines): both coefficients are zero foran
advance angle ofβ = 24.02◦ andβ = −155.98◦, respectively.

Since both the thrust and torque contain the coefficientscT(β)
and cQ(β) in a multiplicative form (see (3) and (4)), this
means that for the originalH-model, thrustT and torqueQ
go through0 at the same advance angle. Physics, however,
suggest that for a propeller in general, but especially one that
has approximately the pitch ratio of our Seabotix propellers (6),
the thrust must go to0 slightlybeforethe torque reaches0—see,
for instance, (Fossen, 2002, Fig. 12.2), van Lammeren et al.
(1969), or (Oosterveld, 1970, Fig. 37), and the explanation
of our results in Sec. 4.1. Similarly, drag can be expected to
attain its minimum for a slightly positive lift—see the important
remarks in (Anderson, 1999, p. 132), illustrated by the drag
polar diagrams in (Abbott and von Doenhoff, 1959, Chapter 7).
In addition, the minimum ofcD(α) should be non-negative
(Sheldal and Kilmee, 1981) because of aresidual dragcompo-
nent that is missing in theH-model.

The consequences of the assumptions underlying theH-model
can be best examined by looking at the characteristicopen-
water(i.e. first-quadrant model)efficiencycurve of theH-model
in comparison to what is suggested in the marine engineering
literature. The efficiency can be obtained for the four-quadrant
model in the following fashion: first, following the exposition
in (Smogeli, 2006, Sec. 2.1.2) or (Clayton and Bishop, 1982,
Sec. 7.7.1), the first-quadrant thrust and torque coefficients
kT(Jo) andkQ(Jo) are related to the four-quadrant coefficients
cT(β) andcQ(β) as

kT(Jo) =
π

8
cT(β)

(

J2

o +0.72π2
)

kQ(Jo) =
π

8
cQ(β)

(

J2

o +0.72π2
)

where the argument ofkT andkQ, the open-water advance ratio
Jo, is defined for left-rotating propellers as

Jo = −0.7R tan(π −β) = 0.7R tanβ (10)
The open-water propeller efficiency can then be computed as in
(Fossen, 2002, Sec. 12.2):

η =
Jo

2π

kT

kQ

The expected efficiency curve, also verified by theOosterveld
data (leftmost plot in Fig. 5), rises from the origin in a “close
to linear” manner to a peak efficiencyη < 1.0, before falling
back to0, which marks the point where the thrust coefficient
cT changes its sign for non-zero advance velocityva. Instead of
falling back to0, the efficiency curve fromHealey et al.’s ap-
proximation of the original four-quadrant model goesthrough

η = 1.0 and continues growing without exhibiting a local max-
imum.

For the aforementioned reasons, we suggest the following mod-
ification of theH-model:
Definition 4. TheL-model of a propeller is defined through the
relations

cL
L(α) = cmax

L sin2(α −oL) (11)

cL
D(α) =

(

cmax
D − cmin

D

)(

1− cos2(α −oD)
)/

2+ cmin
D (12)

where (11) and (12) are intended to replace (7) and (8), respec-
tively. ✷

We determined the five parameters (cmax
L , cmin

D , cmax
D , oL , oD)

in the L-model (11), (12) to obtain a low order approximation
of the O-model by solving a nonlinear least squares problem
that seeks to capture characteristics of first quadrant open-water
efficiency (Fig. 6) while fitting thecT(β) andcQ(β) curves in
the primary operating region0◦ ≤ β ≤ 50◦ (Fig. 3). We have
also enforced a monotonicity constraint on the level curves
of the produced thrust2 (Fig. 2, rightmost plot). Numerical
values of the parameters were found to beoL = −1.6157◦, oD =
1.9309◦, cmin

D = 0.0273, cmax
L = 0.5749, and cmax

D = 1.0383.
With the obtained values ofoL 6= oD, we find that the minimum
drag is indeed obtained at a slight positive lift which is in
line with what is common for real airfoils (Anderson, 1999).
With the inclusion of three additional parameters, theL-model
appears to be capable of capturing a number of efficiency
related features (see Sec. 4.2) that theH-model does not exhibit.

The L-model, as Fig. 4 reveals (solid and dashed lines), is a
minor modification in terms of the lift and drag coefficients,yet
it prevents both from crossing0 at the same angle of attack. The
resulting thrust and torque coefficients (Fig. 3, again obtained
by rotation) achieve the desired shape of the efficiency curve
(Fig. 5) in the first quadrant.
Remark 5.Due to the (imposed) symmetry between the differ-
ent modes of operation, theH-model andL-model do not show
the double cover of theJo axis as theO-model does (see Fig. 5).
In these models, the propeller exhibits the same characteristics
in ahead and crash ahead (i.e.β ∈ (0,π) as it does in back and
crash back mode (i.e.β ∈ (π,2π)). SinceOosterveld’s model
was obtained from experimental data where the propellers are
designed for the purpose of forward propulsion in conjunction
with non-backward-forward-symmetric flow-accelerating noz-
zles, the coefficients show different characteristic curves for
β ∈ (0,π) and β ∈ (π,2π). Viewed as Fourier series, ourL-
model results in curves forcL andcD that only contain constant
and first harmonic (which leads, by rotation, to the presence
of first and third harmonics in ourcT andcQ curves). Clearly,
a Fourier series model that includes only a single frequency
(in addition to a constant term) is incapable of capturing the
aforementioned asymmetric behavior. ✷

4. EFFICIENCY ANALYSIS

On four quadrants, the propeller efficiencyη is defined as the
ratio between the available power for vehicle propulsion and
the rotational power provided by the electric motor, namely

η =
Tva

Qω
. (13)

Our goal is to obtain a low complexity model that reproduces in
an accurate way the energy flow in the four possible quadrants
2 Interestingly, monotonicity ofT (n) turned out not to be an active constraint
at the minimizing solution to theL2-fit of theL-model.
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andvp such that the full range of360◦ for β was covered for each value ofva.

of operation of the propeller. One way to judge the quality of
approximation of theL-model is to compare its efficiency curve
with that corresponding to theO-model. For this reason, the
efficiency plots for the three models we consider in this paper
are presented in Fig. 5. These plots are somehow non-standard,
as they depict the efficiency curve over the entire spectrum
of possible operating conditions, i.e. over the four possible
quadrants of operation. To the best of the authors’ knowledge,
this kind of “extended” efficiency plot is hardly found in the
literature. Indeed, the common practice is to plot the efficiency
in just (the part of) the first quadrant where the power used for
propulsion,Tva, and the power absorbed from the motor,Qω,
are both positive and the propeller is moving ahead, i.e.va > 0:
this corresponds to the blue curve inside the highlighted region
of the leftmost plot in Fig. 5. Because each value ofJ0 relates
to two possible values of the advance angleβ (cf. (10)), plotting
the efficiency over the four quadrants in terms of the advance
ratioJo requires two curves to cover the entire range of possible
propeller operation. For theO-model, these are the blue and
green curves in the leftmost plot of Fig. 5. Those two curves are
identical in case of perfectly symmetric propellers. This holds
for the efficiency of theH-model andL-model depicted in Fig. 5;
see also the discussion in Remark 5.

Again, the region usually under consideration for the open-
water efficiency (Fossen, 2002, Fig. 12.2) corresponds to the
highlighted area in each plot. Since these figures were obtained
from four-quadrant models, they are defined even in regions
where the original open-water coefficients are not.

4.1 The propeller as a power converter

The shape ofη for the O-model, as shown in Fig. 5, warrants
further explanation. In particular, the presence of the singularity
in the efficiency curve can be related to the fact that the
propeller should be considered as a non-ideal power converter.
The propeller is then viewed as a two-port (static) system that
must satisfy the following dissipation inequality (for a thorough
discussion about dissipativity, seevan der Schaft(2000))

Tva−Qω ≤ 0. (14)
The intuitive meaning of (14) is that the propeller can only
convert (and dissipate) the energy that it receives from the
power port (Q,ω) and transmit it to the other power port
(T,va), and vice-versa.

Using (13), we see that (14) is equivalent to
(η −1)Qω ≤ 0.

It follows that, whenQω > 0, i.e. when the engine is doing work
on the propeller, the efficiencyη must be smaller than one: this

is a familiar bound on the efficiency of a power converter and
it simply means that the power available for propulsion is less
than the one generated by the motor. WhenQω < 0, however,
which is the case when the propeller is used in the windmilling
region, thenη must be greater than one3 . The singularity ofη
occurring atQω = 0 allows the efficiency curve to jump from
−∞ to +∞ and to satisfy the passivity conditionη ≤ 1 for
Qω > 0 andη ≥ 1 for Qω < 0.

As explained in Sec. 3, the thrustT and torqueQ for the
O-model (as well as for theL-model) go to zero for slightly
different values of the advance ratioJ0. This do not happen for
the H-model due to the way the drag and lift coefficients are
defined in (8) and (7). SinceT and Q are zero for the same
value ofJ0 in theH-model, the corresponding efficiency curve
is completely different (and unphysical). The introduction of
the two phase-shift coefficientsoD and oL and the minimum
dragcmin

D in (11) and (12), allows to overcome this simultaneous
zero crossing.

4.2 Model Comparison

It is worthwhile considering a comparison of all propeller mod-
els mentioned in this work. Invan Lammeren et al.(1969), the
authors plot the efficiencyη against the ratiokT/J2

o , i.e. related
to the first-quadrant model. The equations of the momentum
theory and four-quadrant models can be rewritten in such a way
that they become compatible with that plot (Oosterveld, 1970,
Fig. 31), which is shown next.

Ideal propulsion efficiency. The momentum theory propeller
model is an idealized model which can be used to compute the
so-called ideal efficiency. Stated simply, the key equations are
given in (Sec. 7.3.1 inClayton and Bishop, 1982, Eq. 7.20 and
7.22), based on the observation that in momentum theory the
efficiency is

η =
Pout

Pin
=

2

1+
(

1+ cM
T

)1/2
with cM

T :=
T

1

2
ρAv2

a

where cM
T is the momentum theorythrust coefficient. An in-

depth analysis of the assumptions involved is out of the scope
of this paper.

Four-quadrant efficiency. Using the relationkT/J2
o = π

8
cM

T
as e.g. given in (van Lammeren et al., 1969, p. 292), the four-
quadrant model can be expressed in a manner that is compatible
3 In this situation, one would better define the efficiency as1/η = Qω/T va,
considering the propeller as a watermill and retrieving the familiar notion of the
efficiency being smaller than one. (See also the momentum theoryexplanation
of the windmilling state e.g. inLeishman(2006) for a deeper elaboration.)
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Fig. 6. Open-water efficiencyη for all propeller models discussed in this work, inspired byOosterveld(1970) andvan Lammeren et al.(1969).

with the first-quadrant plot ofη(kT/J2
o ). To this effect, we note

that the open-water efficiency is

η =
Pout

Pin
=

Tva

Qω
=

Jo

2π

kT

kQ
(15)

Substituting the conversion equations that are, for instance,
given in (Oosterveld, 1970, p. 42) or (Smogeli, 2006, Sec. 2.1.2)
into (15), all models can be compared against each other and the
ideal efficiency.

Fig. 6 shows clearly how, using the simpleL-model approxima-
tion (motivated by theH-model approximation), the propeller
efficiency curve of a representative thruster captures the main
characteristics of the efficiency curve predicted by the models
of van Lammeren et al.(1969) andOosterveld(1970).

5. CONCLUSION AND PROSPECTIVE WORK

The paper introduced a modified single harmonic approxima-
tion to the model of a four-quadrant propeller. The new model
builds upon and overcomes some of the difficulties encountered
with the model developed byHealey et al.; namely, the fact that
the curve of efficiency of a propeller in the first quadrant—
derived with this model—does not satisfy first physics princi-
ples. The advantages of the new model proposed are threefold:
i) it conforms with basic propeller theory, ii) it is simple enough
to be used in a more general model of a complete thruster that
includes the propeller and the corresponding electrics model,
and finally, iii) a comparison of the main propeller charac-
teristics (including the efficiency curve) computed with the
suggested model with that obtained with the more complex
model byvan Lammeren et al.andOosterveldshows that the
key physical properties of the latter are preserved, while achiev-
ing a level of smoothness in the curves that appears to be useful
in energy optimal trajectory computations.

Future work will include a thorough comparison of the new
proposed model with another commonly used model based on
momentum theory, as well the study of approximations that
reflect non-symmetric propeller behavior.
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