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Abstract: This paper derives a hybrid control law for an extended nonholonomic
double integrator (ENDI) that captures the dynamics of a wheeled robot subject to
force and torque inputs. A simple logic-based hybrid controller is proposed which
yields global stability and convergence of the closed-loop system to an arbitrarily
small neighborhood of the origin. This is achieved by mapping the state-space
into a two dimensional closed positive quadrant space and dividing it into three
overlapping regions where, for each region, a feedback law is conveniently designed.
Convergence and stability of the closed-loop hybrid system are analyzed theoretically.
An application is made to the control of a wheeled mobile robot of the unicycle-type.
Simulation results are presented that illustrate the performance of the hybrid control
law. Copyright c©2000 IFAC
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1. INTRODUCTION

The control of nonholonomic systems has been the
subject of considerable research effort over the last
few years. The reason for this trend is threefold:
i) there are a large number of mechanical systems
that have non integrable constraints such as robot
manipulators, mobile robots, wheeled vehicles, and
space and underwater robots; ii) there is consid-
erable challenge in the synthesis of control laws
for systems that are not transformable into lin-
ear control problems in any meaningful way and,
iii) as pointed out in a famous paper of Brock-
ett (Brockett, 1983), nonholonomic systems cannot
be stabilized by continuously differentiable, time
invariant, state feedback control laws. To overcome
the limitations imposed by the celebrated Brock-
ett’s result, a number of approaches have been
proposed for stabilization of nonholonomic control
systems to equilibrium points. See (Kolmanovsky
and McClamroch, 1995) and the references therein

1 The work of A. Aguiar was support by a Graduate Student
Fellowship from the Portuguese PRAXIS XXI Programme of
the FCT.

for a comprehensive survey of the field. Among
the proposed solutions are smooth time-varying
controllers (Godhavn and Egeland, 1997; Samson,
1995), discontinuous or piecewise smooth control
laws (Canudas de Wit and Sørdalen, 1992; Bloch
and Drakunov, 1994; Astolfi, 1999), and hybrid con-
trollers (Hespanha, 1996). Specially attractive are
discontinuous control laws, which in some cases can
overcome the complexity and lack of good perfor-
mance (e.g., low rates of convergence and oscillating
trajectories) that are often associated with time-
varying control strategies. The reader is referred to
(Astolfi, 1999) for a discussion of this interesting
circle of ideas.

Despite the vast amount of papers published on the
stabilization of nonholonomic systems, the majority
has concentrated on kinematic models of mechan-
ical systems controlled directly by velocity inputs,
while less attention has been paid to the control of
nonholonomic dynamical mechanical systems where
forces and torques are the actual inputs. See for
example (M’Closkey and Murray, 1994) where the
authors extended time-varying exponential stabiliz-
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ers to dynamic nonholonomic systems.

The main contribution of this paper is the derivation
of a hybrid control law for an extended nonholo-
nomic double integrator (ENDI) that captures the
dynamics of a wheeled robot subject to force and
torque inputs. The methodology proposed for con-
trol system design was inspired by the work of Hes-
panha (Hespanha, 1996) where a hybrid controller
for the nonholonomic integrator (Brockett, 1983)
was derived. The new control law solves the prob-
lem of global convergence and stabilization of the
ENDI system to an arbitrarily small neighborhood
of the origin. This is achieved by mapping the state-
space into a two dimensional closed positive quad-
rant space and dividing it into three overlapping
regions where, for each region, a feedback law is
conveniently designed. Convergence and stability
of the closed-loop hybrid system are analyzed the-
oretically. An application is made to the control
of a wheeled mobile robot of the unicycle-type.
Simulation results are presented that illustrate the
performance of the hybrid control law.

The paper is organized as follows: section 2 intro-
duces the extended nonholonomic double integrator.
In section 3 a simple hybrid controller is proposed,
and in section 4 closed-loop stability and conver-
gence to the origin are analyzed. Section 5 illustrates
the application of the hybrid control law to point
stabilization of a wheeled mobile robot. Finally, dis-
cussions and recommendations for further research
are given in section 6.

2. THE EXTENDED NONHOLONOMIC
DOUBLE INTEGRATOR

In (Brockett, 1983) Brockett introduced the so
called nonholonomic integrator system

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

(1)

where [x1, x2, x3]′ ∈ R3 is the state vector and
[u1, u2]′ ∈ R2 is a two-dimensional input. It can be
shown that any kinematic completely nonholonomic
system (e.g., the kinematic model of a wheeled mo-
bile robot of the unicycle type) with three states
and two inputs can be converted into the above
form by a local coordinate transformation. The non-
holonomic integrator displays all basic properties
of nonholonomic systems and is often quoted in
the literature as a benchmark for control system
design. See for example (Bloch and Drakunov, 1994)
for the description of sliding mode feedback control
laws for stabilization of the nonholonomic integrator
and (Astolfi, 1998) for the derivation of a family of
discontinuous controllers that almost exponentially
stabilizes (1) in an open and dense set. See also
(Hespanha, 1996) where a new methodology for non-
holonomic integrator stabilization was proposed by
resorting to a hybrid, logic based switching control

law.

The nonholonomic integrator model fails to capture
the case where both the kinematics and dynamics
of a wheeled robot must be taken into account. To
tackle this realistic case, the nonholonomic integra-
tor model must be extended. This is done in section
5 where it is shown that the dynamic equations of
motion of a mobile robot of the unicycle type can
be transformed into the system

ẍ1 = u1

ẍ2 = u2

ẋ3 = x1ẋ2 − x2ẋ1

(2)

where x
4
= [x1, x2, x3, ẋ1, ẋ2]′ ∈ R5 is the state

vector and u
4
= [u1, u2]′ ∈ R2 is a two-dimensional

control vector. In this paper, system (2) will be
referred to as the extended nonholonomic double
integrator (ENDI) and will be used as a prototype
system in the development that follows.

3. HYBRID CONTROLLER DESIGN

This section proposes a simple piecewise smooth
controller to stabilize the ENDI system that bor-
rows from hybrid system theory. Hybrid systems
are specially suited to deal with the combination of
continuous dynamics and discrete events. The liter-
ature on hybrid systems is extensive and discusses
different modeling techniques. In (Ye et al., 1998)
Ye, Michel, and Hou formulated a model for hybrid
dynamical systems that covers a very large class of
systems and is suitable for qualitative analysis. They
have also defined several types of Lyapunov-like sta-
bility concepts for an invariant set and established
sufficient and necessary conditions (converse theo-
rems) for these types of stability. Branicky, Borkar,
and Mitter (Branicky et al., 1994) proposed a very
general framework for hybrid control problems that
encompasses several types of such hybrid phenom-
ena. See also (Branicky, 1998) where several tools
for the analysis and synthesis of hybrid systems were
developed.

In this paper, a continuous-time hybrid system Σ is
defined as follows:

ẋ(t) = fσ(t)

(
x(t), t

)
, t ≥ t0 (3a)

σ(t) = φ
(
x(t), σ(t−)

)
(3b)

where σ(t) ∈ I 4= {1, . . . , N} and x(t) ∈ X 4
=

∪Nσ=1Xσ ⊂ Rn. Here, the differential equation (3a)
models the continuous dynamics, where the vector
fields fσ : Xσ×R+ → X , σ ∈ I are each locally Lip-
schitz continuous maps from Xσ to X . The algebraic
equation (3b), where φ : X × I → I, models the
state of the decision-making logic. The discrete state
σ(t) is piecewise constant. The notation t− indi-
cates that the discrete state is piecewise continuous
from the right. The dynamics of the system Σ can
now be described as follows: starting at (x0, i) with
x0 ∈ Ri ⊂ Xi, the continuous state trajectory x(t)
evolves according to ẋ = fi(x, t). When φ

(
x(·), i)
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becomes equal to j 6= i, (and this could only hap-
pen when x(·) hits the set X\Ri), the continuous
dynamics switches to ẋ = fj(x, t), from which the
process continues. As in (Hespanha, 1996), the ”log-
ical dynamics” will be determined, recursively by
equation (3b) with σ−(t0) = σ0 ∈ I where σ−(t)
denotes the limit of σ(τ) from below as τ → t and
the transition function φ is defined by

φ(x, σ) =

{
σ if x ∈ Rσ,
max
I
{
k : x ∈ Rk

}
otherwise. (4)

The signal σ(t) can be also generated according to
the diagram in Figure 1.

Initialize s

x Î Rs ?

s = max{ k : x Î Rk }

y

n

Fig. 1. Switching Logic.

Consider now the ENDI system (2). When the state
variables x1 and x2 are both zero, ẋ3 will also be
zero and, consequently, x3 will remain constant.
Thus a possible strategy to steer an initial state
to the vicinity of the origin is the following (see
(Hespanha, 1996) where similar ideas were applied
to the control of the nonholonomic integrator): i)
first, make the state variable x3 converge to zero
while keeping x1 and x2 away from the axis x1 =
x2 = 0; ii) next, freeze x3 (ẋ3 = 0), and force x1

and x2 to converge to zero.

In order to derive a hybrid controller for the ENDI,
it is convenient to define the function W (·) :
R4 → Ω ⊂ R2 that maps the state-space coordi-
nates (x1, x2, x3, ẋ3)′ ∈ R4 into the two-dimensional
closed positive quadrant 2 space Ω

ω
4
= [ω1, ω2]′ = W (x) =

[
s2, (x1)2 + (x2)2

]′
,

where s = ẋ3 + λx3 and λ is a strictly positive con-
stant. This mapping has several properties, which
are listed in the following lemma.

Lemma 1. The mapping W (·) : R4 → Ω ⊂ R2 has
the following properties:

(1) W (0) = 0.
(2) if w converges to zero as t → ∞, then x also

converges to zero as t→∞.
(3) if x3(t0) = 0 and ω1 ≤ ε for all t ≥ t0, then
|x3(t)| ≤

√
ε
λ for all t ≥ t0. For the case where

x3(t0) 6= 0, the bound of x3(t) is given by

|x3(t)| ≤ e−λ(t−t0)|x3(t0)|+
√
ε

λ
.

2 The closed positive quadrant of R2 is the set Ω =
{(ω1, ω2) ∈ R2 : ω1 ≥ 0, ω2 ≥ 0}.

Divide now Ω into three overlapping regions (see
Figure 2)

R1 = {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ ω2 ≤ γ2}
R2 = {(ω1, ω2) ∈ Ω : ω1 > ε1 ∧ ω2 ≥ γ1}
R3 = {(ω1, ω2) ∈ Ω : ω1 ≤ ε2}

(5)

where ε2 > ε1 > 0 and γ2 > γ1 > 0.

e1 W1e2

g1

g2

e1

R2

e2

g1

g2

e1

R3

e2

g1

g2
R1

W2

W1

W2

W1

W2

Fig. 2. Definition of the regions R1, R2, and R3.

Motivated by the work in (Hespanha, 1996), con-
sider the following dynamical system as a candidate
control law to steer the ENDI trajectories to a small
neighborhood of the origin:

u = gσ (x) , (6)

where the vector fields gσ : R5 → R2, σ ∈ I =
{1, 2, 3} are given by

g1(x) =
[−λẋ1 + x1

−λẋ2 + x2

]
, g2(x) =

[−λẋ1 + x1 + x2s
−λẋ2 + x2 − x1s

]
,

g3(x) =
[−λẋ1 − x1

−λẋ2 − x2

]
. (7)

σ is a piecewise constant switching signal taking
values in I = {1, 2, 3}, and is determined recursively
by

σ(t) = φ
(
ω(t), σ−(t)

)
, σ−(t0) = σ0 ∈ I (8)

where the transition function is defined according to
(4). The control laws for each region were designed
according to the following simple rule: while σ = 1,
ω1(t) must decrease or remain constant and ω2(t)
must grow without bound as t → ∞; when σ = 2,
ω1(t) must decrease and reach a determined bound
in finite time; and finally when σ = 3, ω1(t) must
again remain constant and ω2(t) must converge to
zero. A sketch of a typical trajectory of W is shown
in Figure 3. The region that is the intersection of R2

and R3 can be seen as a hysteresis region. Its aim is
to avoid the possibility of infinitely fast chattering
when ω1 is near ε1.

Remark 2. For σ = 1, if λ does not satisfy
the relation − 1

2

(
1 +
√
λ2 + 4

)
x1(t0) 6= ẋ1(t0) ∨

− 1
2

(
1 +
√
λ2 + 4

)
x2(t0) 6= ẋ2(t0), then the unsta-

ble mode of the corresponded closed-loop system is
not excited. In that case, g1(x) has to be modified to
g1(x) =

[
−λẋ1+x1+sgn(c2) sgn(s)
−λẋ2+x2−sgn(c1) sgn(s)

]
where sgn(x) = 1 if

x ≥ 0, sgn(x) = −1 if x < 0, ci = ẋi(t0)−xi(t0)s1
s2−s1 ,

i = 1, 2, and s1,2 = − 1
2 ± 1

2

√
λ2 + 4.

4. STABILITY ANALYSIS

In this section stability and performance analysis
of the closed-loop system consisting of the ENDI
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Fig. 3. Sketch of the image by W : R4 → Ω of a
typical trajectory.

system and the control law proposed are analyzed.
To do this, it is necessary to extend the usual
definition of Lyapunov stability for hybrid systems.

Definition 3. The equilibrium point x = 0 of the
hybrid system Σ is Lyapunov stable if for every ε > 0
and any t0 ∈ R+ there exists δ = δ(ε, t0) > 0 such
that for every initial condition {x0, σ0} ∈ X × I
with ‖x0‖ < δ, the solution {x(t), σ(t)} satisfies
‖x(t)‖ < ε, for all t ≥ t0. If in the above definition
δ is independent of t0, i.e., δ = δ(ε), then the origin
is said to be uniformly stable.

The following theorem establishes the main result
of this section.

Theorem 4. Consider the hybrid system Σ de-
scribed by (2), (6)-(8), and (4). Let {x(t), σ(t)} =
{x : [t0,∞)→ R5, σ : [t0,∞)→ I} be a solution to
Σ. Then,

1. {x(t), σ(t)} is the unique solution that is de-
fined for all t ≥ t0;

2. for any set of initial conditions {x(t0), σ−(t0)} =
{x0, σ0} ∈ R5 × I, there exists a finite time
T ≥ t0 such that for t > T the state vari-
ables x1(t), ẋ1(t), x2(t), and ẋ2(t) converge uni-
formly exponentially to zero, and ω1(t) ≤ ε2,
where ε2 > 0 is a controller parameter that can
be chosen arbitrarily small;

3. the origin x(t) = 0 is a Lyapunov uniformly
stable equilibrium point of Σ.

Proof. In the sequel the following notation is re-
quired: given a set R ⊂ Rn, its closure and bound-
ary are denoted by R and ∂R respectively. Bδ(x)
denotes an open ball of radius δ > 0 centered at x.

Uniqueness - Proof omitted.

Convergence
A proof of convergence can be given, based on the
five claims below.
Claim 1. There exists a finite time tσ1 ≥ t0 such
that for all t ≥ tσ1 , ω(t) /∈ R1\R2.
Proof. Consider first that ω(t0) ∈ R1\R2 and sup-
pose by contradiction that ω(t) remains in R1\R2

for all t ≥ t0. Since ω(t0) ∈ R1\R2, then σ(t0) = 1,
and σ(t) will always be equal to 1 (since ω(t) never
leaves R1\R2 by the contradiction hypothesis).
Therefore, the closed-loop equation is ẋ = g1(x),
and it can be checked that for this case ω̇1(t) ≤ 0
for all t ≥ t0 and ω2(t) → ∞ as t → ∞. Con-

sequently, ω will leave the region R1\R2 which is
a contradiction. The remainder of the proof shows
that ω(t) will remain outside R1\R2 for t ≥ tσ1 . Let

tσ1

4
= sup {t ∈ [t0,∞) : σ(t) = 1 ∧ ω(t) ∈ ∂R1\R2}.

When ω(tσ1) ∈ ∂R1\R2, σ(tσ1) = 1 and σ will
remain constant until the next switch, which must
occur after some positive time interval, say δ > 0.
Therefore, for t ∈ [tσ1 , tσ1 + δ] one has ω̇1 ≤ 0 and
ω̇2 > 0, which shows that the velocity vector points
(non strictly) to the outside of R1\R2. Thus, one
can conclude that ω(t) will remain outside R1\R2

for t ≥ tσ1 .
Claim 2. For any tσ1 ≥ t0 such that σ(tσ1) = 1,
there exists a finite time tσ2 ≥ tσ1 such that
σ(tσ2) = 2.
Proof. For σ = 1, ω̇1 ≤ 0 and ω2(t) → ∞ as
t → ∞. Thus, there exists a finite time tσ2 such
ω2(tσ2) = γ2, which implies that for t = tσ2 , σ
switches to 2.
Claim 3. For any tσ2 such that σ(tσ2) = 2, there
exists a positive time interval τ > 0 such that for
t ∈ [tσ2 , tσ2 + τ ]

ω1(tσ2 + τ) ≤ ω1(tσ2)e−2γ1τ .

Proof. For σ(tσ2) = 2, the closed-loop equations of
the hybrid system Σ are given by ẋ = g2(x). Since
g2(x) is continuous in x, the solution x(t) will be
continuously differentiable and, consequently, there
exists τ > 0 such that for t ∈ [tσ2 , tσ2 + τ ], ω(t)
will be inside R2 and σ(t) = 2. This means that for
t ∈ [tσ2 , tσ2 + τ ],

ω̇1 = −2ω2ω1

ω2 ≥ γ1.

Hence, ω1(tσ2 + τ) ≤ ω1(tσ2)e−2γ1τ .
Claim 4. There exists a finite time tσ3 ≥ t0 such
that for all t ≥ tσ3 , ω(t) ∈ R3.
Proof. This claim will be proven in two steps.
First, it will be shown that for any ω(t0) ∈ Ω\R3,
there exists a time tσ3 ≥ t0 such that ω(tσ3) ∈ R3

and second, that if ω(tσ3) ∈ R3 then ω(t) ∈ R3 for
all t ≥ tσ3 . Consider first that ω(t0) ∈ Ω\R3. Then,
the objective is to prove that ω1 will reach in finite
time the boundary ω1 = ε2, where σ can only takes
the value 1 or 2. From claim 1, it follows that after a
finite time tσ1 , ω2(t) > γ1 (while ω ∈ Ω\R3). Since
the dynamics of ω1 are given by

ω̇1 =

{
≤ 0 σ = 1,
−2ω2ω1 σ = 2.

from claim 2 and 3 it can be concluded that there
exists a finite time tσ3 for which ω(tσ3) ∈ R3. To
conclude the proof, it remains to show that ω(t) will
be always inside R3 for t ≥ tσ3 . This is easily proved
due to the fact that when ω(tσ3) ∈ ∂R3, σ ∈ I
will remain constant for at least some positive time
interval (say δ > 0). Therefore for t ∈ [tσ3 , tσ3 + δ]

ω̇1 =





≤ 0 σ = 1,
−2ω2ω1 σ = 2,
0 σ = 3.
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which shows that the velocity vector does in fact
point (non strictly) to the inside of R̄3 and conse-
quently R3 is a positively invariant set.
Claim 5. For t ≥ T , ω1(t) ≤ ε2 and ω2(t) converges
exponential to zero as t→∞.
Proof. From claim 4, ω(t) ∈ R3 for all t ≥ tσ3 .
Thus, ω1(t) ≤ ε2. Moreover, there exists a finite
time T ≥ t0 such that for all t ≥ T ω(t) ∈ R3\(R1∪
R2). The proof of this follows mutatis mutandi the
one given for claim 4. Hence, since when ω(t) ∈
R3\(R1∪R2), σ(t) = 3, the closed-loop equation are
given by ẋ = g3(x) which shows that ω2(t) converges
exponential to zero as t→∞.

Stability - Proof omitted.

This concludes the outline of the proof of theorem
4. 2

5. STABILIZATION OF A WHEELED MOBILE
ROBOT OF UNICYCLE-TYPE

This section illustrates an application of the hybrid
control law developed to a mobile robot. Consider
the wheeled mobile robot of the unicycle type,
shown in Figure 4. The vehicle is equipped with two
identical, parallel, and nondeformable rear wheels
which are controlled independently by motors, and
a front free wheel. It is assumed that the plane of
each wheel is perpendicular to the ground and that
the contact between the wheels and the ground is
pure rolling and nonslipping, i.e., the velocity of the
center of mass of the robot v is orthogonal to the
rear wheels axis 3 . It is also assumed that the masses
and inertias of the wheels are negligible and that the
center of mass of the mobile robot is located in the
middle of the axis connecting the rear wheels. Each
rear wheel is powered by a motor which generates
a control torque τi, i = 1, 2. The goal is to park
the wheeled mobile robot at a point with a desired
posture.

y

x

q

Fig. 4. A wheeled mobile robot of unicycle type.

5.1 Model

The kinematics and dynamics of the mobile robot
are modeled by the equations

3 By assuming that the wheels do not slide, a nonholonomic
constraint on the motion of the mobile robot of the form
ẋ sin θ − ẏ cos θ = 0 is imposed.

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω

mv̇ = F

Iω̇ = N

where x and y denote the position of the wheel axis
center, and θ is the robot orientation with respect
to the x-axis. The symbols v and ω are the linear
and angular mobile robot velocities, respectively.
The control inputs are the pushing force F and the
steering torque N , which are related to the wheel
motor torques in the following manner:

F =
1
R

(τ1 + τ2)

N =
L

R
(τ1 − τ2)

where R is the radius of the rear wheels and 2L is the
length of the axis between the two rear wheels. The
symbols m and I denote the mass and the moment
of inertia of the mobile robot, respectively.

5.2 Coordinate Transformation

Consider the state and control transformation de-
fined by

z1 = θ,

z2 = x cos θ + y sin θ,
z3 = x sin θ − y cos θ,

u1 =
N

I
,

u2 =
F

m
− N

I
x3 − ω2x2.

This transformation leads to a representation of the
robot dynamics in the extended power form

z̈1 = u1

z̈2 = u2

ż3 = ż1z2

(9)

It can be easily seen that applying the coordinate
transformation

x1 = z1,

x2 = z2,

x3 = −2z3 + z1z2,

to (9) yields the ENDI system in equation (2).

5.3 Simulation results

The objective was to park the vehicle at position
(x, y) = (0, 0) with heading θ = 0. Several computer
simulations were carried out with the controller
designed in section 3, and applying the coordinate
transformation of section 5.2. The control parame-
ters were chosen to be λ = 1.0, ε1 = 0.001, ε2 = 0.2,
γ1 = 1.0, and γ2 = 2.0. The regions were defined ac-
cording to equations (5). The mass and the moment
of inertia of the mobile robot are unitary. Figure
5 shows the mobile robot trajectory and figure 6
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Fig. 5. Vehicle trajectory.

the time evolution of the states x(t), y(t), and θ(t)
for the initial condition x(0) = 1m, y(0) = 1m,
θ(0) = 0 rad, v(0) = 0m/s, and ω(0) = 0 rad/s.
To better understand the performance of the hybrid
control law, figure 7 displays the time evolution of
the variables ω1(t), ω2(t), and σ(t). From the figure,
one can see that while the state ω(t) is in the region
R1, ω2 grows in order to abandon that region and
ω1 remains constant. Then, σ switches to 2 and
ω1 starts to converge to zero, until it reaches the
boundary ω1 = ε1. At that moment σ switches to 3,
which implies that ω2 converges to the origin.
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Fig. 6. Time evolution of the position variables x(t)
and y(t), and the orientation variable θ(t).
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Fig. 7. Time evolution of the variables ω1(t), ω2(t),
and σ(t).

6. CONCLUSIONS

A hybrid control law was derived for an extended
nonholonomic double integrator (ENDI) that cap-
tures the dynamics of a wheeled robot subject to
force and torque inputs. A simple logic-based hybrid
controller was proposed that yields global stability

and convergence of the closed-loop system to an
arbitrarily small neighborhood of the origin. Con-
vergence and stability of the closed-loop hybrid sys-
tem were analyzed theoretically. An application was
made to the control of a wheeled mobile robot of
the unicycle-type. Simulation results show that the
control objectives were achieved successfully. Future
research issues will aim at generalizing the hybrid
controller structure to a larger class of systems such
as systems in chained form, as well as to systems
subjected to input and rate limitations on the con-
trol signals. Another open problem that remains the
subject of ongoing research efforts is the control
and analysis of mechanical nonholonomic systems
in the presence of noisy measurements and observer
dynamics.
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