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Cooperative Path Following of Multiple
Multirotors over Time-Varying Networks
Venanzio Cichella, Isaac Kaminer, Vladimir Dobrokhodov, Enric Xargay, Ronald Choe,

Naira Hovakimyan, A. Pedro Aguiar, and António M. Pascoal

Abstract—This paper addresses the problem of time-
coordination of a team of cooperating multirotor unmanned
aerial vehicles that exchange information over a supporting
time-varying network. A distributed control law is developed to
ensure that the vehicles meet the desired temporal assignments
of the mission, while flying along predefined collision-free
paths, even in the presence of faulty communication networks,
temporary link losses, and switching topologies. In this paper the
coordination task is solved by reaching consensus on a suitably
defined coordination state. Conditions are derived under which
the coordination errors converge to a neighborhood of zero.
Simulation and flight test results are presented to validatethe
theoretical findings.

Note to Practitioners—This paper presents an approach which
enables a fleet of multirotor UAVs to follow a set of desired
trajectories and coordinate along them, thus satisfying specific
spatial and temporal assignments. The proposed solution can be
employed in applications in which multiple vehicles are tasked
to execute cooperative, collision-free maneuvers, and accomplish
a common goal in a safely manner. An example is sequential
monitoring, in which the UAVs have to visit and monitor a
set of points of interest, while maintaining a desired temporal
separation between each other. In this paper we also simulate
a scenario in which the vehicles, positioned in a square room,
are required to exchange position with each other. It is shown
that the proposed control algorithm not only ensures that the
UAVs arrive at the final destinations at the same time, but also
guarantees safety, i.e. the vehicles avoid collision with each other
at all times.

Index Terms—Time-coordinated path following, consensus al-
gorithms, networked systems.

I. I NTRODUCTION

COOPERATION among multiple unmanned vehicles is
an extremely challenging topic from a theoretical and

practical standpoint, with far reaching implications in sci-
entific and commercial mission scenarios. For this reason,
in recent years the topic has been the subject of consid-
erable research and development effort, especially in terms
of control and communication technologies. Relevant work
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Fig. 1. Two quadrotors following two trajectories of different lengths while
coordinating along thex-axis. A video of the flight test is available at
https://www.youtube.com/watch?v=izXmgetsBYw.

includes spacecraft formation flying [1]–[3], UAV control [4],
[5], coordinated control of land robots [6]–[8], and control of
multiple autonomous underwater vehicles [9], [10]. Research
on cooperative flight of multirotor teams is particularly ex-
tensive (see [2], [3], [11]–[16] and references therein). In this
context, the literature is mainly divided into two categories:
centralizedand decentralizedcooperative control. In the first
case, each vehicle is driven along its own predefined time-
dependent trajectory, provided by a central unit (controller).
In the latter, each UAV runs its own guidance, navigation,
and control algorithms, and is thus able to autonomously react
to the behavior of other vehicles and/or unforeseen events to
safely reach a mutual goal [15]–[20]. In the context of small
multirotor UAVs (often featuring CPUs with relatively small
capabilities) ahybrid (mix of centralized and decentralized)
control can be applied to significantly reduce the exchange of
information between the central controller and the UAVs.

However, performance of decentralized and hybrid coopera-
tive controllers depends on the ability of the fleet to exchange
information in a timely and reliable manner. Therefore, the
quality of service of the supporting communication network
plays a crucial role. As pointed out in [21], [22], in many
scenarios the flow of information among vehicles may be
severely restricted, either for security reasons or because of
tight bandwidth limitations. As a consequence, no vehicle may
be able to communicate with the entire fleet, and the amount
of information that can be exchanged may be limited.

Motivated by previous results obtained by the same authors
[23], this paper addresses the problem of coordinating a fleet of
multirotor UAVs in the presence of communication constraints.
In particular, the cooperative missions considered require that
each vehicle follow a feasible collision-free path, and that
all vehicles arrive at their respective final destinations at the
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same time, or at different times so as to meet a desired
inter-vehicle schedule. A simple example of coordination
between two quadrotors is shown in Figure1, where the
vehicles are required to follow two paths of different lengths
while coordinating along thex-axis. In this paper we aim at
providing a solution which —differently from other works in
the literature [2], [3], [8], [15], [16]— tackles the problem of
decentralized cooperative control with time-varying commu-
nication networks through a Lyapunov-based approach, thus
providing rigorous performance bounds as a function of the
quality of service of the communication network. Moreover,
we address the problem of non-ideal tracking performance of
the UAVs, by showing that the time-coordination guarantees
are retained even when the UAV does not converge –but
remains close– to the desired position.

The present paper departs from previous results obtained
by the research group in cooperative path-following control
in a fundamental way. In [23] the authors presented path-
following1 and time-coordination algorithms that enable a
fleet of fixed-wing UAVs to follow predefined spatial paths
and synchronize along them. One of the main benefits of
this framework lies in the fact that the speed of the ve-
hicles can be adjusted online to synchronize the vehicles,
as opposed to the coordinated trajectory-tracking approach
where the coordination task is solved offline, and thus the
control algorithm cannot adapt to external disturbances or
vehicles’ tracking errors. In [23], the path-following controller
is designed so as to align the velocity vector of the UAV with
the local tangent vector of the desired path, and it relies on
the assumption that the speed of the vehicle is lower bounded
by a positive constant [23, Equation (9)]. On the other hand,
time-coordination is achieved by varying the speed of the
vehicles involved in the mission. One of the key steps in
the approach proposed in [23] lies in the design of the path-
following solution (see [23, Section IV]), which significantly
reduces the complexity of the problem at hand by reducing
the coordination dynamics ton simple integrators, wheren is
the number of UAVs. However, while [23] offers an appealing
solution for the cooperative control of fixed-wing UAVs, it
cannot be employed when dealing with unmanned vehicles
that allow the existence of zero velocity vectors (e.g. UAVs
who can hover, such as multirotors). This limitation motivated
us to reformulate the coordination problem in a different way.
The goal of this paper is to provide a new solution to the
time-coordination problem which is more general, and can be
applied to a broader set of vehicles with different dynamics. In
the approach proposed here, thepath-followingand thetime-
coordinationproblems are decoupled. At the path-following
level, we assume that a control law capable of steering a
multirotor along its assigned path is given. At the time-
coordination level, the synchronization problem is solvedby
adjusting a new set of suitably defined coordination variables,

1Path-following: the underlying assumption in the path-following approach
is that the path-following controller enables the vehicle to follow a geometric
path, independently of the temporal assignments of the mission. This approach
is thus in contrast to trajectory-tracking control, where the objective is to
follow a predefined trajectory with a given timing law [24]. Therefore, in
path-following control one can exploit the progression of the desired reference
along the given path to achieve other objectives.
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Fig. 2. Cooperative Path-Following of Multiple Multirotors over Time-
Varying Networks. General Framework. Control Blocks and Interaction Be-
tween Them.

thus achieving vehicles’ coordination. It is shown that the
solution to the time-coordination problem exhibits guaranteed
performance in the presence of time-varying communication
networks, that arise due to temporary loss of communication
links and switching communication topologies.

This paper is organized as follows: in SectionII we in-
troduce the general framework adopted; in SectionIII we
describe the time-coordination problem by giving a suitable
set of coordination variables and a set of assumptions that
the communication network must satisfy; in SectionIV we
formulate the main results of this paper; simulation results are
discussed in SectionV, while flight test results are shown in
SectionVI; finally, in SectionVII the main conclusions are
presented.

II. GENERAL FRAMEWORK

In this section, a general framework for cooperative path-
following control of multirotors is introduced. The general
framework builds on the approach to multi-vehicle cooperative
control presented in previous work [25].

Given a multi-vehicle cooperative mission, atrajectory-
generationalgorithm produces a set of feasible spatial paths
in 3D space together with a set of feasible speed profiles. A
path-followingcontroller allows each vehicle to converge to
and follow its assigned path with the desired speed profile.
A time-coordinationcontrol algorithm adjusts (indirectly) the
progression of each vehicle along the path in order to achieve
inter-vehicle coordination. Figure2 presents the architecture.
As mentioned earlier, this paper focuses on the problem of
time-coordination. However, for the clarity of presentation, in
this section we briefly describe thetrajectory-generationand
the path-followingproblems. For further details, the reader is
referred to [26]–[28], where the authors tackle the trajectory-
generation and path-following problems.

A. Trajectory Generation

At the trajectory-generation level, the objective is to plan a
set of desired collision-free trajectories, which must be tracked
by the vehicles. The algorithm can be summarized in two main
steps:
a) first, atrajectory-generationalgorithm produces a set of fea-
sible geometric paths together with desired speed profiles.The
problem at hand is to generate a set ofn 3D time-trajectories
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that together minimize a given cost function (e.g. overall
energy spent or time to maneuver), do not violate dynamic
constraints of the vehicles, ensure that the vehicles maintain a
predefined spatial clearance, and satisfy pre-specified mission-
specific constraints. Given a cooperative mission of interest
involving n vehicles, the problem of trajectory-generation can
be formally stated as follows:

Problem 1 (Trajectory-Generation Problem):Find a set of
n 3D time-trajectoriesxd,i : [0, t

∗
d,i] → R

3 , i ∈ {1 , . . . , n},
conveniently parameterized by a single time-
variabletd ∈ [0, t∗d,i], t

∗
d,i > 0, satisfying:

• dynamic constraints:

0 ≤ vi,min < vdi,min ≤ ||x′
d,i(td)|| ≤ vdi,max < vi,max ,

(1a)

||x′′
d,i(td)|| ≤ adi,max < ai,max ,

(1b)

wherex′
d,i(td) andx′′

d,i(td) are the desired linear speed
and acceleration attd, and vi,min, vi,max and ai,max are
the dynamic constraints of thei-th vehicle (minimum
and maximum speed and maximum absolute value of the
acceleration, respectively);

• simultaneous arrival at predefined destinations:

t∗d,i = t∗d,j = t∗d for i, j = 1, 2, . . . , n ; (2)

• temporal separation between the paths:

min
i,j=1,...,n

i6=j

‖xd,i(td)− xd,j(td)‖2 ≥ E2, ∀td ∈ [0, t∗d]. (3)

�

b) second, given the geometric curvexd,i(td) defined above,
and letting thevirtual time be

γi : R
+ → [0, t∗d] , ∀i = 1 , ... , n , (4)

we express the desired position of thei-th UAV at time t
asxd,i(γi(t)). In this formulation, the virtual timeγi(t) is a
function that maps actual (clock) timet to mission planning
time td. We notice that, ifγ̇i(t) = 1, then the commanded
speed coincides with the speed profile chosen at the stepa)
(i.e. γ̇i = 1 implies that the mission is executed at the desired
pace). On the other hand,γ̇i > 1 (γ̇i < 1) implies a faster
(slower) execution of the mission. As will become clear later
on, we explicitely control the dynamics ofγi(t) (actually its
second derivativëγi(t)) and use them as an extra degree-of-
freedom to achieve time-coordination. Therefore, sinceγ̈i(t) is
governed by some control law (yet to be defined), the dynamic
constraints on the speed and acceleration of the vehicle, as
well as the bounds given in (1a) and (1b) must be considered
in order to derive feasibility limits oṅγi(t) and γ̈i(t). These
limits can be determined by deriving the following expression

‖ẋd,i(t)‖ =

∥

∥

∥

∥

dxd,i(γi)

dγi

dγi
dt

∥

∥

∥

∥

=
∥

∥x′
d,i(td)γ̇i(t)

∥

∥ , (5)

where ẋd,i(t) = d(xd,i(γi(t)))/dt denotes the commanded
speed profile to be tracked by the UAV at timet, while
x′
d,i(td) = dxd,i(γi)/dγi represents the speed profile gen-

erated by the trajectory-generation algorithm [26]. Hence,

‖ẋd,i(t)‖ is limited to the physical speed constraints of the
vehicle:

vi,min ≤ ‖ẋd,i(t)‖ ≤ vi,max .

Using (5), these speed constraints result in the following
inequalities:

γ̇i,min vdi,min ≥ vi,min , (6a)

γ̇i,maxvdi,max ≤ vi,max . (6b)

Equations (6a) and (6b) relate the limits of the desired speed
profile x′

d,i(td) to the limits of γ̇i(t).
Similar limits can be derived for the acceleration profile

ẍd,i(t). In fact, differentiating Equation (5), and imposing the
following upper bound on the required acceleration

‖ẍd,i(t)‖ ≤ ai,max ,

we get similar inequalities as (6) for the acceleration and̈γi(t):

|γ̈i,maxvdi,max+ γ̇2
i,maxadi,max| ≤ ai,max . (7)

Equation (7) relates the limits of the desired speed and
acceleration profilesx′

d,i(td) andx′′
d,i(td) to the limits ofγ̇i(t)

and γ̈i(t).

B. 3D Path Following

In what follows, we briefly describe the path-following
problem and define a set of variables and assumptions which
will be used later in SectionIV. Let I denote an inertial
reference frame, and letxi(t) ∈ R

3 be the position of the
center-of-mass of thei-th multirotor in this inertial frame,
resolved inI. Also, let Bi = {~b1, ~b2, ~b3} denote the body
frame with its origin located at the center of mass of thei-th
multirotor; vector~b3 is the normal to the plane defined by the
centers of the rotors –pointing upwards in non-inverted flight–,
while vectors~b1 and~b2 lie in this plane, with~b1 pointing out
the nose and~b2 completing the right-hand system. Recall that
xd,i(γi(t)) is the desired position of thei-th vehicle at time
t. We define the position error vector as

ex,i = xd,i − xi ∈ R
3 (8)

and the velocity error vector as

ev,i = ẋd,i − ẋi ∈ R
3 . (9)

Additionally, motivated by [29], we define the error

eR̃,i =
1

2

(

R⊤
d,iRi −R⊤

i Rd,i

)∨
, (10)

where (·)∨ : so(3) → R
3 is the vee mapdefined in [29]

mapping the non-zero entries of a skew-symmetric matrix
into a three-dimensional vector;Ri ∈ SO(3) is the rotation
matrix from the body-fixed frameBi to the inertial frameI;
Rd,i ∈ SO(3) represents the desired attitude of thei-th mul-
tirotor with respect to the inertial frame and is defined as
a function of the position and velocity error vectors,ex,i
and ev,i [29]. With the above notation, we define the path-
following generalized error vector

xPF,i =
[

e⊤x,i , e⊤v,i , e⊤
R̃,i

]⊤

∈ R
9 . (11)
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The dynamics of thei-th vehicle’s path-following error vector
can be modeled as

ẋPF,i = fi(xPF,i, ui, γi, γ̇i, γ̈i) , (12)

where fi(·) is a general nonlinear vector map andui(t) is
the path-following control input vector. Finally,γi(t), γ̇i(t)
and γ̈i(t) can be considered as (known) exogenous signals
(as will become clear later,γi(t), γ̇i(t) and γ̈i(t) play a
crucial role in the time-coordination problem, witḧγi(t) being
the coordination control input). With this notation, the path-
following control problem can be defined as follows:

Problem 2 (Path-Following Problem):Assume that a given
i-th multirotor UAV is equipped with a trajectory-generation
algorithm that solves Problem1. Assume that the time deriva-
tives of xd,i(γi(t)) (i.e. the desired reference at timet) are
bounded as follows

0 ≤ vi,min ≤ ||ẋd,i(t)|| ≤ vi,max, ||ẍd,i(t)|| ≤ ai,max, (13)

for all t ≥ 0. The objective is to determine a control law for
ui(t) such that the generalized path-following error vector
xPF,i(t), with the dynamics described in (12), converges to
a neighborhood of zero.
In [28] the authors formulate path-following control laws such
that the path-following error converges exponentially to zero.
Furthermore, it is proven that, in the presence of non-ideal
performance of an onboard inner-loop autopilot, the controller
exhibits uniformly bounded performance. In other words, the
controller ui(t) in [28] implies that there exists a positive
constantc, and for everya ∈ (0, c), there existsρ = ρ(a) > 0
such that

||xPF (0)|| ≤ a =⇒ ||xPF (t)|| ≤ ρ ∀t ≥ 0 , (14)

with xPF = [x⊤
PF,1, . . . , x

⊤
PF,n]

⊤ ∈ R
9n [30]. �

Remark 1: Notice that, in light of the argument made
in Section II-A , the bounds given in (13) are satisfied if
inequalities (6) and (7) hold. The latter inequalities depend on
the dynamic constraints imposed on the generated trajectory
(i.e. vdi,min , vdi,max andadi,max introduced in (1)), as well as
on the dynamics ofγi(t) (recall thatγ̈i(t) will be used later at
the time-coordination level). For this reason, in the Appendix
we show that the control law, which governsγ̈i(t), and its
time integralγ̇i(t), are limited within certain bounds, so that
inequalities (6) and (7) are always satisfied. �

III. T IME-COORDINATION: PROBLEM FORMULATION

We now address the time-coordination problem of a fleet
of n multirotor UAVs. As already mentioned earlier, this
problem will be solved by adjusting –for each vehicle– the
second derivative of the parameterizing variableγi(t). In what
follows, we first define the objective of time-coordination;
second, we formulate a set of assumptions on the support-
ing communication network; finally, we introduce the time-
coordination error states and give a formal statement of the
problem at hand.

A. Definition of the Time-Coordination Objective

Recall from SectionII that the desired position assigned to
the i-th vehicle at timet is given byxd,i(γi(t)), wherexd,i(·)
is the geometric path produced by the trajectory-generation
algorithm, and the path parameterγi(t) is the virtual time
defined in (4). As it will become clear later, the virtual time
and its first time derivative play a crucial role in the time-
coordination problem. In fact, since the desired path assigned
to each vehicle is parameterized byγi(t), we say that if

γi(t)− γj(t) = 0 , ∀i, j ∈ {1, . . . , n} , i 6= j , (15)

then, at timet, all the vehicles are coordinated. Moreover, as
already discussed in SectionII , if

γ̇i(t)− 1 = 0 , ∀i ∈ {1, . . . , n} , (16)

then the desired speed at which the vehicles are required to
converge, is equal to the desired speed profile established at
the trajectory-generation level. Thus, Equations (15) and (16)
capture the objective of vehicle coordination, and a control
law for γ̈i(t) must be formulated to ensure convergence to
this equilibrium.

B. Communication Network: Assumptions

To achieve the time-coordination objective, information
must be exchanged among the vehicles over a supporting
communication network. Using tools from algebraic graph
theory, we can model the information flow as well as the
constraints imposed by the communication topology. The
reader is referred to [31] for key concepts and details on
algebraic graph theory.

Let L(t) ∈ R
n×n be the Laplacian of the graphΓ(t).

Let Qn ∈ R
(n−1)×n be a matrix such thatQn1n = 0 and

Qn(Qn)
⊤ = In−1, with 1n being a vector inRn whose

components are all1.
Remark 2:We notice that a matrixQk satisfyingQk1k = 0

andQk(Qk)
⊤ = Ik−1 can be found recursively as follows:

Qk =

[
√

k−1
k − 1√

k(k−1)
1⊤k−1

0 Qk−1

]

,

with initial condition Q2 = [ 1√
2

− 1√
2 ]. For simplicity, from

now on we letQ , Qn, wheren is the number of vehicles
involved in the cooperative mission. �

Finally, defineL̄(t) , QL(t)Q⊤ ∈ R
(n−1)×(n−1) (it can be

shown thatL̄(t) has the same spectrum as the LaplacianL(t)
without the eigenvalueλ1 = 0 corresponding to the eigen-
vector 1n). Given the above notation, we can formulate the
following assumptions:

Assumption 1:The i-th UAV communicates only with a
neighboring set of vehicles, denoted byNi(t).

Assumption 2:The communication between two UAVs is
bidirectional with no time delays.

Assumption 3:Matrix L̄(t) satisfies the (normalized) per-
sistency of excitation (PE)-like assumption [32]:

1

nT

∫ t+T

t

L̄(τ)dτ ≥ µIn−1 , (17)
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where the parametersT > 0 and µ ∈ (0, 1] represent a
measure of the level of connectivity of the communication
graph. Note thatµ ∈ (0, 1] follows from the fact that||L̄|| ≤ n
[34].

Remark 3:We note that the PE-like condition (17) requires
the communication graphΓ(t) to be connected only in an
integral sense, not pointwise in time. As a matter of fact, the
graph may be disconnected during some interval of time or
may even fail to be connected at all times. In this sense,
it is general enough to capture packet dropouts, loss of
communication, and switching topologies. �

C. Time-Coordination Problem

Let γ(t) = [γ1(t), . . . , γn(t)]
⊤, and define the coordination

error vectors as

ξ(t) = Qγ(t) ∈ R
n−1 , (18)

z(t) = γ̇(t)− 1n ∈ R
n . (19)

From the definition ofQ it follows that, if ξ(t) = 0n−1, then
γi − γj = 0, ∀i, j ∈ {1, . . . , n}. Furthermore, convergence of
z(t) to zero implies that the individual coordination vari-
ablesγi(t) evolve at the desired rate 1.

With the above notation, the time-coordination problem can
now be defined as follows:

Problem 3 (Time-Coordination Problem):Consider a set
of n multirotor UAVs equipped with a trajectory-generation
algorithm that solves Problem1, and a path-following control
law that solves Problem2 for any desired referencexd,i(γi(t))
satisfying (13). Then, the objective of time-coordination is to
design feedback control laws for̈γi(t) for all vehicles such
that the time-coordination error vectorsξ(t) andz(t), defined
in (18) and (19) respectively, converge to a neighborhood of
zero, and such that inequalities (6) and (7) are not violated.�

IV. M AIN RESULT

To solve the time-coordination problem, we let the evolution
of γi(t) be given by

γ̈i = −b(γ̇i − 1)− a
∑

j∈Ni

(γi − γj)− ᾱi(xPF,i) ,

γi(0) = 0 , γ̇i(0) = 1 ,

wherea and b are positive coordination control gains, while
ᾱi(xPF,i) is defined as

ᾱi(xPF,i) =
ẋd,i(t)

⊤ex,i
‖ẋd,i(t)‖+ δ

,

with δ being a positive design parameter. The dynamics of
γ(t) can be written in compact form as

γ̈ = −bz − aLγ − ᾱ(xPF ) , γ(0) = 0n, γ̇(0) = 1n , (20)

where

xPF = [x⊤
PF,1, . . . , x

⊤
PF,n]

⊤ ∈ R
9n ,

ᾱ(xPF ) = [ᾱ1(xPF,1), . . . , ᾱn(xPF,n)]
⊤ ∈ R

n .

Remark 4:The coordination control law given in Equation
(20) comprises of three terms. The contribution given by the

first term (i.e. −bz) allows the UAVs to converge to the
desired speed profile (convergence to the equilibrium given
in Equation (16)). The second term (i.e.−aLγ) ensures that
the desired position of each UAV satisfies the coordination
requirement introduced in Equation (15) (i.e. the UAVs are
synchronized at timet). Finally, the third term (i.e.̄α(xPF ))
depends on the path-following error. By virtue of the path-
following dependent term , if for example one vehicle is away
from the desired position (||ex|| 6= 0 ), then the other vehicles
involved in the cooperative mission adjust their speeds (slow
down or speed up) to maintain coordination. This point will
become clear in the Simulation Results section.
The following theorem summarizes the main result of this
paper.

Theorem 1:Consider a set ofn multirotor UAVs equipped
with a trajectory-generation algorithm that solves Problem
1. Assume there exists a path-following controller which
guarantees that the path-following error satisfies the bound
given in (14) for any desired referencexd,i(γi(t)) satisfying
(13). Assume that the vehicles communicate over a network
satisfying the PE-like assumption (17), and let the time-
coordination error vectorxTC = [ξ⊤, z⊤]⊤ at time t = 0
and the path-following performance boundρ introduced in
Problem2, satisfy

max (||xTC(0)||, ρ) ≤ min

(

1− vi,min

vd,min

(κ1 + κ2)
,

vi,max

vd,max
− 1

(κ1 + κ2)
,

√

ai,max

ad,max
− 1

(κ1 + κ2)
,
ai,max − γ̇2

i,maxad,max

vd,max(bκ1 + bκ2 + 1)



 .

(21)

where κ1 and κ2 are some positive constants defined in
Equations (34) and (35). Finally, let γ̈(t) be governed by
(20). Then, there exist control gainsa, b, and δ such that
the time-coordination is uniformly bounded. In particular, the
time-coordination error satisfies

||xTC(t)|| ≤ κ1||xTC(0)||e−λTCt+κ2 sup
t≥0

(||xPF (t)||) , (22)

with

λTC < γλ , γλ ≥ γ̄λ ,
a

b

nµ

T (1 + a
bnT )

2
. (23)

Remark 5:Notice that the maximum convergence rateγ̄λ
is obtained when the control gainsa andb satisfy

a

b
=

1

nT
. (24)

Substituting (24) in (23), one obtains

max
a,b>0

(γ̄λ) =
µ

4T 2
,

i.e. the rate of convergence depends on the quality of the
network only.

Corollary 1: If the path-following error converges exponen-
tially fast to zero with some positive rate of convergenceλPF :

||xPF (t)|| ≤ kPF ||xPF (0)||e−λPF t ,
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then the time-coordination error converges to zero as follows:

||xTC(t)|| ≤ κ̄1||xTC(0)||e−λTC t+κ̄2||xPF (0)||e−
λPF +λTC

2 t ,
(25)

with positive constants̄κ1 andκ̄2 defined in Equation (41). �
Proof. The proofs of Theorem1 and Corollary1 are given in
the Appendix. �

Remark 6:We notice that if the desired trajectoriesxd,i(·)
satisfy the temporal separation requirement, i.e. Equation (3),
then the result given in Theorem1 ensures inter-vehicle
collision avoidance. In fact, upon knowledge of(i) the quality
of service of the communication network (i.e.µ and T in
Equation (17)) and (ii) the performance of the given path-
following controller (see Equation (14)), one can chooseE in
Equation (3) large enough so as to guarantee that the vehicles
will never collide throughout the mission.

V. SIMULATION RESULTS

In this section we present simulation results for a scenario
in which eight quadrotor UAVs, initially positioned along the
perimeter of a40m×40m square room, have to exchange their
positions while maintaining constant equal height, and arrive
at their final destinations at the same time. Before the mission
starts, a set of trajectories are generated which ensure temporal
deconfliction (E = 1m) of the UAVs throughout the mission.
Figure3 depicts the 2D projection of these trajectories (solid
lines).

In the remainder of this section, we analyze and validate
the theoretical findings through three different simulations.
In the first simulation we consider the case of ideal all-to-
all communication between the vehicles, and assume that the
UAVs’ positions coincide with their desired positions for all
time, i.e. ||xPF (t)|| = 0 , ∀t ≥ 0. In the second simulation,
we replicate the experiment with non-ideal communication.In
the third simulation, we add a bounded path-following error.
In all the experiments, the control gains are chosen to be
a = 1.5 , b = 3.6 , δ = 3. To illustrate the convergence
properties of the solution, the virtual times are initialized
as follows: γ1(0) = 2 , γ4(0) = 3 , γ6(0) = 1 , γ8(0) =
1.5 , γ2(0) = γ3(0) = γ5(0) = γ7(0) = 0.

A. Ideal Communication - Ideal Path Following

In this simulation, all the vehicles communicate with each
other for all time, i.e.

lij =

{

7 for i = j

−1 for i 6= j ,

where lij(t)
′s are the entries of the Laplacian matrixL(t).

Moroever, we let||xPF (t)|| = 0 , ∀t ≥ 0, i.e. the path-
following algorithm exhibits ideal performance.

At time t = 0 the vehicles start the mission and follow the
predefined trajectories until they reach their final destination,
at time t ≈ 8.8s. In Figure 3, the solid lines indicate
the trajectories of each UAV, while ICi and FCi indicate,
respectively, initial and final position of UAVi.

In Figure 4 the coordination variables are illustrated. At
the beginning, vehicles1, 4, 6 and8 speed up, while vehicles

2, 3, 5 and7 slow down (see Figure4b and4c) until, at time
t ≈ 2s, coordination is achieved. Figure4ashows convergence
of the virtual times to the same increasing value.

B. Non-ideal Communication - Ideal Path-Following

The same experiment is repeated, but in this case, to simu-
late switching topologies, we let UAVi and UAVj communi-
cate with each other at timet ≥ 0 only if ||xi(t)− xj(t)|| ≤
20m . Figure5 depicts an estimate of the quality of service of
the network computed as

µ̂(t) = λmin

(

1

n

1

T

∫ t

t−T

L̄(τ)dτ

)

, t ≥ T ,

with n = 8 and T = 1s. As can be seen in the figure, the
estimate of the quality of service is highest aroundt ≈ 4 −
5s, when the vehicles are positioned around the center of the
room, thus all close to each other. On the other hand, the
value is smaller at the begin and end of the mission, when
the vehicles communicate with only a few neighbors. Figure
6 depicts the performance of the time-coordination algorithm.
It can be noted that the time-coordination variables converge
to the desired values at timet ≈ 4s, slower than the case with
ideal communication.

C. Non-ideal Communication - Non-ideal Path-Following

In this last experiment, to simulate bounded path-following
error, we implemented the path-following control law de-
scribed in [28], and added bounded disturbances at the control
input (angular velocities and total thrust). In [28] the authors
show that, in the presence of disturbances at the input, the
path-following error is ultimately bounded ( [28] solves Prob-
lem 2). The communication topology is the one used in the
previous experiment (SubsectionV-B).

The vehicles start, att = 0, with an initial displacement
from the desired positions, and track the desired paths. In
Figure 3 the dashed lines indicate the actual trajectories of
the UAVs. Figure 7 shows the time history of the time-
coordination variables. Figure8 depicts the time history of
the norm of the time-coordination error state||xTC(t)|| (green
line), and compares it with the two cases described above (blue
and red lines). As expected, the coordination error converges
to a neighborhood of the origin, and remains bounded.

Finally, Figure9 shows the distance between the vehicles
throughout the mission, which is

||xi(t)− xj(t)|| , (26)

in three different cases:(i) blue line - ideal path-following
performance;(ii) green line - the path-following error is
introduced, and the time-coordination control law given in
(20) is employed;(iii) red line - the path-following error
is introduced, and the coordination law employed does not
depend on the path-following error (i.e. Equation (20) without
the third termᾱ(xPF )). While in case(i) temporal separation
is guaranteed at the trajectory generation level, when the UAVs
are away from the desired position, the time-coordination
algorithm must take into account the path-following error in
order to ensure that the actual UAVs’ positions are separated.



7

−10 0 10 20 30
−20

−15

−10

−5

0

5

10

15

20

x [m]

y 
[m

]
UAV1
UAV2
UAV3
UAV4
UAV5
UAV6
UAV7
UAV8

IC1

FC3 FC5

IC7

FC2

FC6

FC8

FC7

IC4

FC1

IC5

IC6

IC8

IC2IC3 FC4

Fig. 3. Simulation results with eight quadrotor UAVs - The solid lines indicate
the paths tracked by the UAVs assuming ideal performance of the path-
following controller; the dashed lines show the paths tracked by the UAVs
when the path-following controller exhibits non ideal performance.

As it was pointed out in Remark4, the third term in Equation
(20) enables the UAVs to maintain coordination even in the
presence of path-following errors, which in turns imply that
a minimum separation between the vehicles is guaranteed. As
it can be seen from Figure7b and7c, since UAV8 is initially
displaced by a considerable distance from its desired position,
when the mission starts the virtual time associated with UAV8
(i.e.γ8) decelerates significantly (γ̇8 < 1 andγ̈8 < 0) by virtue
of ᾱ(xPF ), to allow the vehicle to approach the desired point
faster. As a consequence, alsoγ1 decelerates to coordinate
with γ8, thus allowing the actual vehicles to synchronize with
each other along the paths and maintain a desired separation.
In absence of the term̄α(xPF ), the virtual times associated
with the vehicles would keep coordinating with each other
without accounting for the actual position of the UAVs, thus
leading to potential collisions (red line in Figure9).

VI. FLIGHT TEST RESULTS

In this section, we present flight test results2 of two
AR.Drone quadrotors that are tasked to follow circular, planar
paths of radius2 m at a constant speed, while synchronizing
both their phase-on-orbit and their headings. The trajectory-
generation, path-following, and time-coordination control al-
gorithms run in MATLAB\Simulink. Path-following com-
mands are sent to the UAVs at a frequency rate of approx-
imately 30Hz. Position and velocity feedback is provided by
a Vicon Motion Capture System at a rate of approximately
100Hz. The coordination variables are exchanged among the
UAVs at a data transfer rate of100Hz (imposed via Simulink).

We refer to the path-following algorithm described in [27]
and the time-coordination control law proposed in SectionIV.
The control gains used in this flight tests area = 3 , b =
5 , δ = 5. Figure10 presents the results of this experiment. In
particular, Figure10ashows the desired orbit (black) and the
actual trajectories of the two quadrotors (blue and red). Since
the two UAVs are tasked to follow the same orbit, a phase-on-
orbit separation is required between the two vehicles to avoid

2For a thorough description of the setup used in these flight tests, as
well as guidelines and implementation details, the reader is referred to
http://naira.mechse.illinois.edu/quadrotor-uavs/
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Fig. 4. Time-coordination in the case of ideal communication and ideal path-
following performance. (a) Convergence ofγi’s to the same increasing value.
(b) Convergence oḟγi ’s to 1. (c) Time Coordination Control Input.
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)

, t ≥ T .

collision. This separation is specified online from the ground
station, and it varies according to mission requirements. The
desired phase-on-orbit separation, along with the actual phase
separation between the two UAVs, is shown in Figure10b.
In this particular scenario, the UAVs are initially required to
keep a 180-deg phase separation; at approximatelyt = 94 s,
the required phase separation goes down to90 deg; the two
quadrotors keep this configuration for about14 s, when the
required phase separation goes back to180 deg; finally, in
the last part of the experiment, the UAVs are required to
keep a phase separation of270 deg. Figure 10c shows the
convergence oḟγ1 and γ̇2 to the desired rate 1, as well as the
convergence of the coordination errors to a neighborhood of

http://naira.mechse.illinois.edu/quadrotor-uavs/


8

Time [s]
0 1 2 3 4 5 6 7 8 9

γ
i

0

10

20

30

40

50

(a) Virtual time.

Time [s]
0 1 2 3 4 5 6 7 8 9

γ̇
i

0.6

0.8

1

1.2

1.4

(b) Derivative of virtual time.

Time [s]
0 1 2 3 4 5 6 7 8 9

γ̈
i

-2

-1

0

1

2

(c) Control input.

Fig. 6. Time-coordination in the case of non-ideal communication and ideal
path-following performance. (a) Convergence ofγi’s to the same increasing
value. (b) Convergence oḟγi ’s to 1. (c) Time Coordination Control Input.

zero.3

VII. C ONCLUSIONS

This paper addressed the problem of time coordination for
a fleet of multirotor UAVs along predefined spatial paths
according to mission requirements. With the solution pro-
posed, cooperative control is achieved in the presence of time-
varying communication networks, as well as stringent tempo-
ral constraints, such as simultaneous arrival at the desired final
locations. The proposed solution solves the time-coordination
problem under the assumption that the trajectory-generation
and the path-following algorithms —meeting certain stability
conditions— are given. The coordination task is accomplished
by adjusting an appropriately defined coordination variable.
The convergence of the time-coordination error vector to
a neighborhood of zero is demonstrated using Lyapunov
analysis. Simulations and flight test results were presented
to validate the developed algorithms. Future works by the
research group will address directed communication graphs,
time-delayed communication, as well as the development of

3Video available at http://naira.mechse.illinois.edu/quadrotor-uavs/. At
http://www.youtube.com/watch?v=OBtLCf1Lfiw, a video of two quadrotors
coordinating along with a tango song is presented. In this example, the sound
wave of the song plays the role of avirtual vehiclewith which the quadrotors
are required to coordinate (absolute temporal constraints). Further details
regarding this experiment can be found in the description ofthe video.
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(b) Derivative of virtual time.
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Fig. 7. Time-coordination in the case of non-ideal communication and
non-ideal path-following performance. (a) Convergence ofγi ’s to the same
increasing value. (b) Convergence ofγ̇i’s to 1. (c) Time Coordination Control
Input.
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Fig. 8. Time-coordination error vector.

collision-avoidance algorithms to ensure safety even in the
presence of static and dynamic pop-up obstacles..

APPENDIX A
PROOF OFTHEOREM 1

Consider the following system

φ̇(t) = −
a

b
L̄φ(t) , (27)

where the matrixL̄ satisfies the (PE)-like condition in (17).
Then, using the result reported in [35, Lemma 5], we con-
clude that the system in (27) is GUES (globally uniformly
exponentially stable), and that the following bound holds:

||φ(t)|| ≤ kλ||φ(0)||e
−γλt

http://naira.mechse.illinois.edu/quadrotor-uavs/
http://www.youtube.com/watch?v=OBtLCf1Lfiw
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Fig. 10. Flight test results with two AR.Drone UAVs.

with kλ = 1 and γλ ≥ γ̄λ = a
b

nµ
T (1+ a

b nT )2 . This, together
with [35, Lemma 1] or a similar argument as the one in
[30, Theorem 4.14], implies that there exists a continuously
differentiable, symmetric, positive definite matrixP (t) that
satisfies the inequalities

0 < c̄1I ,
c̄3

2n
I ≤ P (t) ≤

c̄4

2γλ

I , c̄2I

Ṗ −
a

b
L̄P −

a

b
PL̄ ≤ −c̄3I .

(28)

Next, introducing the vector

χ(t) = bξ(t) + Qz(t) ,

the time-coordination states can be redefined asx̄TC =
[χ⊤, z⊤]⊤, with dynamics

{

χ̇ = − a
b L̄χ + a

b QLz − Qᾱ(xPF )

ż = −(bI − a
b L)z − a

b LQ⊤χ − ᾱ(xPF ) .
(29)

Consider the following Lyapunov candidate function

V = χ⊤Pχ +
β1

2
||z||2 = x̄⊤

TCWx̄TC , (30)

whereβ1 > 0, P was introduced above, and

W =

[

P 0

0
β1
2

]

.

Using (29), the time derivative of (30) can be computed to
yield

V̇ = χ⊤P

(

−
a

b
L̄χ +

a

b
QLz − QᾱPF

)

+

+

(

−
a

b
χ⊤L̄+

a

b
z⊤LQ⊤ − ᾱ⊤

PFQ⊤
)

Pχ+

+ χ⊤Ṗχ + β1z
⊤

(

−

(

bI −
a

b
L

)

z −
a

b
LQ⊤χ − ᾱPF

)

,

which leads to

V̇ ≤ χ⊤
(

Ṗ −
a

b
PL̄ −

a

b
L̄P

)

χ − β1z
⊤

(

bI −
a

b
L

)

z

+ 2
a

b
n||P ||||χ||||z||+ 2||P ||||χ||||ᾱPF ||

+ β1
a

b
n||z||||χ||+ β1||z||||ᾱPF || ,

where we used the fact that||L̄|| ≤ n [34, Corollary 13.1.4].
Using (28), and after straightforward computations, we obtain:

V̇ ≤ − c̄3||χ||
2 − β1

(

b −
a

b
n

)

||z||2 +

(

2
a

b
nc̄2 + β1

a

b
n

)

||z||||χ||+

+ 2 (2c̄2||χ||+ β1||z||)
vmax

vmin + δ
||xPF || ,

wherevmax = maxi{vi,max} , vmin = mini{vi,min}.
Finally, using c̄2 = c̄4

2γλ
, letting c̄4 = c̄3, and choosing

δ > vmax − vmin, we get

V̇ ≤ − c̄3||χ||
2
− β1

(

b −
a

b
n

)

||z||
2
+

(

a

b

nc̄3

γ̄λ

+ β1
a

b
n

)

||z||||χ||+

+ 2

(

c̄3

γ̄λ

+ β1

)

vmax

vmin + δ
||xPF || ,

that can be written in matrix form as

V̇ ≤ −x̄
⊤
TCMx̄TC + 2

(

c̄3

γ̄λ

+ β1

)

||x̄TC ||||xPF || ,

with

M =





c̄3 −
(

a
b

nc̄3
γ̄λ

+ β1
a
b n

)

−
(

a
b

nc̄3
γ̄λ

+ β1
a
b n

)

β1

(

b − a
b n

)



 .

Next, we note that lettingλTC be some variable that satisfies
λTC < γλ, we can chooseb large enough so that the following
matrix inequality holds:

M − 2λTCW ≥




c̄3 −
c̄3λTC

γλ
−

(

a
b

nc̄3
γ̄λ

+ β1
a
b n

)

−
(

a
b

nc̄3
γ̄λ

+ β1
a
b n

)

β1

(

b − a
b n

)

− β1λTC



 ≥ 0 .
(31)

Thus, the derivative of the Lyapunov function is bounded as
follows

V̇ ≤ −2λTCV + 2

(

c̄3

γ̄λ

+ β1

)

||x̄TC ||||xPF || .
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Using [30, Lemma 4.6], one can conclude that the system (29)
is input to state stable, with inputxPF , and the following
bound holds:

||x̄TC(t)|| ≤

√

max (c̄2, β1/2)

min (c̄1, β1/2)
||x̄TC(0)||e−λTCt

+

√

max (c̄2, β1/2)

min (c̄1, β1/2)

c̄3
γ̄λ

+ β1

γ̄λ min (c̄1, β1/2)
sup
t≥0

(||xPF (t)||) .

(32)

Finally, from the definition

x̄TC , SxTC , S =

[

bIn−1 Q
0 In

]

,

we can conclude that

||xTC(t)|| ≤ κ1||xTC(0)||e−λTCt + κ2 sup
t≥0

(||xPF (t)||) , (33)

with

κ1 = ||S−1||

√

max (c̄2, β1/2)

min (c̄1, β1/2)
||S|| , (34)

and

κ2 = ||S−1||

√

max (c̄2, β1/2)

min (c̄1, β1/2)

c̄3
γ̄λ

+ β1

γ̄λ min (c̄1, β1/2)
. (35)

As a last step to complete the proof, we need to demonstrate
that γ̇i and γ̈i ∀i ∈ {1 . . . , n} satisfy the bounds given in (6)
and (7). To this end, notice that

γ̈i ≤ b||z||+ an||ξ|| + ||xPF || .

For simplicity, let b > an. Using the bound in (33), and
recalling the bound on the path-following error in (14), the
above inequality reduces to

γ̈i ≤ (bκ1 + bκ2 + 1)max (||xTC(0)||, ρ) .

Moreover, using the fact that

||z(t)|| ≤ κ1||xTC(0)||e−λTCt + κ2 sup
t≥0

(||xPF (t)||) ,

one can show
γ̇i ≤ 1 + (κ1 + κ2)max (||xTC(0)||, ρ) ,

γ̇i ≥ 1 − (κ1 + κ2)max (||xTC(0)||, ρ) .

Finally, since by assumption inequality (21) holds, then (6)
and (7) are satisfied, and one can show that the bound in (33)
holds∀t ≥ 0.

APPENDIX B
PROOF OFCOROLLARY 1

Assume that the given path-following algorithm satisfies

||xPF (t)|| ≤ kPF ||xPF (0)||e−λPF t . (36)

Now, rewrite inequality (33) as follows:

||xTC(t)|| ≤ κ1||xTC(s)||e−λTC(t−s) + κ2 sup
s≤τ≤t

(||xPF (τ)||) , (37)

wheret ≥ s ≥ 0. Apply (37) with s = t/2 to obtain

||xTC(t)|| ≤ κ1||xTC(t/2)||e−λTC(t/2) + κ2 sup
t/2≤τ≤t

(||xPF (τ)||) . (38)

Apply (37) with s = 0 and t replaced byt/2 to obtain the
estimate ofxTC(t/2) as

||xTC(t/2)|| ≤ κ1||xTC(0)||e−λTC(t/2) + κ2 sup
0≤τ≤t/2

(||xPF (τ)||) . (39)

Combining (38) and (39) we get

||xTC(t)|| ≤ κ1e
−λTCt/2

(

κ1||xTC(0)||e−λTCt/2

+κ2 sup
0≤τ≤t/2

(||xPF (τ)||)

)

+ κ2 sup
t/2≤τ≤t

(||xPF (τ)||) .
(40)

Notice that using (36) we can write

sup
0≤τ≤t/2

(||xPF (τ)||) ≤ kPF ||xPF (0)|| ,

sup
t/2≤τ≤t

(||xPF (τ)||) ≤ kPF ||xPF (0)||e−λPF t/2

Therefore, combining (40) with the previous two inequalities,
and letting

κ̄1 , κ2
1 , κ̄2 , (1 + κ1)κ2kPF , (41)

we get

||xTC(t)|| ≤ κ̄1||xTC(0)||e
−λTCt

+ κ̄2||xPF (0)||e
−λPF +λTC

2
t
,

thus proving Corollary1.
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“Fault-tolerant formation driving mechanism designed forheterogeneous
mavs-ugvs groups,”Journal of Intelligent & Robotic Systems, vol. 73,
no. 1-4, pp. 603–622, 2014.

[4] Y. D. Song, Y. Li, and X. H. Liao, “Orthogonal transformation based
robust adaptive close formation control of multi-UAVs,” inAmerican
Control Conference, vol. 5, Portland, OR, June 2005, pp. 2983–2988.
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