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Abstract—Systems on Lie groups naturally appear as models for
physical systems with full symmetry. We consider the state estimation
problem for such systems where both input and output measurements
are corrupted by unknown disturbances. We provide an explicit formula
for the second-order-optimal nonlinear filter on a general Lie group where
optimality is with respect to a deterministic cost measuring the cumulative
energy in the unknown system disturbances (minimum-energy filtering).
The resulting filter depends on the choice of affine connection which
encodes the nonlinear geometry of the state space. As an example, we
look at attitude estimation, where we are given a second order mechanical
system on the tangent bundle of the special orthogonal group SO(3),
namely the rigid body kinematics together with the Euler equation. When
we choose the symmetric Cartan-Schouten (0)-connection, the resulting
filter has the familiar form of a gradient observer combined with a
perturbed matrix Riccati differential equation that updates the filter gain.
This example demonstrates how to construct a matrix representation of
the abstract general filter formula.

I. INTRODUCTION

Arguably the most prominent approach to state estimation from
disturbed measurements of inputs and outputs is via stochastic system
models, where the disturbances are modelled as stochastic processes
and optimal or sub-optimal solutions are sought that minimize some
measure of expected error. The resulting algorithms range from the
famous Kalman filter and its various nonlinear generalizations such
as the Extended Kalman Filter (EKF) or the Unscented Filter (UF),
to particle filters (PF) and other more specialized approximation
schemes. An alternative approach to state estimation treats the distur-
bances as unknown deterministic signals and seeks to optimize some
measure of size or “badness” of these signals. The most prominent
techniques in the latter domain are H∞-filtering and minimum-
energy filtering, the topic of this paper.

Minimum-energy filtering was first proposed by Mortensen [1]
and further developed by Hijab [2]. It is known that the minimum
energy-filter for linear systems with quadratic cost coincides with the
Kalman-Bucy filter [3]. Krener [4] proved exponential convergence
of minimum-energy estimators for uniformly observable systems in
Rn. Ongoing research in the area is aimed at generalizing minimum-
energy filters to systems whose state evolves on a differentiable
manifold such as a Lie group. Aguiar and Hespanha [5] provided a
minimum-energy estimator for systems with perspective outputs that
can be used for pose estimation, a problem with state space SE(3), the
special Euclidean group. Their approach uses an embedding of SE(3)
in a linear matrix space and is hence not intrinsic with respect to the
geometry of the state space. This means that filter estimates need to
be projected back onto SE(3), potentially resulting in suboptimal
performance of the filter. Coote et al. [6] derived a near-optimal
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minimum-energy filter for a system on the unit circle and provided
an estimate for the distance to optimality, a result generalized by
Zamani et al. to systems on the special orthogonal group SO(3) with
full state measurements [7] or vectorial measurements [8]. In the latter
case, the resulting filter can be interpreted as a geometric correction
to the Multiplicative Extended Kalman Filter (MEKF) and shows
asymptotically optimal performance in simulation [9], [10].

In this paper we provide an explicit formula for a second-order op-
timal minimum-energy filter for systems on general Lie groups with
vectorial outputs. It is an established fact that the exact minimum-
energy filter is typically an infinite dimensional filter and therefore a
truncation of the filter is necessary for practical implementability (the
linear dynamics case with quadratic cost being the exception). The
proposed second-order-optimal minimum-enery filter is a truncation
of the exact minimum-energy filter when third order terms of the as-
sociated value function are neglected: in this sense, it is second order
optimal. Details of this truncation are provided in the derivation of the
filter formula. The resulting filter takes the form of a gradient observer
coupled with a perturbed operator Riccati differential equation that
updates the filter gain. The filter explicitly depends on the choice
of affine connection on the state space which encodes its nonlinear
geometry. In the GAME filter presented in [8], a special case of the
filter derived in this work, the connection is implicitly selected by the
choice of the Riemannian metric employed on SO(3). In this work,
we show that there is no need to have a Riemannian metric on the
group to derive the filter, but it suffices to have an affine connection.
As a by-product, the resulting (modified) Riccati differential equation
lives now in the cotangent space (better, the dual of the Lie algebra)
of the group, rather than in the tangent space as it was in [8].

We provide a worked example, applying the developed theory
to the case of attitude estimation given a second order (dynamic)
system model on the tangent bundle of the special orthogonal group
SO(3) and vectorial measurements. The gain equation specializes
to a perturbed matrix Riccati differential equation in this case. We
choose the usual symmetric Cartan-Schouten (0)-connection and the
Cartan-Schouten (-)-connection on SO(3) for illustration, but differ-
ent choices would be possible, resulting in different gain equations.
To the best of our knowledge, this is the first such filter published
for a (second-order) mechanical system, except for the conference
version of this paper [11].

Besides the numerical results presented in [8] and [10], another
successful application of the Lie group minimum enegy filter pre-
sented in this work is reported in [12]. There, the authors are
interested in obtaining accurate camera motion estimation to be used
as input data for computer vision algorithms and it is concluded
that the second-order optimal minimum energy filter on Lie groups
improves rotational velocity estimation and otherwise is on par with
the state-of-the-art.

This paper is divided in six sections, including this introduction
and the conclusion section. Mathematical preliminaries are given in
Section II. In Section III, we formulate the problem of minimum-
energy filtering for systems on Lie groups. The explicit expression
for the second-order-optimal filter, the filter that agrees up to second
order terms with the optimal minimum-energy filter, and its derivation
are detailed in Section IV. A worked example is discussed in
Section V.



II. NOTATION AND MATHEMATICAL PRELIMINARIES

We begin by establishing the notation used throughout this
paper. The basic notation and methodology is fairly standard within
the differential geometry literature and we have attempted to use
traditional symbols and definitions wherever feasible. We refer the
reader to the books [13], [14] and [15] for a review of differentiable
manifolds and covariant differentiation and to [16], [17] and [18] for
a review of the theory of Lie groups and Lie algebras. Many of these
topics are also covered in the system theory literature, specifically
[19], [20] and [21]. The following symbols will be used frequently:

G a connected Lie group
n the dimension of the group G
g, h elements of G
g the Lie algebra associated with G
X,Y elements of the Lie algebra g
[·, ·] the Lie bracket of g
g∗ the dual of the Lie algebra g
µ an element of g∗

Lg : G→ G left translation Lgh = gh
ThLg the tangent map of Lg at h ∈ G
gX shorthand for TeLg(X) ∈ TgG
〈·, ·〉 duality paring 〈µ,X〉 = µ(X)
V finite dimensional vector space
f : G→ V differentiable map
d f(g) differential of f at g, d f(g) : TgG→ V

identifying Tf(g)V with V
d1, d2, . . . differentials with respect to individual

arguments of a multiple argument map
∇XY covariant derivative

(X and Y are vector fields on G)
ω : g× g→ g connection function associated with ∇
ωX : g→ g ωX(Y ) = ω(X,Y )
ω�
Y : g→ g ω�

Y (X) = ωX(Y )
ω∗X : g∗ → g∗ 〈ω∗X(µ), Y 〉=〈µ, ωX Y 〉
ω∗�µ : g→ g∗ 〈ω∗�µ (X), Y 〉=〈ω∗X(µ), Y 〉=〈µ, ωX Y 〉
ω�∗
Y : g∗ → g∗ 〈ω�∗

Y (µ), X〉=〈µ, ω�
Y X〉=〈µ, ωX Y 〉

T (X,Y ) ∈ g torsion function associated with ω
TX : g→ g partial torsion function TXY = T (X,Y )
Hess f(g) Hessian operator of a twice differentiable

function f : G→ R (or a map f : G→ V )
(φ)W : L(W,U) Exponential functor (·)W applied to a

→ L(W,V ) linear map φ : U → V

Dual and symmetric maps. We will use the canonical identification
of the Lie algebra g with its bidual g∗∗ allowing us to treat the
dual φ∗ : g∗∗ → g∗ of a linear map φ : g → g∗ again as a map
φ∗ : g → g∗. We can hence call φ symmetric (with respect to the
duality pairing) if φ = φ∗. This idea extends to arbitrary linear
maps between a (finite-dimensional) vector space and its dual, for
example the Hessian operator defined below.
Connection function. A left-invariant affine connection ∇ on G is
fully characterized by its bilinear connection function ω : g× g→ g
through the identity ∇gX(gY ) = g ω(X,Y ) [22, Theorem 8.1]. For
further reading on invariant connections on Lie groups, we refer the
interested reader to the notation and definitions subsection in [23,
Section II.A] and references therein.
Swap operator. The connection function ω allows us to introduce
a convenient operator calculus that we will use extensively in the
derivation of our filter. Other than the partial connection functions
ωX , ω�

Y , ω∗X , ω∗�µ , and ω�∗
Y defined in the notation table above,

thinking of the ’swap’ � and ’dual’ ∗ operations as formal operations,
we can close off the calculus with the two additional operators ω∗�∗

and ω�∗�, defined in the obvious way, which turn out to be equal.
This yields identities like ω∗�∗� = ω�∗. We will use this latter
identity at one point in the filter derivation.
Hessian operator. Given a twice differentiable function f : G →
R we can define the Hessian operator Hess f(g) : TgG →
T ∗gG at a point g ∈ G by Hess f(g)(gX)(gY ) =
d
(
d f(g)(gY )

)
(gX) − d f(g)

(
∇gX(gY )

)
for all gX, gY ∈ TgG

[24]. Here, d
(
d f(g)(gY )

)
: TgG → R is shorthand for the differ-

ential of the function g 7→ d f(g)(gY ) at the point g ∈ G.
The dual Hessian operator is also a map

(
Hess f(g)

)∗
: TgG →

T ∗gG since we identify the bidual T ∗∗g G with TgG. Note that the
Hessian operator is not always symmetric (in the sense defined
above). It is, however, symmetric at any critical point of the function
f since d f(g) = 0 causes the second, potentially non-symmetric
term in the definition of the Hessian operator to vanish. This term,
and hence the Hessian operator, is always symmetric if the connection
∇ is symmetric [24].

The concept of a Hessian operator naturally extends to vector-
valued twice differentiable maps f : G → V . The Hessian operator
at a point g ∈ G is then a map Hess f(g) : TgG → L(TgG,V ),
where L(TgG,V ) denotes the set of linear maps from TgG to V .
The Hessian operator is defined component-wise with respect to a
basis in V [24]. It is easy to check that the resulting operator is
independent of the choice of basis.
Exponential functor. Given a linear map φ : U → V and a third
vector space W , the exponential functor (·)W lifts the map φ to the
linear map φW : L(W,U)→ L(W,V ) defined by φW (ξ) = φ ◦ ξ.

III. PROBLEM FORMULATION

The problem of minimum-energy state estimation for systems on
Lie groups is as follows. Consider the deterministic system on a Lie
group G defined by

ġ(t) = g(t)
(
λ(g(t), u(t), t) +Bδ(t)

)
, g(t0) = g0 (1)

with state g(t) ∈ G, input u(t) ∈ Rm a known exogenous signal,
nominal (left-trivialized) dynamics λ : G × Rm × R → g, and
unknown model error δ(t) ∈ Rd. The known map B : Rd → g
is linear and g0 ∈ G, the initial condition at the initial time t0 ∈ R,
is unknown. After a choice of basis for g, the model error space Rd
can be taken to be the Lie algebra g or, alternatively, a vector space
of smaller dimension. This latter case will be illustrated in Section V.

The two main applications that motivate our work are the kinemat-
ics and dynamics of mechanical systems. In the case where just the
kinematics of a mechanical system are considered, the left-trivialized
dynamics are simply the system velocity leading to the classical
nominal left-invariant kinematics ġ = g(u + Bδ) [25], [26]. In this
case the system ‘input’ u is the measured velocity and the model error
δ is best thought of as measurement error associated with inexact
measurement of the physical velocity u+Bδ.

In the case of a (dynamic) mechanical system then G = TC is the
tangent bundle of a smaller Lie-group C that is a representation of
the configuration space of the mechanical system [20], [21]. In this
case the model error δ is an additive term that includes unmodeled
dynamics as well as acceleration measurement error and only applies
to the dynamics that model the evolution of the velocity of the system
and not to the kinematics. This property can be incorporated into (1)
by suitable choice of the linear operator B and the dimension d of the
model error space Rd. Section V provides an example of the second
case while the first case has been considered in a number of prior
works including [8], [10].



The known measurement output, denoted by y ∈ Rp, is related to
the state g through the nominal output map h : G× R→ Rp as

y(t) = h(g(t), t) +Dε(t) (2)

where ε ∈ Rp is the unknown measurement error and D : Rp → Rp
is an invertible linear map.

In the minimum energy filtering approach, both the ‘error’ signals,
δ and ε, are modeled as unknown deterministic functions of time.
Along with the unknown initial condition g0 these three signals are
the unknowns in the filtering problem. Given measurements y(τ)
and inputs u(τ) taken over a period τ ∈ [t0, t] then there are only
certain possible unknown signals (δ(τ), ε(τ), g0) for τ ∈ [t0, t] that
are compatible with (1) and (2). Each triple of compatible unknown
signals corresponds to a separate state trajectory g(τ). The principle
of minimum energy filtering is that the ‘best’ estimate of the state is
the trajectory induced by the set of unknown signals (δ, ε, g0) that
are ‘smallest’ in a specific sense. To quantify the concept of small
it is necessary to introduce a cost functional, typically a measure of
energy in the unknown error signals δ and ε, along with some form
of initial cost (initial “energy”) in g0, leading to the terminology of
minimum energy filtering.

Define two quadratic forms

R : Rd → R, Q : Rp → R (3)

that measure instantaneous energy R(δ(τ)) and Q(ε(τ)) of the error
signals. Let α ≥ 0 be a non-negative scalar and define an incremental
cost l : Rd × Rp × R× R→ R by

l(δ, ε, t, τ) := 1/2 e−α(t−τ)(R(δ) +Q(ε)
)
. (4)

The constant α is the discount rate, the rate at which old information
in the incremental cost is discounted and forgotten. In addition, we
introduce a cost m : G× R× R→ R on the initial condition g0.

m(g0, t, t0) := 1/2 e−α(t−t0)m0(g0), (5)

where m0 : G → R is a bounded smooth function with a unique
global minimum on G. The initial cost m0 can be thought of
as encoding the a-priori information about the state at time t0.
It provides a boundary condition for the Hamilton-Jacobi-Bellman
equation used in the derivation of the minimum energy filter in
Section IV.

The cost functional that we consider is

J(δ, ε, g0; t, t0) := m(g0, t, t0) +

∫ t

t0

l(δ(τ), ε(τ), t, τ)dτ. (6)

Note that J depends on the values of the signals δ and ε on the
whole time interval [t0, t]. In order that the cost functional is well
defined we will assume that all error signals considered are square
integrable.

Consider a time-interval [t0, t] and let ĝ(t) denote the filter
estimate, at the terminal time t, for the minimum energy filter. That
is ĝ(t) := g∗[t0,t](t) is the final value of the state trajectory g∗[t0,t]
that is associated with the signals (δ∗, ε∗, g∗0) that minimize the cost
functional (6) on [t0, t] and are compatible with (1) and (2) for
given measurements y(τ) and inputs u(τ), τ ∈ [t0, t]. Note that this
correspondence of ĝ(t) and g∗[t0,t](t) will only necessarily hold at the
terminal condition, and indeed, in general g∗[t0,t](τ) 6= ĝ(τ) for τ 6= t.
The minimum energy filter can only be posed on the whole interval
[t0, t] since this is the domain of definition of the cost functional.
Nevertheless, it is not necessary to resolve the whole optimization
problem for each new time t since the Hamilton-Jacobi-Bellman
(HJB) equation provides a model for the evolution of the solution
of the filter equation, in terms of the value function associated to the
cost functional, with changing terminal condition. Finding a suitable

solution to the HJB equation is known to be difficult, and indeed
expected to yield an infinite dimensional evolution equation for the
value function. In the remainder of the paper we go on to show how
a second order approximation to the filter equation can be derived by
using Mortensen’s approach to approximating the Taylor expansion
of the value function at the terminal condition of the filter [1]. Taking
a second order approximation of the value function yields what we
term the second-order-optimal minimum-energy filter equation.

In order to write down the filter equation it is necessary to associate
gain operators with the quadratic forms R and Q that appear in
the incremental cost (4). Let R̄ : Rd × Rd → R resp. Q̄ : Rp ×
Rp → R be the (unique) symmetric positive definite bilinear forms
associated with R resp. Q, i.e. R̄(δ, δ) = R(δ) for all δ ∈ Rd and
Q̄(ε, ε) = Q(ε) for all ε ∈ Rp. The duality pairing 〈·, ·〉 can then
be used to uniquely define symmetric positive definite linear maps
R : Rd → (Rd)∗ and Q : Rp → (Rp)∗ from the bilinear forms R̄
and Q̄ by

〈R(X1), X2〉 = R̄(X1, X2), 〈Q(y1), y2〉 = Q̄(y1, y2) (7)

for all X1, X2 ∈ Rd and y1, y2 ∈ Rp, respectively.

IV. THE FILTER AND ITS DERIVATION

This section presents the second-order-optimal filter and it details
how to obtain it, revisiting the optimal estimation problem, its
corresponding optimal Hamiltonian and the associated Hamilton-
Jacobi-Bellman (HJB) equation. We then show how to compute a
second-order Taylor expansion of the value function that provides
the filter equation.

A. The second-order-optimal filter equation

Assume that the error terms δ and ε are square integrable deter-
ministic functions of time and adopt the shorthand notation ht(g) and
λt(g, u) for h(g(t), t) and λ(g(t), u(t), t), respectively. For ease of
presentation, we drop the explicit dependence on time of the input,
output, state, and error signals from our notation. The following
theorem is the main result of this paper.

Theorem 4.1: Consider the system defined by (1) and (2) along
with the energy cost functional (6) with incremental cost (4) and
initial cost (5). The second-order-optimal minimum-energy filter in
the sense descibed in Section III is given by

ĝ−1 ˙̂g = λt(ĝ, u) +K(t) rt(ĝ), ĝ(t0) = ĝ0, (8)

where K(t) : g∗ → g is a time-varying linear map satisfying the
perturbed operator Riccati equation (11) given below,

ĝ0 = arg min
g∈G

m0(g), (9)

and the residual rt(ĝ) ∈ g∗ is given by

rt(ĝ)=TeL
∗
ĝ

[((
D−1)∗◦Q ◦D−1(y − ht(ĝ)

))
◦ dht(ĝ)

]
. (10)

The second-order-optimal symmetric gain operator K(t) : g∗ → g
satisfies the perturbed operator Riccati equation

K̇ = − α ·K +A◦K +K◦A∗ −K◦E◦K +B◦R−1◦B∗

− ωKr ◦K −K◦ ω∗Kr, (11)

with initial condition K(t0) = X−1
0 where the operators X0 : g →

g∗, A(t) : g→ g, and E(t) : g→ g∗ are given by

X0 = TeL
∗
ĝ0◦Hess m0(ĝ0)◦TeLĝ0 , (12)

A(t) = d1 λt(ĝ, u)◦TeLĝ − adλt(ĝ,u) − Tλt(ĝ,u), (13)



and

E(t) = −TeL∗ĝ◦
[((

D−1)∗◦Q◦D−1(y − ht(ĝ)
))TĝG

◦ (14)

Hessht(ĝ)−
(
dht(ĝ)

)∗◦(D−1)∗◦Q◦D−1◦dht(ĝ)
)]
◦TeLĝ,

ω is the connection function and Kr is shorthand notation for
K(t) rt(ĝ). �

Compared to the standard Riccati equation, the gain update equa-
tion (11) contains additional quadratic terms (namely, the two terms
ωKr ◦K and K◦ω∗Kr) that depend on the choice of affine connection
and can generally not be absorbed into the standard quadratic term
K◦E◦K. Moreover, the coefficient A(t) of the linear term contains
an additional dependence on the torsion. A coordinate version of
equation (11) can be obtained by choosing bases for g, Rd, and
Rp. We provide a worked example in Section V where we obtain
a perturbed matrix Riccati differential equation for the filter gain. In
the remaining part of this section, we prove Theorem 4.1.

B. The optimal estimation problem

The minimum-energy estimation problem stated in Section III is to
find the state-control trajectory pair (g∗[t0,t](τ), δ∗[t0,t](τ)), τ ∈ [t0, t],
that solves

min
(g(·),δ(·))

m(g(t0), t, t0) +∫ t

t0

l
(
δ(τ), D−1(y(τ)− h(g(τ), τ)

)
, t, τ

)
dτ

(15)

subject to the dynamic constraint

ġ(t) = g(t)
(
λ(g(t), u(t), t) +Bδ(t)

)
(16)

with free initial and final conditions. Here, u(τ) and y(τ) are known
for τ ∈ [t0, t], and we have substituted (2) into (6) to obtain (15).

Note how the ‘control’ input in the above optimal control problem
is the model error δ while the applied input u is simply a known
function of time. As we show in the following, the above rewriting
of the minimum-energy estimation problem allows one to easily
compute the associated optimal Hamiltonian, which is then used
to obtain the explicit expression for the Hamilton-Jacobi-Bellman
(HJB) equation. A suitable approximation of the solution to the HJB
equation will then lead to the second-order-optimal filter presented
at the beginning of this section.

We denote by V (g, t) the minimum energy value among all
trajectories of (16) within the interval [t0, t] that reach the state g ∈ G
at time t. The optimal estimate ĝ(t) is therefore equal to

ĝ(t) = g∗[t0,t](t) = arg min
g∈G

V (g, t),

for t ∈ [t0,∞) and V (g, t0) = m(g, t0, t0). The key observation in
[1] is that if we assume V (g, t) to be differentiable in a neighborhood
of the optimal estimate ĝ(t) then, as V (g, t) attains its minimum at
ĝ(t), we must have

d1 V (ĝ(t), t) ≡ 0 (17)

for t ≥ t0. Assuming that V (g, t) is smooth, the above expression
can be further differentiated with respect to time obtaining a set of
necessary conditions (actually, a set of differential equations) that
fully characterize the optimal filter. Unfortunately, such a program
has the drawback that we obtain an infinite number of conditions
and therefore, for practical application, the optimal filter has to be
truncated after a certain order, obtaining a suboptimal filter. However,
such filters have shown promising performance for systems on SO(3),
outperforming established nonlinear filters such as the Multiplicative
Extended Kalman Filter (MEKF) [8], see also [9], [10].

The simplest optimal filter is that obtained by truncating the series
expansion at the second order. This requires only two differentiations
of (17). It is worth recalling that for linear dynamics and quadratic
cost, the minimum-energy filter obtained in this way is actually
optimal and its equations are equivalent to the Kalman-Bucy filter
[3].

C. The optimal Hamiltonian

Aiming for the Hamilton-Jacobi-Bellman (HJB) equation associ-
ated with the optimal estimation problem (15)-(16), in this subsection
we derive the optimal Hamiltonian. Special care has to be taken in
obtaining such a function because the system dynamics evolves on a
smooth manifold and not, as would be more common, on the vector
space Rn. We refer to [19] for a review of optimal control theory on
smooth manifolds (and, in particular, on Lie groups).

Given the estimator vector field (16) and incremental cost (4), the
associated (time-varying) Hamiltonian H̃ : T ∗G × Rd × R → R is
given by

H̃(p, δ, t) :=
1

2
e−α(t−t0) (R(δ) +Q(D−1(y(t)− h(g, t)))

)
+
〈
p,−g

(
λ(g, u(t), t) +Bδ

)〉
, (18)

where g is the base point of p ∈ T ∗gG ⊂ T ∗G. The optimal filtering
problem (15)-(16) can be thought of as a standard optimal control
problem which is solved backward in time. This justifies the presence
of the minus sign in the pairing between the state dynamics and the
Lagrange multiplier p on the right hand side of (18). In this way,
one interprets the function m in (15) as the terminal cost and the
minimum energy V (g, t) as the cost-to-go.

As is typical for optimal control problems defined on Lie
groups [19], the cotangent vector p ∈ T ∗gG can be identified via
left translation with the element µ ∈ g∗, defined as µ = TeL

∗
g(p).

Using (g, µ) ∈ G× g∗ in place of p ∈ T ∗G in (18), one obtains the
left-trivialized Hamiltonian H̃− : G× g∗ × Rd × R→ R defined as

H̃−(g, µ, δ, t) =
1

2
e−α(t−t0)(R(δ) +

Q(D−1(y(t)− h(g, t)))
)
−
〈
µ, λ(g, u(t), t) +Bδ

〉
.

(19)

We are now ready to compute the left-trivialized optimal Hamil-
tonian that characterizes the optimal control problem (15)-(16).

Proposition 4.2: The left-trivialized optimal Hamiltonian
H− : G × g∗ × R → R associated with the optimal control
problem (15)-(16) is given by

H−(g, µ, t) = −1

2
eα(t−t0)〈µ,B ◦R−1 ◦B∗(µ)

〉
(20)

+
1

2
e−α(t−t0)Q

(
D−1(y(t)− h(g, t))

)
−
〈
µ, λ(g, u(t), t)

〉
.

Proof: The vector field g(λ(g, u(t), t) + Bδ) given in (16) is
linear in δ, while the incremental cost l(δ, ε, t, τ) given in (4) is
quadratic in δ. It is straightforward to see that the unique minimum
δopt(g, µ, t) of the left-trivialized Hamiltonian (19) with respect to δ
is attained at

arg min
δ

H̃−(g, µ, δ, t) = eα(t−t0) ·R−1 ◦B∗(µ). (21)

Substituting δopt into the left-trivialized Hamiltonian (19), the result
follows.

The reason to study left-trivialized versions of the Hamiltonian
and subsequently the Hamilton-Jacobi-Bellman equation will become
clear in the next two sections where we use it to derive the second-
order time evolution of the filter.



D. The left-trivialized HJB equation and the structure of the optimal
filter

The Hamilton-Jacobi-Bellman equation associated with the optimal
control problem (15)-(16) is given by

∂

∂t
V (g, t)−H(d1 V (g, t), t) = 0 (22)

with initial condition V (g, t0) = m(g, t0, t0). Here, H : T ∗G×R→
R is the optimal Hamiltonian.

The presence of the minus sign in (22) is justified, as mentioned
in the previous subsection, by the fact that the energy V (g, t) should
be thought of as the cost-to-go associated with the minimization of
the cost functional in the interval [t0, t] while evolving the dynamics
backwards in time, starting with g as final condition.

Equation (22) can be written in terms of the left-trivialized Hamil-
tonian as

∂

∂t
V (g, t)−H− (g, µ(g, t), t) = 0, (23)

where µ : G× R→ g∗ is defined as

µ(g, t) := TeL
∗
g

(
d1 V (g, t)

)
. (24)

The minimum energy estimator defines the estimate of the state at
time t as the element g ∈ G that minimizes the value function
V (g, t), that is

ĝ(t) := arg min
g∈G

V (g, t). (25)

Assuming differentiability of the value function in a neighborhood
of the minimum value, we obtain the necessary condition

d1 V (ĝ(t), t) = 0 or, equivalently, µ(ĝ(t), t) = 0 (26)

for all t ≥ 0 [1]. Differentiating with respect to time it follows that

Hess1 V (ĝ(t), t)
(

˙̂g(t)
)

+ d1

(
∂

∂t
V

)
(ĝ(t), t) = 0 (27)

for t ≥ 0, cf. Lemma A.1 in the appendix. Here,
Hess1 V (ĝ(t), t) : Tĝ(t)G → T ∗ĝ(t)G is the Hessian operator,
see Section II. Since ∂

∂t
V : G × R → R satisfies the HJB equation

(23), by straightforward application of the chain rule we obtain

d1

(
∂

∂t
V

)
(g, t) = d1 H

−(g, µ(g, t), t
)

+ d2 H
−(g, µ(g, t), t

)
◦ d1 µ(g, t).

(28)

Using (26), when substituting in the equation above g = ĝ(t), yields

d1

(
∂

∂t
V

)
(ĝ(t), t) = d1 H

−(ĝ(t), 0, t)

+ d2 H
−(ĝ(t), 0, t) ◦ d1 µ(ĝ(t), t).

(29)

By Lemma A.2 in the appendix, recalling (24), we get

d1 µ(g, t) = TeL
∗
g ◦Hess1 V (g, t)

+ ω∗�TeL∗
g(d1 V (g,t)) ◦TgLg−1 .

(30)

See Section II for the meaning of the second term. But then

d1 µ(ĝ(t), t) = TeL
∗
ĝ(t) ◦Hess1 V (ĝ(t), t) (31)

since the second term in (30) vanishes due to (26).
Define the left-trivialized Hessian operator Z(g, t) : g→ g∗ as

Z(g, t) := TeL
∗
g ◦Hess1 V (g, t) ◦ TeLg. (32)

The key idea behind left-trivialization is that it converts the bundle
map

Hess1 V (·, t) : G→ L(T(·)G,T
∗
(·)G)

into a map

Z(·, t) : G→ L(g, g∗)

with a (fixed) vector space codomain. This allows one to construct
a global matrix representation for Z by choosing bases in g and g∗.
When taking the time derivative of Hess1 V (g(t), t) along a curve
g(t), left-trivialization plus choice of bases turns this into simple
differentiation of a time-varying matrix Z(t) = Z(g(t), t).

Continuing with the rewriting of (29), using (31) and (32)

d2 H
−(ĝ(t), 0, t) ◦ d1 µ(ĝ(t), t) ◦ TeLĝ(t)

= d2 H
−(ĝ(t), 0, t) ◦ Z(ĝ(t), t)

= Z(ĝ(t), t)∗(d2 H
−(ĝ(t), 0, t)) (33)

and similarly

d1 H
−(ĝ(t), 0, t) ◦ TeLĝ(t) = TeL

∗
ĝ(t)

(
d1 H

−(ĝ(t), 0, t)
)
. (34)

If we now turn the attention to the first term of (27), then

Hess1 V (ĝ(t), t)
(

˙̂g(t)
)
◦ TeLĝ(t) = (35)

TeL
∗
ĝ(t) ◦Hess1 V (ĝ(t), t)

(
˙̂g(t)
)

= Z(ĝ(t), t)
(
ĝ(t)−1 ˙̂g(t)

)
.

Finally, using (29), (33), (34) and (35), we rewrite (27) as

Z(ĝ(t), t)
(
ĝ(t)−1 ˙̂g(t)

)
= −TeL∗ĝ(t)

(
d1 H

−(ĝ(t), 0, t)
)

− Z(ĝ(t), t)∗(d2 H
−(ĝ(t), 0, t)) (36)

for t ≥ 0. By equation (26), the point ĝ(t) ∈ G is a critical
point of the value function, and hence the Hessian Hess1 V (ĝ(t), t)
is symmetric, see Section II. By equation (32) then Z(ĝ(t), t)
is symmetric, i.e., Z(ĝ(t), t) = Z(ĝ(t), t)∗. Here we have used
the identification of the bidual g∗∗ with g. Assuming further that
Hess1 V (ĝ(t), t) and hence Z(ĝ(t), t) is invertible, then equation
(36) is equivalent to

ĝ(t)−1 ˙̂g(t) =− d2 H
−(ĝ(t), 0, t) (37)

− Z(ĝ(t), t)−1 ◦ TeL∗ĝ(t)
(
d1 H

−(ĝ(t), 0, t)
)
.

We can now develop (37) further, exploiting the specific expression
for H− given in (20). In the following, we adopt the shorthand
notation ht(g) and λt(g, u) for h(g(t), t) and λ(g(t), u(t), t), re-
spectively, and drop the explicit dependence on time of signals from
our notation where convenient. From (20),

d2 H
−(g, µ, t) =− eα(t−t0) ·B ◦R−1 ◦B∗(µ)− λt(g, u) (38)

and, using Lemma A.5 in the appendix,

d1 H
−(g, µ, t) = −e−α(t−t0) ·

((
D−1)∗ ◦Q ◦D−1(

y − ht(g)
))
◦ dht(g)− µ ◦ d1 λt(g, u). (39)

Substituting g = ĝ, the two expressions above become

d2 H
−(ĝ, 0, t) = −λt(ĝ, u) (40)

and

d1 H
−(ĝ, 0, t) = −e−α(t−t0) ·

((
D−1)∗ ◦Q ◦D−1(
y − ht(ĝ)

))
◦ dht(ĝ). (41)

Here we have again used the identification of g with its bidual g∗∗,
allowing us to interpret the differential d2 H

−(ĝ(t), µ, t) : g∗ → R
as an element of g. Defining rt(ĝ) ∈ g∗ by

rt(ĝ) :=TeL
∗
ĝ

[((
D−1)∗◦Q ◦D−1(y − ht(ĝ)

))
◦ dht(ĝ)

]
(42)



we can then write (37) as

ĝ−1 ˙̂g =λt(ĝ, u) + e−α(t−t0) · Z(ĝ, t)−1rt(ĝ). (43)

Compare this to equations (8) and (10) in Theorem 4.1, noting that
e−α(t−t0) ·Z(ĝ(t), t)−1 maps g∗ to g. Since the integral part of the
cost (6) vanishes at the initial time t = t0, the initial condition for
the optimal filter is as in (9).

E. Approximate time evolution of Z

Ideally, one would like to compute a differential equation for
Z(ĝ(t), t) so that coupling it with (43) one obtains the optimal
filter for (1)-(2). Unfortunately, it is well known – in the flat case
– that such an approach is going to fail as Z satisfies an infinite
dimensional differential equation, the linear dynamics with quadratic
cost being one of the most important exceptions [1]. For this reason,
in the following we compute an approximation of the time evolution
of Z(g, t) along the optimal solution ĝ(t) by neglecting the third
covariant derivative of the value function V . Such an approximation is
denoted by X(g, t). In the case of linear dynamics with quadratic cost
the value function is itself quadratic, meaning that its third derivative
is zero and X(g, t) = Z(g, t) in that case. In the general Lie group
case, we have the following result.

Proposition 4.3: X(t) := X(ĝ(t), t) ∈ L(g, g∗) fulfills the
operator Riccati equation

Ẋ = e−α(t−t0) · S − F ∗ ◦X −X ◦ F (44)

− eα(t−t0) ·X ◦B ◦R−1 ◦B∗ ◦X, X(t0) = X0

with

X0 = TeL
∗
ĝ0 ◦Hess m0(ĝ0) ◦ TeLĝ0 , (45)

F (t) = −ωĝ−1 ˙̂g +ω�
λt(ĝ,u) + d1 λt(ĝ, u) ◦ TeLĝ, (46)

S(t) = −TeL∗ĝ◦ (47)(((
D−1)∗ ◦Q ◦D−1(y − ht(ĝ)

))TĝG

◦Hessht(ĝ)+

−
(
dht(ĝ)

)∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ĝ)
)
◦ TeLĝ,

and ĝ0 as in (9).

Remark. Note that, as (46) depends on ĝ−1 ˙̂g given in (43), the
terms F ∗ ◦X and X ◦F in (44) are quadratic and not just linear in
X , if the connection function ω is not trivial. This fact is ultimately
responsible for the appearance, in the perturbed Riccati equation (11),
of the nonstandard quadratic terms ωKr ◦K and K ◦ω∗Kr

and is one
of the key discoveries of this work. �

Proof: From (32), setting g = ĝ(t), and using Lemma A.3 in
the appendix we get

d

dt
Z(ĝ(t), t) =

d

dt

(
TeL

∗
ĝ(t) ◦Hess1 V (ĝ(t), t) ◦ TeLĝ(t)

)
= ω∗ĝ−1 ˙̂g ◦Z(ĝ(t), t) + Z(ĝ(t), t) ◦ ωĝ−1 ˙̂g

+ TeL
∗
ĝ(t) ◦

∂

∂t
(Hess1 V )(ĝ(t), t) ◦ TeLĝ(t)

+ h.o.t., (48)

where the higher order terms (h.o.t.) will be neglected to obtain a
finite dimensional approximation to the (infinite dimensional) optimal
filter. See Section II for the meaning of the operators ωX and ω∗X .
The partial time derivative commutes with covariant differentiation on
G, so we can use equation (28) to compute ∂

∂t
(Hess1 V )(ĝ(t), t) =

Hess1( ∂
∂t
V )(ĝ(t), t). We start by rewriting equation (28) into the

following form,

d1

(
∂

∂t
V

)
(g, t) = d1 H

−(g, µ(g, t), t
)

(49)

+
(
d1 µ(g, t)

)∗(
d2 H

−(g, µ(g, t), t
))
.

By (30) and using the operator calculus from Section II,(
d1 µ(g, t)

)∗
(W ) =

(
Hess1 V (g, t)

)∗ ◦ TeLg(W )+

TgL
∗
g−1 ◦ ω�∗

W

(
TeL

∗
g(d1 V (g, t))

)
,

for W ∈ g∗∗ ' g. Combining this with equation (49) we arrive at

d1

(
∂

∂t
V

)
(g, t) = d1 H

−(g, µ(g, t), t
)

+
(
Hess1 V (g, t)

)∗ ◦ TeLg(d2 H
−(g, µ(g, t), t

))
+ TgL

∗
g−1 ◦ ω�∗

d2 H−(g,µ(g,t),t)

(
TeL

∗
g(d1 V (g, t))

)
.

Then, using the chain rule and Lemma A.4 in the appendix,

∂

∂t
(Hess1 V )(ĝ(t), t) = Hess1

( ∂
∂t
V
)

(ĝ(t), t) =

Hess1 H
−(ĝ, 0, t) + d2(d1 H

−)(ĝ, 0, t) ◦ d1 µ(ĝ, t)+

Hess1 V (ĝ, t) ◦ TeLĝ ◦ ω�
d2 H−(ĝ,0,t) ◦TĝLĝ−1+

Hess1 V (ĝ, t) ◦ TeLĝ ◦ d1(d2 H
−)(ĝ, 0, t)+

Hess1 V (ĝ, t) ◦ TeLĝ ◦Hess2 H
−(ĝ, 0, t) ◦ d1 µ(ĝ, t)+

TĝL
∗
ĝ−1 ◦ ω�∗

d2 H−(ĝ,0,t) ◦TeL
∗
ĝ ◦Hess1 V (ĝ, t)+

h.o.t. (50)

Here we have used equation (26) and the fact that the Hessian
operator at a critical point is symmetric. Combining equations (48),
(50) and (31) and neglecting higher order terms, we arrive at

d

dt
Z(ĝ(t), t) ≈ (51)

ω∗ĝ−1 ˙̂g ◦Z(ĝ, t) + Z(ĝ, t) ◦ ωĝ−1 ˙̂g +

TeL
∗
ĝ ◦Hess1 H

−(ĝ, 0, t) ◦ TeLĝ+
TeL

∗
ĝ ◦ d2(d1 H

−)(ĝ, 0, t) ◦ Z(ĝ, t)+

ω�∗
d2 H−(ĝ,0,t) ◦Z(ĝ, t) + Z(ĝ, t) ◦ ω�

d2 H−(ĝ,0,t) +

Z(ĝ, t) ◦ d1(d2 H
−)(ĝ, 0, t) ◦ TeLĝ+

Z(ĝ, t) ◦Hess2 H
−(ĝ, 0, t) ◦ Z(ĝ, t).

Differentiating equation (39) and using Lemma A.5 in the appendix
we obtain

Hess1 H
−(ĝ(t), 0, t) = −e−α(t−t0) (52)

·
((
D−1)∗ ◦Q ◦D−1(y − ht(ĝ)

))TĝG

◦Hessht(ĝ)

+ e−α(t−t0) ·
(
dht(ĝ)

)∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ĝ),

where (·)TĝG is the exponential functor, see Section II. Also, from
(39) and (38),

d2(d1 H
−)(ĝ(t), 0, t) =

(
d1(d2 H

−)(ĝ(t), 0, t)
)∗

= −
(
d1 λ(ĝ(t), u(t), t)

)∗
,

(53)

and differentiating (38) yields

Hess2 H
−(ĝ(t), 0, t) = −eα(t−t0) ·B ◦R−1 ◦B∗. (54)

Using (51)-(54) and (40) it is straightforward to show that

d

dt
Z(ĝ(t), t) ≈ e−α(t−t0) · S − F ∗ ◦ Z(ĝ, t)− Z(ĝ, t) ◦ F

− eα(t−t0) · Z(ĝ, t) ◦B ◦R−1 ◦B∗ ◦ Z(ĝ, t),

with S(t) and F (t) as in (47) and (46), respectively. As we neglected
the third order covariant derivative of V in (48) and (50), the above



equation is only an approximation of d
dt
Z(ĝ(t), t). To highlight this

fact, in (44), we write X instead of Z. The formula (45) for the
initial condition follows immediately from the initial condition for
the HJB. This completes the proof.

It remains to prove Theorem 4.1 stated in Section III. To this
end, note that in (43) the inverse of the matrix X is required.
It is however unnecessary to compute the inverse of X . Indeed,
defining K(t) := e−α(t−t0)X−1(t), with X(t) satisfying (44), the
second-order-optimal filter can be computed from Proposition 4.3,
equation (43) and a straightforward application of the well known
formula for the derivative of the inverse of an operator.

V. A WORKED EXAMPLE

In this section, we detail two different second-order-optimal filters
for the rotational dynamics of a rigid body subject to external
torques, assuming some directional measurements are available. The
two filters correspond to different choices of affine connection.
The section concludes with a numerical simulation illustrating the
performance of the two second-order-optimal filters.

A. Derivation of the filter equation

We represent the orientation of a rigid body in space by the rotation
matrix R ∈ SO(3) that encodes the coordinates of a body-fixed frame
{B} with respect to the coordinates of an inertial frame {A}. We
denote by I the inertia tensor, by Ω the angular velocity, and by τ the
applied external torque, all of them expressed in the body-fixed frame
{B}. The rotational dynamics of a rigid body evolves on TSO(3), the
tangent bundle of the special orthogonal group SO(3). It is standard
practice to identify TSO(3) with SO(3)×R3 via left translation [17]
and write the rotation dynamics as

RT Ṙ = Ω×, (55)

Ω̇ = I−1 ((IΩ)×Ω + τ
)
, (56)

with (R,Ω) ∈ SO(3)× R3.
We consider the nonlinear filtering problem of reconstructing

the attitude matrix R and the angular velocity of the rigid body
assuming that we have two (possibly time-varying) reference direction
measurements å1 and å2 ∈ S2 corrupted by measurement noise.
Here, S2 denotes the 2-sphere of unit norm in the inertial reference
frame {A}. Typical examples of reference directions are the magnetic
or gravitational fields at the location in which the system is operating.

As measurement output model, we employ

R6 3 y(t) =

[
a1(t)
a2(t)

]
=

[
RT (t)̊a1(t)
RT (t)̊a2(t)

]
+Dε(t), (57)

where ε represents the unknown measurement error. Equation (57)
has the structure of (2). where, for ease of presentation, we assume
that D a block diagonal structure, namely

D =

[
d1I3×3 0

0 d2I3×3

]
. (58)

As error model for the dynamics, we choose

RT Ṙ = (Ω)×, (59)

Ω̇ = I−1 ((IΩ)×Ω + τ
)

+B2δ. (60)

Equations (59)-(60) are a particular case of (1) where δ ∈ R3 and
B : R3 → R3

× × R3, δ 7→ (0, B2δ), with B2 ∈ R3×3.
We assume that the optimal filtering problem is posed in terms

of the minimization of the cost functional (6) with the quadratic
incremental cost (4). Without loss of generality and for ease of
presentation, in (4) we assume that the quadratic form Q is block

diagonal, while no additional conditions are imposed to the quadratic
form R other than being strictly positive definite. As done in (7), the
quadratic forms Q and R are specified in terms of two symmetric
positive definite linear maps Q and R. As mentioned, for the linear
map Q we will assume a block diagonal structure. Namely, we take
the matrix representation

Q =

[
q1I3×3 0

0 q2I3×3

]
, (61)

with respect to the standard bases in Rp and (Rp)∗, p = 6, where
q1 and q2 are strictly positive constants.

By choosing different group operations, we can assign different Lie
group structures to the tangent bundle TSO(3) ≈ SO(3)×R3 . Here,
we follow the approach detailed in, e.g., [27], [23] and select the
product group structure, that is, for (R,X) and (S,Y) ∈ SO(3)×R3,
we define the group product as

(R,X) · (S,Y) = (RS,X + Y). (62)

The Lie algebra of the product group SO(3) × R3 is the product
algebra so(3)× R3 ≈ R3

× × R3. Here, R3
× is the Lie algebra of R3

with the cross product Lie bracket. Given (ηR, ηΩ) and (ξR, ξΩ) ∈
R3
××R3, the adjoint representation of the Lie algebra R3

××R3 onto
itself is simply given by

ad(ηR,ηΩ)(ξ
R, ξΩ) = (ηR × ξR, 0). (63)

In matrix form, ad(ηR,ηΩ) is represented by the 6× 6 matrix

ad(ηR,ηΩ) =

[
(ηR)× 0

0 0

]
, (64)

where we have chosen the standard basis for the Lie algebra R3
××R3.

A (left-invariant) connection has to be chosen to derive the second
order optimal filter on a Lie group. First, as done in [27], [23],
we make use of the symmetric Cartan-Schouten (0)-connection,
characterized by the connection function

ω(0) =
1

2
ad. (65)

Proposition 5.1: Consider the system (55)-(56) with dynamics er-
ror model (59)-(60), measurement output model (57), and incremental
cost (4) with block diagonal structure given by (61). The second-order
optimal filter with respect to the Cartan-Schouten (0)-connection is
given by

R̂T ˙̂
R =

(
Ω̂ +K11 r

R +K12 r
Ω)× (66)

˙̂
Ω = I−1( (IΩ̂)×Ω̂ + τ

)
+K21 r

R +K22 r
Ω, (67)

where the residual rt = (rR; rΩ) and the second-order optimal gain
K = (K11,K12;K21,K22) are given below. Let

â1 = R̂T å1, and â2 = R̂T å2.

then the residual rt is given by

rt =

[
rR

rΩ

]
=

[
−(q1/d

2
1)(â1 × a1)− (q2/d

2
2)(â2 × a2)

0

]
, (68)

while the gain K is the solution of the perturbed matrix Riccati
differential equation

K̇ = − αK +AK +KA> −KEK +BR−1B>

−W (K, rt)K −KW (K, rt)
>, (69)



where

A =

[
−Ω̂× I

0 I−1
[
(IΩ̂)

×
− Ω̂×I

]] , (70)

E =

[∑2
i=1−(qi/d

2
i )
(
â×i a

×
i +a×i â

×
i

)
/2 0

0 03×3

]
, (71)

BR−1B> =

[
03×3 0

0 B2R
−1B>2

]
, and (72)

W (K, rt) =

[
1/2(K11r

R +K12r
Ω)× 0

0 03×3

]
. (73)

The reported filter equations result from a straightforward applica-
tion of the theory presented in this paper.

To illustrate the dependence of the filter on the choice of affine
connection, we repeat the filter construction with the alternative
choice of the Cartan-Schouten (-)-connection, characterized by the
connection function

ω(−) = 0. (74)

Proposition 5.2: Consider the system (55)-(56) with dynamics
error model (59)-(60), measurement output model (57), and incre-
mental cost (4) with block diagonal structure given by (61). The
second order optimal filter with respect to the Cartan-Schouten (-)-
connection is given by (66)-(67) where the second-order optimal gain
K = (K11,K12;K21,K22) is the solution of the perturbed matrix
Riccati differential equation (69) where

A =

[
0 I

0 I−1
[
(IΩ̂)

×
− Ω̂×I

]] , (75)

E =

[∑2
i=1−(qi/d

2
i ) a

×
i â
×
i 0

0 03×3

]
, (76)

BR−1B> =

[
03×3 0

0 B2R
−1B>2

]
, and (77)

W (K, rt) = 0. (78)

Note that the Riccati equation in Proposition 5.2 is a standard Riccati
differential equation, however, it is not symmetric. In contrast, the
Riccati equation in Proposition 5.1 is perturbed but symmetric.

The performance of the filters introduced in Propositions 5.1 and
5.2 is illustrated by means of numerical simulations in the next
subsection.

B. Numerical simulations

Setting up a rigorous analysis of the performance of the proposed
filter, perhaps including a comparison with the state of the art, goes
beyond the scope of this work. Here, we limit ourself to present
numerical results to demonstrate the practical implementability of
the second-order-optimal minimum-energy filter on Lie groups in
the example presented in the previous subsection. To this end, we
consider a rigid body with inertia tensor given by

I =

2 0 0
0 5 0
0 0 3

 Kg m2 (79)

subject to the following nominal input torque

τ(t) =

(
sin

(
2π

3
t

)
; cos

(
2π

1
t

)
; sin

(
2π

5
t

))
Nm, (80)

where ; denotes row concatenation. The total simulation time is
chosen to be T = 50 s.

The model error B2δ appearing in (60) is generated as a Gaussian
white noise with zero mean and standard deviation σδ = 1 rad/s2.

Assuming for simplicity of exposition and without loss of generality,
that the only source of error in the dynamics is the incorrect
measurement of the input torque, the error B2δ can be interpreted as
an additive measurement error in the input of the form IB2δ. This is
clearly evident from rewriting the error model (60) as

Ω̇ = I−1 ((IΩ)×Ω + τ + IB2δ
)
. (81)

The nominal and measured inputs are depicted in Figure 1, where the
scaling effect of the inertia tensor I in the term IB2δ can be directly
appreciated.
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Fig. 1. Input signal. The nominal input torque (blue) is depicted on top of
measured input torque (green).

The nominal input (80) is used to generate a nominal trajectory
whose initial rotation R(0) is selected to be equal to the identity
matrix and whose initial angular velocity has been chosen to be

ω(0) = (0.5; 0.6; 0.4) rad/s. (82)

The two reference direction measurements used in (57) are selected
to be

å1 = (0; 0; 1), å2 = (0; 1; 0). (83)

The nominal output (57) resulting from the integration of the dy-
namics (55)-(56) with nominal input (80) and initial condition (82)
is shown in Figure 2. The integration of the nominal trajectory has
been conducted with a constant time step of h = 1 · 10−3 s using a
geometric forward Euler method, i.e., the attitude update is obtained
as R(t+ h) = R(t) exp(hΩ(t)) to ensure R(t+ h) ∈ SO(3).

The measured output is obtained by adding a Gaussian white noise
with standard deviation σε = 0.5/3 m, corresponding to assume that
with probability 99.7% (3 standard deviations) the output samples
have a distance of less than 0.5 m from the nominal output samples.
Note that a sample error of 0.5 m corresponds to an error of about
30 deg in the measurement of the reference directions (83). The
measured output is depicted, together with the nominal output, in
Figure 2.
The measurement errors selected for the input and output signals
suggest to employ in (58) and (60)

d1 = d2 = σε, B2 = σδI3×3, (84)

respectively. The matrices Q in (61) and R are then chosen as

q1 = q2 = σ2
ε , R = σ2

δI3×3, (85)



0 10 20 30 40 50
−2

0

2

a
1

y 1 [m
]

0 10 20 30 40 50
−2

0

2

y 2 [m
]

0 10 20 30 40 50
−2

0

2

y 3 [m
]

time [s]

0 10 20 30 40 50
−2

0

2

y 4 [m
]

a
2

0 10 20 30 40 50
−2

0

2

y 5 [m
]

0 10 20 30 40 50
−2

0

2

time [s]

y 6 [m
]

Fig. 2. Output signal. The nominal output (blue), corresponding to the
measurement directions a1 and a2 in body coordinates, is depicted together
with the measured output (green).

so that the filter cost is the sum of the energies of the errors Dε and
Bδ since, by construction, Q = D>D and R = B>B. The selection
of the Q and R matrices, drawing a parallel to what happens in the
(perhaps more familiar to the reader) setting of stochastic Kalman
filtering, would correspond to choose as filter’s cost the sum of model
and output noise variances assuming δ and ε zero-mean unit-variance
Gaussian processes.

The resulting estimation error for the second-order-optimal
minimum-energy filters is presented in Figure 3. The figure reports,
for the (0)- and (-)-connections, the attitude error angle eR ∈ [0, π]
and angular velocity error eΩ(t) ∈ R3. These errors are defined as

eR(t) := acos

(
1− tr (I −R>(t)R̂(t))

2

)
, (86)

eΩ(t) := Ω̂(t)−Ω(t). (87)

In the simulation, the filter was initialized with attitude error angle
of about 60 deg, the forgetting factor α = 0.01 and the initial
condition for the Riccati gain K(0) = I6×6. Both filters show similar
performances, with the (0)-connection based filter performing best.
This trend seems to be general but requires further investigation to
be confirmed and analyzed.
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Fig. 3. Filtering error. The plots show the attitude angle error eR ∈ R and
the angular velocity error eΩ ∈ R3 for the minimum-energy filter based on
the (0)-connection (black) and the (-)-connection (dashed red).

VI. CONCLUSIONS

We provided an explicit formula for the second-order-optimal
minimum-energy filter for systems on Lie groups with vectorial
measurements. We showed in an example how to use this formula

to derive minimum-energy filters for (second-order) mechanical sys-
tems. Numerical simulations have been performed to demonstrate the
effectiveness of the filter.

The proposed filter does not require a Riemannian metric on the
Lie group and, as a by-product, the resulting (modified) Riccati
differential equation lives in the dual of the Lie algebra of the group,
rather than in the tangent space as in earlier approaches.

APPENDIX

In this appendix we provide a series of lemmas that are used in
the derivation of the filter equation in Section IV. These lemmas
should be of independent interest since they provide a second-order
left-trivialized calculus on Lie groups. All functions are assumed
sufficiently smooth.

Lemma A.1: Given f : G × R → R and g : R → G then
d1 f(g(t), t) = 0 for all t implies

Hess1 f(g(t), t)(ġ(t)) + d1

( ∂
∂t
f
)

(g(t), t) = 0.

Proof: Let Y : G→ TG be an arbitrary vector field on G and
introduce the auxiliary maps

F : G× R→ R,
(g, t) 7→ d1 f(g, t)(Y(g)) and H : R→ G× R,

t 7→ (g(t), t).

Then, d1 f(g(t), t) ≡ 0 is equivalent to F ◦H ≡ 0 that implies

0 =
d

dt
(F ◦H)(t) = d1 F (H(t))(ġ(t)) + d2 F (H(t))(1) (88)

The first term on the right hand of (88) equals

d
(
g 7→ d1 f(g, t)(Y(g))

))
(g(t))(ġ(t))

that, as d1 f(g(t), t) = 0, is equivalent to

d
(
g 7→ d1 f(g, t)(Y(g))

))
(g(t))(ġ(t))

− d1 f(g(t), t)
(
∇ġ(t)(Y(g(t)))

)
.

This last expression is Hess1 f(g(t), t)(ġ(t))(Y(g(t))). By simply
swapping the order of differentiation, the second term on the right
hand of (88) equals

∂

∂t
(d1 f)(g(t), t)(Y(g(t))) = d1

( ∂
∂t
f
)

(g(t), t)(Y(g(t))).

Since Y was arbitrary, the statement follows.

Remark. The conclusion in Lemma A.1 depends on g(t) being a
critical path for f . As can be seen from the proof, if we were to
compute the time derivative along an arbitrary path, we would incur
a third term that depends on the choice of affine connection ∇. This
is another expression of the known fact that the Hessian operator at
a critical point is independent of the choice of connection. �

Lemma A.2: Given f : G → R then the derivative of left
trivialized differential TeL∗g(d f(g)) is given by

d
(
TeL

∗
g(d f(g))

)
= TeL

∗
g ◦Hess f(g) + ω∗�TeL∗

g(d f(g)) ◦TgLg−1 ,

which equals TeL∗g ◦Hess f(g) wherever d f(g) = 0.

Proof: Let X,Y ∈ g then

d
(
g 7→ d f(g)(gY )

)
(g)(gX)

= d
(
g 7→ 〈d f(g), gY 〉

)
(g)(gX)

= d
(
g 7→ 〈TeL∗g(d f(g)), Y 〉

)
(g)(gX)

= 〈d
(
g 7→ TeL

∗
g(d f(g))

)
(g)(gX), Y 〉 (89)



where we have only used the definition and linearity of the duality
pairing 〈·, ·〉. Furthermore,

d
(
g 7→ d f(g)(gY )

)
(g)(gX)

= Hess f(g)(gX)(gY ) + d f(g)
(
∇gX(gY )

)
= 〈Hess f(g)(gX), gY 〉+ 〈d f(g), g ω(X,Y )〉
= 〈TeL∗g ◦Hess f(g)(gX), Y 〉+ 〈TeL∗g(d f(g)), ωX(Y )〉
= 〈TeL∗g ◦Hess f(g)(gX), Y 〉+ 〈ω∗X

(
TeL

∗
g(d f(g))

)
, Y 〉. (90)

Comparing the two equivalent expressions for the derivative of
d f(g)(gY ) obtained in (89) and (90) and recalling that Y was
arbitrary, we obtain

d
(
g 7→ TeL

∗
g(d f(g))

)
(g)(gX)

= TeL
∗
g ◦Hess f(g)(gX) + ω∗X

(
TeL

∗
g(d f(g))

)
= TeL

∗
g ◦Hess f(g)(gX) + ω∗�TeL∗

g(d f(g))(X)

= TeL
∗
g ◦Hess f(g)(gX) + ω∗�TeL∗

g(d f(g)) ◦TgLg−1(gX).

Since X was arbitrary, the result follows.
Lemma A.3: Given f : G× R→ R and g : R→ G then

d

dt

(
TeL

∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)

)
= ∇∗g(t)−1ġ(t) ◦ TeL

∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)

+ TeL
∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t) ◦ ∇g(t)−1ġ(t)

+ TeL
∗
g(t) ◦

∂

∂t
(Hess1 f)(g(t), t) ◦ TeLg(t) + h.o.t.

In the above expression, by higher order terms we mean those terms
that depend on the third or higher covariant derivative of f .

Proof: Let X,Y ∈ g, then

(
TeL

∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)

)
(X)(Y )

= Hess1 f(g(t), t)(g(t)X)(g(t)Y ). (91)

Let X ,Y : G → TG be arbitrary vector fields on G and introduce
the auxiliary maps

F : G× R → R
(g, t) 7→ Hess1 f(g, t)(X (g))(Y(g))

and

H : R → G× R
t 7→ (g(t), t).

By the product rule for covariant differentiation of tensors

d

dt
(Hess1 f(g(t), t)(X (g(t))(Y(g(t)))

=
d

dt
(F ◦H)(t) = d1 F (H(t))(ġ(t)) + d2 F (H(t))(1)

= h.o.t.+ Hess1 f(g(t), t)
(
∇ġ(t)(X (g(t)))

)
(Y(g(t)))

+ Hess1 f(g(t), t)(X (g(t)))
(
∇ġ(t)(Y(g(t)))

)
+

∂

∂t
(Hess1 f)(g(t), t)(X (g(t)))(Y(g(t)))

and hence, recalling (91) and that ∇ is left invariant,

d

dt

((
TeL

∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)

))
(X)(Y )

=
d

dt

((
TeL

∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)

)
(X)(Y )

)
= Hess1 f(g(t), t)

(
∇ġ(t)(g(t)X)

)
(g(t)Y )

+ Hess1 f(g(t), t)(g(t)X)
(
∇ġ(t)(g(t)Y )

)
+

∂

∂t
(Hess1 f)(g(t), t)(g(t)X)(g(t)Y ) + h.o.t.

= TeL
∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)

(
∇g(t)−1ġ(t)(X)

)
(Y )

+ TeL
∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)(X)

(
∇g(t)−1ġ(t)(Y )

)
+ TeL

∗
g(t)◦

∂

∂t
(Hess1 f)(g(t), t) ◦TeLg(t)(X)(Y ) + h.o.t.

= TeL
∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t) ◦ ωg(t)−1ġ(t)(X)(Y )

+ ω∗g(t)−1ġ(t) ◦TeL
∗
g(t) ◦Hess1 f(g(t), t) ◦ TeLg(t)(X)(Y )

+ TeL
∗
g(t) ◦

∂

∂t
(Hess1 f)(g(t), t) ◦ TeLg(t)(X)(Y ) + h.o.t.

Since X and Y were arbitrary, the result follows.
Lemma A.4: Let X ∈ g then

d
(
g 7→ TeLg(X)

)
= TeLg ◦ ω�

X ◦TgLg−1 .

Proof: Let Y ∈ g then

d
(
g 7→ TeLg(X)

)
(gY )

= ∇gY (gX) = g ω(Y,X) = g ω�
X (Y )

= TeLg ◦ ω�
X ◦TgLg−1(gY ).

Since Y was arbitrary, the result follows.
Lemma A.5: Let V be a vector space, let A : V → V be linear

and let Q : V → R be a quadratic form with associated symmetric
positive definite linear map Q : V → V ∗ (cf. Section III). Given
f : G→ V then

d

(
1

2
Q(A(f(g)))

)
=
(
A∗ ◦Q ◦A(f(g))

)
◦ d f(g)

and

Hess

(
1

2
Q(A(f(g))

)
=
(
d f(g)

)∗ ◦A∗ ◦Q ◦A ◦ d f(g)

+
(
A∗ ◦Q ◦A(f(g))

)TgG ◦Hess f(g),

where we recall that (·)TgG denotes the exponential functor.
Proof: Let X,Y ∈ g then

d
(
g 7→ 1

2
Q(A(f(g)))

)
(gX)

= d
(
g 7→ 1

2

〈
Q(A(f(g))), A(f(g))

〉)
(gX)

=
〈
Q(A(f(g))), A

(
d f(g)(gX)

)〉
=
(
A∗ ◦Q ◦A(f(g))

)
◦ d f(g)(gX),

where we have used that Q is symmetric in the next to last line.
Since X was arbitrary, the first assertion follows.



We now use this result repeatedly, together with the chain rule and
the definition of the Hessian operator, to compute

Hess
(
g 7→ 1

2
Q(A(f(g)))

)
(gX)(qY )

= d
(
d
(
g 7→ 1

2
Q(A(f(g)))

)
(gY )

)
(gX)

− d
(
g 7→ 1

2
Q(A(f(g)))

)(
∇gX(gY )

)
= d

((
A∗ ◦Q ◦A(f(g))

)
◦ d f(g)(gY )

)
(gX)

−
(
A∗ ◦Q ◦A(f(g))

)
◦ d f(g)

(
∇gX(gY )

)
= d

(
A∗ ◦Q ◦A(f(g))

)
(gX) ◦ d f(g)(gY )

+
(
A∗ ◦Q ◦A(f(g))

)
◦ d
(
d f(g)(gY )

)
(gX)

−
(
A∗ ◦Q ◦A(f(g))

)
◦ d f(g)

(
∇gX(gY )

)
.

Combining the last two terms yields(
A∗ ◦Q ◦A(f(g))

)
◦Hess f(g)(gX)(gY ),

where we need to use the exponential functor (see Section II) in order
to drop both arguments. The first term can be rewritten as

d
(
A∗ ◦Q ◦A(f(g))

)
(gX) ◦ d f(g)(gY )

=
(
A∗ ◦Q ◦A

(
d f(g)(gX)

))
◦ d f(g)(gY )

=
〈
A∗ ◦Q ◦A ◦ d f(g)(gX),d f(g)(gY )

〉
=
(
d f(g)

)∗ ◦A∗ ◦Q ◦A ◦ d f(g)(gX)(gY ).

Since X and Y were arbitrary, the second result follows. This
completes the proof.
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