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Abstract—This paper addresses problems on the structural
design of large-scale control systems. An efficient and unified
framework is proposed to select the minimum number of manip-
ulated/measured variables to achieve structural controllability/
observability of the system, and to select the minimum number
of feedback interconnections between measured and manipulated
variables such that the closed-loop system has no structural
fixed modes. Global solutions are computed using polynomial
complexity algorithms in the number of the state variables of the
system. Finally, graph-theoretic characterizations are proposed,
which allow a characterization of all possible solutions.

I. INTRODUCTION

This paper is motivated by the dearth of scalable techniques
for the analysis and synthesis of large-scale complex systems,
notably ones which tackle design and decision making in a
single framework. Examples include power systems, public or
business organizations, large manufacturing systems, wireless
control systems, biological complex networks, and formation
control, to name a few. A central and challenging issue that
arises when dealing with such complex systems is that of
structural design. In other words, given a plant of a system,
we are interested in providing a framework that addresses the
following questions [1]:

1) Which variables should be measured?

2) Which variables should be manipulated?

3) Which feedback links should be incorporated between
the sets defined in 1) and 2)?

Problems 1)-2) are commonly referred to as the input/output
(I/O) selection problem, whereas problem 3) is referred to
as the control configuration (CC) selection problem [2]. The
latter problem is of significant importance in the area of
decentralized control, where the goal is to understand which
subset of sensors (outputs) and local controllers (inputs) need
to be feedback connected so that specific properties (e.g.,
stability) of the overall system hold. The choice of inputs
and outputs affects the performance, complexity and costs
of the control system. Due to the combinatorial nature of
the selection problems, efficient and systematic methods are
required to complement the designer intuition, experience and
physical insight [2].

Motivated by the above problems, in this paper we provide
an efficient framework, that addresses both the I/O and CC
problems for (possibly large-scale) linear time-invariant (LTI)
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systems, by resorting to structural systems theory [3], where
the main idea is to investigate system-theoretic properties
based only on the sparsity pattern (i.e., location of zeroes and
non-zeroes) of the system matrices. Structural systems based
formulations offer the added advantage of being able to deal
with scenarios in which the specific numerical values of the
system parameters are not accurately known. The major design
constraints or system properties that are addressed in the I/O
selection problem are those of controllability and observability,
which in the context of structural systems correspond to
structural controllability and structural observability (to be
formally defined in Section II). In addition, the absence of
structurally fixed modes is the key property of interest to
ensure in the CC selection problem due to its implications
on pole placement for decentralized control systems [4].
Design and analysis based on structural systems provide
system-theoretic guarantees that hold for almost all numerical
instances of the parameters, except on a manifold of zero
Lebesgue measure [5]. We provide necessary and sufficient
conditions on the structure, but do not address the numerical
design of the gain parameters for a given system instance, that
can be addressed in a posterior design phase [1].
We now describe the problems addressed in this paper.

Problem Statement

Consider a given (possibly large-scale) plant with au-
tonomous dynamics

(1) = Ax(t), (1)

where x € R" denotes the state of the plant and A is an
n X n matrix. Suppose that the sparsity (i.e., location of zeroes
and non-zeroes) pattern of A is available, but the specific
numerical values of its non-zero elements are not known.
Let A € {0,1}"*" be the binary matrix that represents the
structural pattern of A, i.e., it encodes the sparsity pattern of
A by assigning 0 to each zero entry of A and 1 otherwise.

> Sparsest I/O selection problem

P, Given A as_soc_iated with (1), find structural input and
output matrices (B, C) that solve

__in 1B1lo
BG{O,l}"X” o (23)
s.t. (A, B) is struct. controllable
+
_ min 1Cllo
Cefo,1ynxn (2b)
s.t. (A, () is struct. observable



where || M]|o is the semi-norm that denotes the number of non-
zero entries in the binary matrix M € {0,1}"*" and (A, B)
(respectively, (A, C')) is the pair of matrices that represent the
structural system with dynamics matrix structure A and input
(respectively output) matrix structure B (respectively C). o

Problems (2a) and (2b) correspond to the sparsest input and
output selection problem, respectively. Note that a solution
to P; may not necessarily be one that will correspond to
an implementation with a minimum number of inputs/outputs.
In the paper, we will also characterize the subset of all
solutions to P; which have that property. In other words,
we determine the sparsest input/output matrix, comprising
the smallest number of inputs/outputs, and ensuring structural
controllability/observability. Additionally, we are interested in
obtaining solutions to more constrained variants of P, specifi-
cally, that of characterizing structurally controllable/observable
configurations with the minimum number of dedicated in-
puts/outputs. Dedicated input configurations are those in which
each input may only manipulate a single state variable (i.e.,
at most one entry in each column of B can be non-zero),
whereas, dedicated output configurations are those in which
each output corresponds to a sensor measuring a single state
variable (i.e., at most one entry in each row of C can be non-
zero). Formally, this last problem can be posed as follows:

P{ Given A associated with (1), find (B, C) that

_ min | Bllo
Be{o,1}nxn
s.t. (A, B) is struct. controllable (3a)
”BJ”O S 1; j:]-v ,n
_|_
_ min I1Cllo
CE{O,l}nX" o
s.t. (A, C) is struct. observable (3b)

||éz||0 S 17 Z: 17 ,n

where B ;j represents the jth column of B and C;. the ith row
of C. o

To formally state the CC selection problem, for a linear
system (A, B, C') with inputs and outputs, let K represent the
information pattern, i.e., K’ij = 1 if output j is available to
input ¢ and 0 otherwise. The existence of feedback matrices
K with the same sparseness of K that allow arbitrary pole-
placement of the output feedback closed-loop system (whose
dynamics is given by A+ BK (), is associated with the notion
of fixed modes of the system (A, B,C) w.r.t. (with respect
to) the specified information pattern K [6]. Its structural
counterpart is the notion of structurally fixed modes [4]: given
(A, B,K,C), we say that (A, B,C) has no structurally fixed
modes w.rt. K, if for almost all realizations of (A, B,C)
(with the same structure as (A, B,C)) there exist feedback
matrices K (with the same structure as K) such that the poles
of the corresponding static output feedback closed-loop system
can be changed. In particular, when the goal is to achieve
a specified pole-placement (and in particular in the left-half
of the complex plane), the use of dynamic compensators is
accounted for in the scope of static output feedback. However,
in general, the use of dynamic gain matrices fall beyond the

scope of the current study, which would lead to additional
design flexibility but might be prohibitive to compute in the
setting of large-scale dynamical systems. In summary, the
absence of structurally fixed modes is the property of interest
that we seek to ensure in the (CC) selection problem.

In this paper, we address the co-design of the sparsest I/O
and CC selection problem formally stated as follows:

> Jointly sparsest I/O and CC selection problem

P, Given A associated with (1), find (B, K, C) that solve
1Bllo +1C1lo + IKTlo @)

“min

B,K,Ce{0,1}nxn

s.t. (A, B, K,C) has no struct. fixed modes
o

The usual approach to solve the I/O and CC selection
problem (often to achieve different goals, other than maximum
sparseness) is to address them independently and sequen-
tially [2], but with no guarantee that such solution yields
the optimal. In the present paper, we actually show that the
solution of the I/O selection problem P; can be used to solve
the joint I/O and CC selection problem P, in an optimal
fashion. Conversely, we demonstrate that all possible solutions
to Py may be characterized in terms of solutions (A, B, C) of
P together with a construction referred to as mixed-pairing
(informally a pairing between inputs and outputs to obtain
information patterns).

Related Work

Both the I/O and CC selection problems have received
significant attention in the literature, see [2], [7] and references
therein. In the context of the current work, we restrict our
attention to those papers which study the above problems
in the structural systems framework. Since the seminal pa-
per [8] in structural systems theory, a large number of papers
have considered several variants of the I/O and CC selection
problems in which different solution criteria and applications
are presented, see [5], [9]-[11] and references therein (see
also [3] for a very useful survey of several important results in
structural systems theory). For instance, in [12] and references
therein, given the dynamics structure of a LTI system and a
possible collection of inputs, the objective was to determine
the minimum subset of inputs that achieve structural control-
lability, which we refer to as the constrained minimal input
selection (CMIS) problem. The CMIS problem was recently
shown to be NP-hard in general [13]. Further, notice that
the formulation presented in this paper is distinct from the
CMIS formulations, in that the former aims to minimize the
number of actuated variables due to economic or complexity
constraints [14], [15], whereas, the latter aims to use the
minimum amount of actuation capabilities already deployed
in the physical plant. Determining feasible solutions to the
above constrained minimal input selection problem has been
a major focus of the structural systems literature, see [3], [11],
[16] for representative work. A large majority of the proposed
solution methods to the above constrained minimal input
selection problem rely on a two-step optimization procedure
which, in general, leads to suboptimal solutions as recently
emphasized in [12]. In contrast, the I/O selection variant that



we study in this paper is quite different: more precisely,
we aim to determine the sparsest I/O matrices that ensure
structural controllability/observability. Moreover, the sparsest
I/O selection problem is shown to be polynomially solvable
in this paper, which is achieved through design techniques
that are very different from the ones developed in [3], [11],
[16] for addressing the constrained minimal I/O selection
problem. Recently, in [17] the sparsest I/O selection problem
was addressed for the of single-input single-output case — a
particular case of our I/O selection problem, in which multiple
inputs/outputs are admissible.

The problem of identifying the minimum number of
inputs/outputs required to achieve structural controllabil-
ity/observability was considered in [18], and more recently
in [14]. However, such characterization of the minimum num-
ber of inputs/outputs required to achieve structural control-
lability/observability is not sufficient to address the sparsest
1/0 selection problems P{ and P; considered in this paper,
since the latter problems additionally require identifying the
minimum number of connections that are to be made between
the state variables and the control inputs. In this context,
we also note [19], our preliminary work, which provides the
first general solution to the dedicated input/output selection
problem P¢ and further provides polynomial complexity al-
gorithms to compute such solutions. On a related note, more
recently, in [15] it was shown that the minimal controllability
problem (sparsest input design to ensure controllability given
a numerical instance, instead of structural controllability) is
NP-hard. Further, in [20] procedures to determine the exact
solution to the (non-structural) minimal controllability prob-
lem were presented for the case where the dynamic matrix is
simple and the eigenvector structure is known. Interestingly,
in this paper, we show that the structural counterpart of this
problem, i.e., the sparsest input selection problem in (2a), is
of polynomial complexity in the dimension of the state space.

In [21], [22], the design of a network of sensors and
communication among those are sought to ensure sufficient
conditions for distributed state estimation with bounded error.
Design of networked control systems is pursued in [23], [24],
where given a decentralized plant, modeled as a discrete
LTI system equipped with actuators and sensors, the com-
munication topology design between actuators and sensors to
achieve decentralized control was posed as a CC selection
problem. Both theoretical and computational perspectives were
provided, although the CC selection problem admits a degree
of simplification in the discrete time setting (see Remark 4 for
details). The CC selection problem has been considered in [25]
where a method for determining the minimum number of
inputs and outputs required for decentralization was provided;
however, the characterization does not cope with all cases,
see, for instance [26] (page 219). Reference [27] considers
a CC selection problem with general finite heterogeneous
communication costs subject to the constraint that the closed-
loop system has no structurally fixed modes. The proposed
solution is suboptimal and, in particular, the framework does
not account for I/O selection. In contrast, in this paper, we
provide jointly optimal solutions for the I/O and CC selection
problems assuming positive homogeneous actuation, sensing

and communication costs.
Main Contributions

In this paper, we propose an unified framework to address
structural control system design, which solves the sparsest
I/0, as well as the jointly sparsest I/O and CC selection
problems, by exploiting the implications of the former into the
latter. Moreover, the proposed solutions are efficient because
they can be implemented using polynomial algorithms in the
number of the state variables. The main results of this paper
are outlined as follows: first, we provide a solution to (3a)
and (3b) (by invoking duality between controllability and
observability in LTI systems), which leads to the solution
of P{. Next, inspired by the solution of P, we provide a
new characterization of structural controllability and structural
observability, using the bipartite graph representation of the
original system digraph and its directed acyclic graph repre-
sentation. Then, by considering this new representation, we
compute and characterize B that solves (2a), and by duality
obtain C' that is a solution to (2b), and hence the solution to
P1. Next, we show that the solution to P> can be obtained
by using particular solutions to P;. Furthermore, in each of
the above cases, we describe all possible solutions to the
respective design problems. Finally, we provide polynomial
complexity algorithmic procedures to compute solutions for
the I/O and CC selection problems. Preliminary results con-
cerning the solutions to P¢, the dedicated I/O design problem,
were presented in [19]. Here, in addition to addressing the
design problems P; and P,, we develop another equivalent
characterization of solutions to P{ which yields simpler and
with lower computational complexity algorithmic procedures
to construct solutions to P{. Additionally, it acts as a bridge
to more general constructs used in P; and Ps.

The rest of the paper is organized as follows: Section II
reviews some concepts and introduces fundamental results
in structural systems theory and establish their relations to
graph-theoretic constructs. Subsequently, in Section III, we
present a new necessary and sufficient condition for a system
to be structurally controllable, and consequently structurally
observable (by invoking duality between controllability and
observability in LTI systems). These are used in Section IV to
describe the solutions to problem P; followed by Section V
where we provide solutions to problem Ps. In Section VI, we
present algorithmic procedures with polynomial complexity
to compute solutions to Pf, P; and Ps. Next, we present a
detailed illustrative example in Section VII that explores the
solutions to the different problems addressed in the paper. Fi-
nally, Section VIII concludes the paper and discusses avenues
for further research. The proofs are relegated to the Appendix.

II. PRELIMINARIES AND TERMINOLOGY

In this section we start to recall some classical concepts in
structural systems [3] and some graph theoretic notions [28].
Consider a linear time-invariant (LTI) system

#(t) = Az(t)+Bu(t), y(t) = Cx(t), x(0) =z9 € R" (3)

with v € RP, y € R™, and appropriate dimensions of
the matrices A, B, C. In order to perform structural analysis



efficiently, it is customary to associate (3) with a directed
graph (digraph) D = (V, &), in which V denotes the set of
vertices and & represents the set of edges, such that, an edge
(vj,v;) is directed from vertex v; to vertex v;. To this end,
let A € {0,1}"*", B € {0,1}"*? and C € {0,1}™*"
be binary matrices that represent the structural patterns of
A, B and C respectively. Denote by X = {z1, -+ ,z,},
U={u, - ,up} and Y = {y1, - ,ym} the sets of state,
input and output vertices, respectively. Denote by Ex x =
{(i,j) « Aji # 0}, Gy = {(uj, @) © Bij # 0}, Exy =
{(zi,y;) + Cji # 0} and Eyy = {(y;,wi) : Ky # 0}
for a given information pattern K € {0,1}P*™. We may
then introduce the digraphs D(A) = (X,Ex.x), D(A,B) =
(XUU,Ex x Ulux), D(A,C) = (X UY,Exx UExy),
D(A,B,C) = (X UUUY,Exx U &yux UExy) and
D(A, B, k, é) = (X Ul U y,EX,X @] 51/[,;{ @] g)()y U gy’u).
Note that in the digraph D(A, B), the input vertices without
edges from it to a state variable due to a zero-columns of
B correspond to isolated vertices, i.e., vertices in a digraph
with no incoming and outgoing edges. As such, the number
of effective inputs, i.e., the inputs which actually exert control,
is equal to the number of non-zero columns of B, or, in
the digraph representation, the number of input vertices that
are connected to at least one state vertex through an edge in
&u,x- A similar interpretation of effective outputs holds. This
has important implications while interpreting the solutions
to problems P; and P,: for instance, in P, although the
design matrices B and C are specified to be of size n x n
for notational and technical convenience, in most practical
cases the optimal design matrices (as characterized later) will
turn out to be sparse with several zero-columns making the
effective number of inputs and outputs much smaller than
n. A digraph Dy = (Vs,&;) with Vs C V and & C £ is
called a subgraph of D, and it is a strict subgraph if V; CV
and/or &, C . If Vs = V, D, is said to span D. Finally,
a subgraph D, with some property P is maximal if there is
no other subgraph Dy = (Vs, &) of D, such that D; is a
strict subgraph of Dy and Dy satisfies property P. A sequence
of directed edges {(v1,v2), (v2,v3), -+, (Vg—1,vk)}, in which
all the vertices are distinct, is called an elementary path from
v1 to vg. A vertex with an edge to itself (i.e., a self-loop), or an
elementary path from v; to v, comprising an additional edge
(vg, v1), is called a cycle. A vertex v is said to be reachable
from another vertex w if there exists an elementary path from
w to v; in this case we say that w reaches v.

In addition, we will require the following graph theoretical
notions [28]: A digraph D is said to be strongly connected if
there exists an elementary path between any pair of vertices. A
strongly connected component (SCC) is a maximal subgraph
Ds = (Vs,Es) of D such that for every v, w € Vg there exists
a path from v to w and from w to v. Visualizing each SCC
as a virtual node (or supernode), one may generate a directed
acyclic graph (DAG), in which each super node corresponds
to a single SCC and a directed edge exists between two SCCs
if and only if there exists a directed edge connecting vertices
in the SCCs in the original digraph. It may be readily seen
that the resulting DAG is acyclic, i.e., devoid of cycles. The
DAG associated with a given D = (V,£) may be efficiently

generated with complexity O(|V|+|€]) [28], where | V| and |€]
denote the number of vertices in V' and the number of edges
in £ respectively. The SCCs in a DAG may be classified as
follows:

Definition 1 (Non-top linked SCC/Non-bottom linked SCC).
An SCC is said to be linked if it has at least one incom-
ing/outgoing edge into its vertices to/from the vertices in
another SCC. In particular, an SCC is non-top linked if it
has no incoming edge to its vertices from another SCC and

non-bottom linked if it has no outgoing edge to another SCC.
o

The terminology chosen in Definition 1 is hinged with
the convention of drawing the DAG with edges between the
different supernodes (i.e., SCCs) pointing downwards. Thus,
leaving the SCCs in the top without any incoming edge into its
vertices, corresponds to the non-top linked SCC — see Figure 2
for an example.

We say that an SCC N = (V, ) is reachable from another
SCC N’ = (V', &) if there exists a elementary path starting
in w € V' and ending in v € V; or, we say that the SCC N’
reaches the SCC .

For any two vertex sets S1,S2 C V we define the bipartite
graph B(S1, 82, Es, s,) whose vertex set is given by S; U Ss
and the edge set &s,.s, C {(s1, s2) s1 € 81,82 € S }.
The bipartite graph B(V, V, £) is said to be the bipartite graph
associated with D(V, £). Further, with some abuse of notation,
in the bipartite graph representation we allow different vertices
to have the same label, when we take S = Sy =V, as well
as the directed edge set of a digraph become the undirected
set of edges of its associated bipartite graph.

Given B(S1,82,&s,,s,), a matching M corresponds to a
subset of edges in &s, s, that do not share vertices, i.e., given
edges e = (s1,82) and €' = (s, sh) with s1,s] € S and
S2,55 € So, e,e’ € M only if 57 # s) and sy # sh. A
maximum matching M* is a matching M that has the largest
number of edges among all possible matchings. Given a bipar-
tite graph B(S1, Sz, s, s, ), the maximum matching problem
may be solved efficiently in O(4/|S1 USs||Es,.s,]) [28].
Vertices in S; and So are matched vertices if they belong to
an edge in the matching M, otherwise, we designate them as
unmatched vertices. Notice that a matching M (in particular
a maximum matching) may not be unique and the above
notions of matched or unmatched vertices are specific to a
given matching. For ease of referencing, in the sequel, the term
right-unmatched vertices (or left-unmatched vertices) w.r.t. a
matching M associated with B(S1,S2,Es,.s,) will refer to
only those vertices in Sy (or Sp) that do not belong to a
matched edge in M. If there are no unmatched vertices, we say
that we have a perfect match. Additionally, if we associate a
weight to each edge in the bipartite graph we may be interested
in determine the maximum matching which the sum of the
weights incurs in the minimum/maximum cost. These prob-
lems are known as the minimum/maximum weight maximum
matching and are solved using, for instance, the Hungarian
algorithm with computational complexity O(max{Si,S2}?),
see [28] for details.



A. Structural Controllability and Observability

Given digraphs D(A), D(A, B), D(A,C) or D(A, B,C)
(when appropriate), we further define the following special
subgraphs [8]:

e State Stem - An isolated vertex or an elementary path,
composed exclusively of state vertices.

e Input Stem - An input vertex linked to the root of a state
stem.

o Output Stem - A state stem linked from the tip to an output
vertex.

o [nput-Output Stem - An input vertex linked to the root of
a state stem and linked from the state stem tip to an output
vertex.

e State Cactus - Defined recursively as follows: A state stem
is a state cactus. A state cactus connected to a cycle from any
state vertex is also a state cactus.

o Input Cactus - Defined recursively as follows: An input stem
with at least one state vertex is an input cactus. An input cactus
connected to a cycle (comprised of state vertices only) from
any vertex (either state or input vertex) is also an input cactus.
e Output Cactus - Defined recursively as follows: An output
stem with at least one state vertex is an output cactus. A cycle
connected to an output cactus at any vertex (either state or
output vertex) is also an output cactus.

o Input-Output Cactus - Defined recursively as follows: An
input-output stem with at least one state vertex is an input-
output cactus. An input-output cactus connected to/from a
cycle from/to any of its vertices is also an input-output cactus.
e Chain - A single cycle or a group of disjoint cycles
(composed of state vertices) connected to each other in a
sequence. In other words, a DAG where each supernode is
a cycle.

The root and the tip of a stem are also the root and the tip of
the associated cactus. Note that, by definition, an input cactus
may have an input vertex linked to several state vertices, which
means, for example, that the input vertex may connect to the
root of a state stem and also be linked to one or more states
in a chain.

A system (A, B) is said to be structurally controllable if
there exists a pair (A, Bp) of real matrices with the same
structure as (A, B) such that (Ag, By) is controllable [3].
Structural controllability may be characterized as follows:

Theorem 1 ([3]). For LTI systems described by (3), the
following statements are equivalent:
i) The corresponding structured linear system (A, B) is
structurally controllable.
i) The digraph D(A, B) is spanned by a disjoint union of
input cacti. o
‘Similarly, (A, C) is structurally observable if and only if
(AT,CT) is structurally controllable, which is equivalent to
D(A, C') being spanned by a disjoint union of output cacti.
B. Structural Fixed Modes
Let

[M]n1,n2 = {M € R xn2 . Mzg =0 if MZ] = 0,

0<i<mn,0<j<no}

denote the equivalence class of matrices with a given structure
M of dimensions n; X ng, and o(X) denote the set of
eigenvalues of a square matrix X.

Definition 2 ([6]). Consider system (3) (with p inputs and m
outputs). The set

KelK])p,m

is defined to be the set of fixed modes of the closed-loop of (3)
w.rt. the information pattern K, where K|, n, is the set of
all possible p x m constant output feedback matrices. o

ok = o(A+ BKC(C)

The stabilizability of a system under an information pattern
K is related to the fact that there are no fixed modes in o
with nonnegative real part. In particular, in [6] it is shown
that the condition oz = () is both necessary and sufficient for
almost arbitrary pole placement with static output feedback
and dynamic compensators.

Fixed modes also have a structural counterpart, the struc-
turally fixed modes (SFM), given next.

Definition 3 ([29]). System (3) in closed-loop, denoted by
(A, B,K,C), is said to have structurally fixed modes with
respect to an information pattern K, if for all A € [A]nxn,

B € [Blnxp C € [Climxn, we have
(| o(A+BKC)#0.

KE[K]anl

O =

o
Conversely, a structural system (A, B, K,C) has no SFM,
if there exists at least one instantiation A € [A], B € [B], C €
[C] which has no fixed modes, i.e., Ngc(z0(A+BKC) = 0.
In this latter case, it may be shown (see [4]) that almost all
systems in the sparsity class (4, B,C) have no fixed modes
with respect to K, and, hence, allow pole-placement arbitrarily
close to any pre-specified set of eigenvalues. This is the key
motivation behind our constraint of designing systems with no
SFMs in the CC selection problem described in Ps.
Now, consider the following graph-theoretic conditions that
ensure the absence of structrurally fixed modes.

Theorem 2 ([30]). The structural system (A, B, C) associated
with (3) has no structurally fixed modes w.r.t. an information
pattern K, if and only if both of the following conditions hold:
a) in D(A,B,K,C’) = (XUUU)J,EX,X UEX,yU5u7X ]
Eyu), each state vertex v € X is contained in an SCC
which includes an edge of £y y;
b) there exists a finite disjoint union of cycles Cr = Vi, Er)
in D(A, B, K,C) with k € N such that
X C U Vi .

k <&

III. SOLUTION TO PROBLEM P

In this section, we introduce a new characterization of
structural controllability/observability by considering the bi-
partite representation of the system digraph D(A) and its
directed acyclic graph (DAG) representation. We start by

describing a result that provides a bridge between structural



systems concepts and graph theoretic constructs, such as the
maximum matching problem. This is fundamental to provide
and explicitly characterize solutions to P{, and consequently
solutions to both P; and P,. The proofs are based on standard
graph theoretic properties and relegated to the Appendix. We
start by a couple of useful results about general digraphs
properties.

Lemma 1. Let D(A) = (X,Ex x) be an SCC which is

spanned by a disjoint union of cycles C', i = 1,. .., cp. Then,
for each such cycle C' there exists a chain that spans D(A)
and whose first element is C'. o

The following extension of Lemma 1 to arbitrary digraphs
holds.

Lemma 2. Let D(A) = (X, Ex x) be a digraph comprising
7 non-top linked SCCs NI with i = 1,...,~. Further, let D
be spanned by a disjoint collection of cycles, and, {C/}i=1,... ~
be any subcollection of such cycles such that each C. € NT,

i = 1,---,7. Then, there exists a collection of disjoint ~y
chains, such that the i-th chain has its first element as the
cycle C, for i =1,--- . o

In addition, consider the following result that relates a
maximum matching of the state biparte representation with
the state digraph.

Lemma 3 (Maximum Matching Decomposition). Consider
the digraph D(A) = (X,Ex.x) and let M* be a maximum
matching associated with the bipartite graph B(X, X, Ex x).
Then, the digraph D* = (X, M*) constitutes a disjoint union
of cycles and state stems (with roots in the right-unmatched
vertices and tips in the left-unmatched vertices w.r.t. M*) that
span D(A). Moreover, such a decomposition is minimal, in
the sense that, no other spanning subgraph decomposition
of D(A) into state stems and cycles contains strictly fewer

number of state stems. o

Remark that as a consequence of Lemma 3, if the set
of unmatched vertices is empty, then the original graph is
spanned by a disjoint union of cycles comprising the edges
in a maximum matching. This result coincides with a result
previously established by Konig (see the appendix in [5]).
In addition, note that Lemma 3 states that the maximum
matching problem leads to two different kinds of matched
edge sequences in M*; sequences of edges in M* starting
in right-unmatched state vertices (i.e., state stems with more
than one state vertex), and the remaining sequences of edges
that start and end in matched vertices (i.e., cycles). Recall
that the maximum matching is not unique, which implies that
the above decomposition into state stems and cycles is not
unique as well. Note that, Lemma 3 provides no information
on the length of each state stem or the number of cycles that
constitute the maximum matching decomposition.

A feasible dedicated input configuration is a subset S,, C X
of state variables to which by assigning dedicated inputs
we obtain a structurally controllable system. Note that each
feasible dedicated input configuration corresponds to a unique
canonical B up to column permutation. The next result pro-
vides a characterization of feasible dedicated input configura-

tions.

Theorem 3 (Feasible dedicated input configuration). Let
D(A) = (X,Ex x) denote the system digraph, B(A) =
B(X, X, €& X, x) the state bipartite representation, and consider
also the v SCCs associated to D(A) denoted by N with
i =1,---,v A set S, C X is a feasible dedicated input
configuration if and only if there exist subsets Ur and A,, of
Sy, such that Ugr corresponds to the set of right-unmatched
vertices of some maximum matching of B(A), and A,, contains
one state variable from each non-top linked SCC of D(A). ¢

By invoking duality between controllability and observabil-
ity of LTI systems, we obtain a similar characterization of a
feasible dedicated output configuration, which is defined to
be a subset of state variables, to which assigning dedicated
outputs leads to a structurally observable system.

From the proof of Theorem 3 (respectively the dual of
Theorem 3), it is easy to realize that the SCCs that contain a
right-unmatched (respectively left-unmatched) vertex of some
maximum matching of B(A) play an important role in the
selection of feasible dedicated input (respectively output)
configurations. This motivates the following notions.

Definition 4. Let D(A) = (X,Ex, x) and M* be a maximum
matching associated with its bipartite representation. A non-
top linked SCC is said to be a top assignable SCC with respect
to M* if it contains at least one right-unmatched vertex in M*.
Similarly, a non-bottom linked SCC is said to be a bottom
assignable SCC with respect to M™ if it contains at least one
left-unmatched vertex. o

Note that the total number of top and bottom assignable
SCCs may depend on the particular maximum matching M*
(not unique in general) under consideration; as such we
introduce the following definition:

Definition 5. Consider the digraph D(A) = (X,Ex x). The
maximum top assignability index of D(A) is the maximum
number of top assignable SCCs among the maximum match-
ings M* associated with B(A) = B(X,X,Ex x). Similarly,
the maximum bottom assignability index of D(A) is the
maximum number of bottom assignable SCCs among the

maximum matchings M* associated with B(A). o

A maximum matching that attains the top assignability
(respectively bottom assignability) index is said to be top
(respectively bottom) assignable. The following result ad-
dresses (3a) by providing the minimum number of required
dedicated inputs, hence the minimum number of columns in
B (each with only one non-zero entry) required to ensure the
structural controllability of the pair (4, B).

Theorem 4 (Minimum number of dedicated inputs). Let
D(A) = (X,Ex.x) be the system digraph with (3 denoting
the number of non-top linked SCCs in its DAG representation.
Then, the minimum number of dedicated inputs p required to
achieve structural controllability is given by

p=m+p-a, (4)

where m denotes the number of right-unmatched ver-
tices in any maximum matching of the bipartite graph



B(A) =B(X,X,Ex.x) and « denotes the maximum top

assignability index of D(A). ©
It may be readily verified from the definitions, that if D(A)
is strongly connected, we have § = 1, and o may only

assume two values, 0 or 1, depending on whether m = 0 or
m # 0, respectively. As such, Theorem 4 may be simplified
significantly if D(A) is known to be strongly connected, in
which case p = max(m, 1).

In addition, Theorem 3 and Theorem 4 provide us with
the following characterization of a minimal feasible dedicated
input configuration, i.e., the subset with the minimum number
of state variables to which we need to assign dedicated inputs
to ensure structural controllability.

Theorem 5 (Minimal feasible dedicated input configuration).
Let D(A) = (X,Ex.x) denote the system digraph and
B(A) = B(X,X,Ex x) its bipartite representation. A set
Sy C X is a minimal feasible dedicated input configuration
if and only if there exist two disjoint subsets Ur and AS, such
that S, = Ur U AS, Ur corresponds to the set of right-
unmatched vertices of some maximum matching of B with
maximum top assignability, and A5, comprises of only one
state variable from each non-top linked SCC of D(A) not

assigned by the right-unmatched vertices in Ug. o

Theorem 5 will be used to describe all possible solutions
of (3a), and by invoking duality between controllability and
observability of LTI systems, it can also be used to describe the
solutions of (3b), which we refer to as the dual of Theorem 5.
Therefore, the following result holds.

Theorem 6. A structural pair (B,C) is a solution to P{
if and only if B and C' correspond to the dedicated assign-
ment in Theorem 5 and its dual result, respectively. o

A polynomial complexity algorithm for explicitly construct-
ing minimal feasible dedicated configurations (and hence
structural pairs (B, C') solving P{) is provided in Section VI.
In the next section, we show how minimal feasible dedicated
input (and output) configuration can be used to obtain solutions

(B,C) to P;.

IV. SOLUTION TO PROBLEM P,

Intuitively, the inputs in a minimum feasible dedicated input
configuration may be classified into the following two types:
those dedicated inputs that may be merged into a common
input such that structural controllability is retained, and those
that cannot. Based on the above classification, the solution
to problem (2a) is achieved in Theorem 8. Subsequently, as
a corollary to Theorem 8 (Corollary 1) we further obtain
the minimal solution to (2a), i.e., the solution of (2a) with
the minimum number of non-zero columns of B, in other
words, the minimum number of inputs that actuate at least one
state variable. By invoking duality between controllability and
observability of LTI systems, the results obtained above for the
input selection problem (2a) and its variants are extended to
the output selection (2b) and its variants. Finally, by using
Theorem 8 and its dual, we obtain the solution to P; in
Theorem 9.

We start this section by providing a new characterization
of structural controllability in terms of the system bipartite
representation and associated maximum matchings.

Theorem 7. Let D(A,B) = (X UU,Ex x U Ey x) denote
the state-input digraph and B(A) = B(X,X,Ex x) the state
bipartite representation. The pair (A, B) is structurally con-
trollable if and only if there exist the following three subsets:
URr C X corresponding to the set of right-unmatched vertices
of some maximum matching of B; A, C X comprising one
state variable from each non-top linked SCC of D(A); and
Us C U such that:

(1) to each x € Ug there exists a distinct u € Us assigned
to z, i.e., with (u,x) € &y x; and
(i) to each x € A, there exists a u € Ug with (u,x) € &y x.

&

Remark 1. Note that, by distinct in condition (i) of Theorem 7,
we mean that if x and T are two distinct states in Ug, there
exist u and 4 in Ug with u # 4 such that the edges (u, x) and
(4, ) are in &y, x. However, no such distinction is required in
the input assignment to states in Ay; in particular, connecting
the inputs assigned to states in Ug to states in A, \ Ugr is
allowable as far as condition (ii) of Theorem 7 is concerned.

It follows from the above discussion that for a structurally
controllable pair (A, B), the number of effective inputs is at
least m if m (the number of right unmatched vertices in a
maximum matching of B) is non-zero, or it is at least one
otherwise; in particular, we have the lower bound max(m, 1)
on the number of effective inputs if (A, B) is structurally
controllable. o

We now introduce some additional notation. Recall that an
input structural matrix B € {0,1}"*" may be equivalently
specified by the edge set &, x in the digraph representa-
tion D(A, B). In the following, we will use the notation
&y x(B) to make this connection explicit. For a maximum
matching M of the state bipartite representation B(A), let
Ur(M) = {xy (M), -+ ,x;, (M)} be an enumeration of
the state variables corresponding to its m right-unmatched
vertices and let {N(M) 1) be the collection of non-

assigned (by M) non-top linked SCCs of D(A), i.e., such
that NZ (M) NUR(M) =0 for all k =1,--- ,y(M); clearly,
the number of non-assigned non-top linked SCCs (M) < 3,
where 3 denotes the total number of non-top linked SCCs of
D(A). For each such maximum matching M, define the set
Z(M) of input structural matrices B € {0, 1}"*" representing
the edges from different inputs to the right-unmatched vertices
associated with M and an edge from an input to a single state

variable in each non-assigned non-top linked SCC, as

: Eux(B) = {U;-”Zl (uij,xi].(M))}

U {ugg‘f) (s, £, )} St g, 1, € U for all
j=1--- M, k=1,--- ,v(M) and
u;; # u;, for j # j, i, e NI(M) for all
k=1,--- ,v(M)}. 4

I(M)={B



Remark 2. Using the above construction, Theorem 7 may be
restated as follows: the pair (A, B) is structurally controllable
if and only if there exist a maximum matching M of B and a
structural input matrix B € Z(M) such that B < B (where
the inequality is to be interpreted entry-wise). o

Now, note that, for a general maximum matching M,
B € Z(M) does not need to be the sparsest matrix. In fact,

from (5) we have for any B € Z(M),

I1Bllo = m + (M), ©)

which, by the characterization of structural controllability
stated in Remark 2, yields that

1Bllo > m + min~y (M), ™)

for any B such that (A, B) is structurally controllable. Further,
noting that miny; v(M) = [ — « (where a denotes the
maximum top assignability index of D(A), see Definition 5)
and the minimizers are those maximum matchings which
have maximum top assignability, we immediately obtain the
solution to (2a) as follows.

Theorem 8 (Solution to (2a)). A structural matrix B is a
solution to (2a) if and only if there exists a maximum matching
M of B with maximum top assignability such that B € Z(M),
where Z(M) is defined in (5). o

To obtain minimal solutions of (2a), i.e., the ones with the
smallest number of effective inputs, let us define for each
maximum matching M of B with maximum top assignability,
the (non-empty) subset Z(M) of Z(M) as follows:

If m # 0, let

LM)={B : &ux(B)= {0y (ui;,zi,(M))} U
{U’Y(M) (ulkﬂzlk)} s.t. u;; € U for all
, M and u;, # ug; for j # 7,
s Wi t and i, € Niy (M)
(M)}, (8)
or, if m =0, let

T(M) :{B . &ux(B) :{ (4, &5, }
stueuandx,kEJ\/T( )
forall k=1,--- ,v(M)}. (9

Clearly, for each maximum matching M, the set Z(M) defined
in (8)-(9) (depending on whether m # 0 or not) is non-
empty and coincides with the subset of those structural input
matrices in Z(M) with exactly max(m, 1) number of effective
inputs. Hence, by the lower bound in Remark 2 and the
characterization in Theorem 8, we obtain the minimal solution
to (2a) as follows:

j=1,---
ﬂik e{uilvui27"'
forall k=1,---

Corollary 1 (Minimal solution to (2a)). A structural matrix
B is a minimal solution to (2a) if and only if there exists a
maximum matching M of B with maximum top assignability
such that B € T(M), where T(M) is defined in (8)-(9). o

In fact, in Corollary 1, we provide a stronger result: we show
that the set of structural input matrices that solve P; has a non-
empty intersection with the set of structural input matrices
with the minimum number of non-zero columns (respec-
tively rows) achieving structural controllability (respectively
observability). Moreover, in the same corollary we explicitly
characterize solutions of P; that additionally possess the latter
property, i.e., sparsest structural input matrices together with
the minimum number of non-zero columns achieving structural
controllability. By the above it readily follows, in particular,
that the minimum number of effective inputs required to make
a system structurally controllable is equal to max(m, 1). This
particular result was also obtained in [11], [18]. However,
in addition we obtain the sparsest design, i.e., we show that
the minimum number of links required between inputs and
states to achieve structural controllability is m + § — « and
explicitly characterize all such sparsest input configurations
(see Theorem 8), which was not addressed in [11], [18].

By invoking duality between controllability and observabil-
ity of LTI systems, we can derive a solution to (2b), hence the
solution to P;.

Theorem 9 (Solution to Py). The pair (B,C) is a solution
to Py if and only if B (resp. C) is designed such that the

characterization in Theorem 8 (resp. dual of Theorem 8) holds.
o

Using Corollary 1 we can derive the following result that
plays a key role in obtaining the solution to Ps.

Corollary 2 (Minimal solution to Py). The pair (B,C) is a
minimal solution to P if and only if B (resp. C) is designed
such that the characterization in Corollary 1 (resp. dual of
Corollary 1) holds. o

In section VI, we provide algorithmic procedures to effi-
ciently (polynomial in the number of state variables) compute
a minimal feasible dedicated input/output configuration, from
which an efficient solution to problem P; is obtained by using
the characterization in Theorem 9.

V. SOLUTION TO PROBLEM P,

Broadly, in this section, we will show that all possible solu-
tions (B, K, C) of P, may be obtained (see Theorem 10 for a
formal statement) by considering minimal solutions (B, C) of
‘P1 and appropriately adding feedback edges between effective
outputs associated with C' and effective inputs associated with
B through a procedure to be referred to as mix-pairing. Given
a solution to P; such a mix-pairing characterizes the minimum
number of feedback links that are required to ensure the
requirements in Theorem 2 which provides necessary and
sufficient conditions for generic pole placement. To define
such a mix-pairing procedure in full generality (so as to
characterize all possible solutions of Ps) and establish its
minimality, we need several intermediate constructions and
results detailed in the following.

As will be seen later, to achieve minimality in the feedback
design procedure, the first step is to characterize a certain
decomposition of the digraph D(A, B,C) into cycles and
input-output stems, where (B, C) is a solution to P;. From



a design point of view (and since we are interested in
characterizing all solutions to P), suppose B and C are
obtained using two different maximum matchings of the state
bipartite graph, say M; and M; respectively, as in Corollary 2.
Clearly, M; (respectively M) provides a decomposition of
the digraph D(A, B) (respectively D(A, C)) into a disjoint
union of cycles and input stems (respectively output stems);
however, a decomposition of the joint digraph D(A, B, C)
into a disjoint union of cycles and input-output stems may
not be obvious (i.e., whether such a decomposition exists
or its characterization) given the separate decompositions of
D(A, B) and D(A,C) (unless the maximum matchings M;
and M, are equal). To this end, we provide a general graph-
theoretic result which, given M; and M,, characterizes a
common maximum matching M* of the state bipartite graph
which explicitly provides a decomposition of the joint digraph
D(A, B, C) into cycles and input-output stems. The result may
be viewed as an input-output design separation principle and
plays a key role in characterizing the minimum number of
feedback links required to ensure condition b) in Theorem 2.

Lemma 4. Let B(A) = B(X,X,Ex x) be the state bipartite
graph. If M and M? are two possible maximum matchings
of B(A) with right-unmatched and left-unmatched vertices
given by (Vk,V}) and (V3,V?) respectively, then, exists a
maximum matching M* of B(A) with right-unmatched and
left-unmatched vertices given by (Vi, V32 ). In particular, if M*
has maximum top assignability index and M? has maximum
bottom assignability index, then M* given by the above has
both maximum top and bottom assignability index. o

Now referring to the discussion in Remark 2, it follows that
for a structurally controllable system, each non-top linked SCC
in the state digraph must contain at least one state variable that
is reachable from an effective input, and, similarly, by duality,
we may conclude that for a structurally observable system,
each non-bottom linked SCC in the state digraph must contain
at least one state variable that reaches an effective output.
Now, noting that each SCC in the state digraph is either non-
top linked or is reachable from a non-top linked SCC, we
may further conclude that in a structurally controllable and
observable configuration all state variables are reachable from
the effective inputs and, similarly, by duality, all state variables
reach effective outputs.

The above immediately yields the following property for
the state-input-output digraph.

Proposition 1. Let B¢ and C* correspond to the collection of
non-zero columns of B and non-zero rows of C respectively,
which correspond to the effective inputs and outputs respec-
tively. If (A, B, C) is such that the pair (A, B) is structurally
controllable and (A,C‘) is structurally observable, then, the
effective inputs and effective outputs constitute the non-top
linked SCCs and non-bottom linked SCCs of D(A, B¢, C°),
respectively. o

Now, recall Lemma 3 and assume that a perfect matching
of the state bipartite graph exists. Then D(A) is spanned by a
disjoint union of cycles, which is sufficient to fulfill condition

b) in Theorem 2, further only one effective input and effective

output are required to ensure structural controllability and
observability (see Corollary 2). Consequently, in that case, by
considering a single feedback link from the effective output
to the effective input (which by Proposition 1 are the unique
non-top linked and non-bottom linked SCC in D(A, B¢, C*)
respectively), a single SCC is obtained with a feedback edge
on it, hence fulfiling condition a) in Theorem 2. In other words,
an optimal information pattern K has a single non-zero entry,
more precisely, K;; # 0 corresponding to a feedback link
between the j-th output (the only effective output) and the
i-th input (the only effective input) ensures that (A, B¢, C*)
has no SFM with respect to it.

A more challenging case is encountered when a maximum
matching is not perfect. First, notice that by Remark 1,
we need as many effective inputs/outputs as the number of
right/left-unmatched vertices and, by Proposition 1, a feedback
link is required for each effective input/output if condition a)
of Theorem 2 is to be satisfied. In other words, a lower bound
for K in P, may be obtained as

| Ko > max(m, 1), (10)

where m is the number of right/left-unmatched vertices (that
matches the number of effective inputs/outputs). This is so
because, on one hand, using fewer effective inputs (respec-
tively outputs) will lead to loss of structural controllability
(respectively observability), on the other hand, at least m
feedback links need to be considered to fulfil condition b)
in Theorem 2.

We now show through a series of arguments that the lower
bound in (12) is indeed achievable. First, we show that condi-
tion b) may be ensured by adding (appropriately) max(m, 1)
number of feedback links between effective outputs and inputs.
To this end, in general, consider a minimal (B,C) (see
Corollary 2) to which a common matching exists (in the sense
of Lemma 4), and by recalling Lemma 2 such a maximum
matching provides a decomposition of D(A) into a disjoint
union of cycles and state stems. Finally, we note that (see
Corollary 2), distinct effective inputs (respectively outputs)
are assigned to the roots (respectively tips) of such state
stems rendering the latter to input-output stems. The above
discussion is formalized as follows:

Proposition 2. Let B(A) be the state bipartite graph associ-
ated with D(A), B and C be constructed as in Corollary 2.
In addition, let M* be a (non-perfect) common maximum
matching (in the sense of Lemma 4) such that its set of
right-unmatched vertices Ur and left-unmatched vertices U,
correspond to the locations of effective inputs given by the
collection of non-zero columns B. of B and effective outputs
given by the collection of non-zero rows C, of C respectively.
Then, D(A, B¢,C®) is spanned by a disjoint union of cy-
cles (composed exclusively of state vertices) and input-output
stems. o

Specifically, note that the cycles provided by M* presents a
covering of a subset of vertices in D(/_l), and, hence, as far as
adding feedback edges are concerned to ensure condition b)
in Theorem 2, only the state stems (that originate input-output

stems in D(A, B, C..)) provided by M* need to be considered



(covered). Moreover, there are exactly m such input-output
stems and hence, in particular, by adding a feedback edge
between the output and the input of each stem, we may obtain
m cycles that cover all the state vertices which belonged to
state stems in the decomposition provided by M*. As an
immediate consequence, we note that max(m,1) feedback
edges are sufficient in general to achieve condition b) in
Theorem 2.

We remark that closing each input-output stem individually
as explained above is not the only way to ensure condition b)
in Theorem 2 through max(m, 1) feedback links. In particular,
it may be possible to pair inputs and outputs belonging to
different input-output stems using max(m, 1) feedback edges
and still satisfying the requirement b) in Theorem 2. Since, we
are interested in obtaining all possible solutions to P, we now
provide a generic input-output pairing process, which char-
acterizes all possible input-output pairings with max(m, 1)
feedback edges that satisfy requirement b) in Theorem 2.
Finally, we note that all such pairings may not satisfy condition
a) in Theorem 2; however, we will show that there exists at
least one such pairing which satisfies a) (and of course b)),
thus establishing the achievability of the lower bound in (12).
Each pairing satisfying both conditions of Theorem 2 will be
referred to as a mix-pairing.

To this end, we introduce the /0-reachability bipartite graph
B*Y = B(Vy, Vy, Eu,y), With V,, and V,, denoting the set of
effective inputs and effective outputs respectively, and an edge
(u,y) € Euy, for u €V, and y € V), if and only if u reaches
y in D(A, B,C). Now, let M*¥ be a maximum matching of
B*“¥Y, which is perfect by Proposition 1. Also, observe that
each edge in M™¥ corresponds to a pair (input, output), the
latter being the root and tip of (possibly different) input-output
stems (see Proposition 2).

Formally, to characterize all information patterns that
satisfy Theorem 2-b), we fix such a maximum matching
M"Y and consider a partition of M"Y into disjoint sub-
sets Sty Sipus ey Uiy e Sio = M"Y and
S;NS;j =0 foralli # j. Now, given M"Y and a partition, for
each subset S; we will denote by F(M™¥,S;) the collection
of all possible sets of |S;| potential feedback edges whose
incorporation augments the input-output stems involved in S;
into a single cycle. Specifically,

FMY,S) ={{fr,.- s fisih = enfi-..es,) fis,| describes
acycle in B(Vy, Vy, Euy U{f1, -, fls,}) and eq, ..
is an enumeration of the edges in S;}.

- €|s;]

Y

In particular, note that F(M™¥,S;) has as many elements
(sets of |S;| edges) as the number of possible enumerations of
the edges in S;.

In addition, we now define for each choice of subsets S;,
i = 1,---|M™Y|, the set of sparsest information patterns
(i.e., with minimum || K||o) that satisfy Theorem 2-b) as

K(M%Z/’Sl’ e 7S|J\I“vy\) = {K € {0, ]_}n><n : K = R(Ey,u)
U 51 y with 51 S .F(Mu’y;S’L)}a

i=1,...,| Muy|

where £y 1y =

(12)

where K (Ey /) denotes the structural matrix K whose non-
zero entries correspond to the edge set £y ;4 in the digraph rep-
resentation D(A, B, K, C) (see definition of D(A, B, K, C) in
Section II).

Notice that not all information patterns in
K(M™Y, 8y, ,Sjpuv)) satisfy both the conditions in
Theorem 2, see Figure 1. However, the following result holds.

Proposition 3. Let D(A, B,C) be the systems digraph and
BYY its 10-reachability bipartite graph. Then, the following
conditions hold:

) If K € K(M™Y,8y,...,Saww)) for some choice of

maximum matching M™Y of B“Y and subsets S; C

M"Y, ¢ =1, |M™Y|, with S§;NS; =0 fori # j

and UJ:LMJM“*’\ S; = M™Y, then, K is such that

D(A, B, K, C) satisfies condition b) in Theorem 2.

For a maximum matching M™Y and the specific choice

of Si = MW for a particular i in {1,---,|M™Y|},

ie, S; = 0 for j # i, any information pattern K ¢

K(M™Y, 8y, Sippuw)) is such that D(A,B,K,C)

satisfies both the conditions in Theorem 2;

(3) If K is a sparsest information pattern (i.e., with minimal
| Kol|) such that D(A, B, K, C) satisfies both the condi-
tions in Theorem 2, then there exists a maximum matching
M"Y of BY and subsets Sy, -+, S|ppuw) C M™Y, with

§;NS;=0fori#jand U S; = M™Y, such
- =1, | M|
[ha[KE’C(Mu’y,Sl,"' ,S‘Mu,yl). &

(@)

In particular, it follows by Proposition 3-(2) that there exists
K such that ||[K||o = max(m, 1), which together with (B, C)
(constructed as in Corollary 2) is a solution to Po.

Additionally, we denote by Kppix(M™“Y, Sy, ,Sjpru))
the subset of sparsest information patterns in
K(M™¥, 8y, ,Sjpwv)) that satisfy Theorem 2-a) for
a given maximum matching M*Y of B“Y and subsets
81, ,Spuw of M™Y. Therefore, all the sparsest
information patterns that satisfy problem P, upon a given
construction of (B, C) as in Corollary 2, are characterized by

U

MU,y
81, S| ppu,y | CMWY

]Cmi:l;: KmiI(Mu1y7817"' 78\]\/[”'5")'

(13)
For notational convenience, we refer to any K € Kz as

a mix-pairing of D(A, B, C). Figure 1 depicts two examples
of mix-pairings.

Remark 3. Computing a mix-pairing instance incurs in poly-
nomial complexity because it reduces to finding a maximum
matching M"Y of the 10-reachability bipartite graph, and,
subsequently, resorting to the construction proposed in Propo-
sition 3-(2). o

Finally, we state the main result of this section.

Theorem 10 (Solution to Py). The triple (B, K,C) is a solu-
tion to P if and only if the pair (B, C) is a minimal solution
to Py (constructed as in Corollary 2) and K corresponds to
a mix-pairing of D(A, B, C). o
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Fig. 1. a) A mix-pairing K € K(M™Y,81,S2) with S = M*¥ and
S2 = 0 is depicted by gray dashed edges, all the SCCs in the original digraph
are depicted by black dashed boxes, whereas the SCCs associated with the new
digraph D(A, B, K, C) are depicted by green dashed boxes. The blue edges
represent a possible maximum matching associated with the IO-reachability
bipartite graph. b) A mix-pairing K € K(M™“Y,S1,S3), where S1 and Sy
contain a single (and distinct) edge from M™:Y, is depicted by gray dashed
edges. Remark that the mix-pairing used in b) cannot be used in a), otherwise,
the digraph D(A, B, K,C) will comprise of three SCCs, with one SCC
(corresponding to the node with the self-loop) having no feedback edge in it,
thus violating Theorem 2-a).

Remark 4. We contrast our CC selection results to that
of [24]. In [24], for discrete time linear invariant systems,
given a set of effective inputs and outputs, a pairing process
similar to the construction in Proposition 3-(2) is provided. In
contrast, we provide all possible sparsest information patterns
for the CC selection problem in the continuous time scenario.
Moreover, from a technical standpoint, due to the discrete
time treatment, the construction in [24] needs to ensure that
condition a) in Theorem 2 is satisfied only (the uncontrol-
lable/unobservable modes at zero pose no concern in the
context for the discrete time setting), whereas, the requirement
to satisfy both conditions a) and b) simultaneously in the
continuous time setting adds a layer of technical complexity
in our construction and analysis. o

VI. ALGORITHMIC PROCEDURE AND
COMPLEXITY ANALYSIS

We now provide an efficient algorithmic procedure to com-
pute a minimal feasible dedicated input configuration S,,
described in Algorithm 1. Briefly, Algorithm 1 consists in
finding a maximum matching with maximum top assignability
and its associated set of right-unmatched vertices. Then, by
Theorem 5, a minimal feasible dedicated input configuration
may be obtained by assigning (dedicated) inputs to state
variables corresponding to the right-unmatched vertices of
the maximum matching and an additional set of 8 — « state
variables each of which belongs to a distinct non-assigned
non-top linked SCC.

The next set of results establishes the correctness and
analyzes the implementation complexity of Algorithm 1.

Theorem 11 (Correctness and Computational Complexity
of Algorithm 1). Algorithm 1 is correct, i.e., its execution
provides a minimal feasible dedicated input configuration S,,.
Furthermore, it generates a minimal feasible dedicated input
configuration S,,, with complexity O(|X|3), where | X | denotes
the number of state vertices in D(A). In addition, the minimum
number of dedicated inputs to ensure structural controllability
of the system is given by |S,| and its computation incurs in
the same complexity. o

ALGORITHM 1: Computing a minimal feasible dedi-
cated input configuration S,

Input: D(A) = (X, Ex.x)

Output: Minimal feasible dedicated input configuration S,
Step 1. Determine the non-top linked SCCs NT,
ieZ={1,---,B}, of D(A) and denote its collection by N.
Step 2. Consider a weighted bipartite graph
B(X,XUZL,Ex x UET x) where Ez.x = {(i,2;) : z; € MT}
and each variable ¢ € 7 is a slack variable with an edge to each
variable in the non-top linked SCC N;". The associated cost is
given as follows: each edge that does not belong to the bipartite
graph has infinite cost, each edge in £x x has unitary cost and
each edge in £z x has a cost of two.

Step 3. Let M’ be the maximum matching incurring in the
minimum cost of the weighted bipartite graph presented in
Step 2 and URr be the corresponding set of right-unmatched
vertices (which may comprise varibles in Z). Then,

Uy = UrNX)U O, where © = {z; : (i,z;) € M',i € I}, is
the set of right-unmatched vertices associated with a maximum
matching M ™ of the state bipartite graph B(X, X, Ex,x) with
maximum top assignability.

Step 4. Set S, = Ui U A5, where A5, consists of a union of
state variables formed by selecting a single state variable from
each non-assigned SCC N} (i.e., (N],-) ¢ M™).

Given that by formulation the problem of computing a min-
imum feasible dedicated input configuration is a combinatorial
optimization problem, the polynomial complexity construction
provided in Algorithm 1 is especially helpful in the context
of large-scale systems. To emphasize further, even assuming
that the minimum number p of dedicated inputs required
is known, a naive combinatorial search over ('fl) possible
configuration choices (and verifying if each of them is feasible
or not, which may be achieved using an algorithm of quadratic
complexity in the number of state variables [18]) may not be
feasible in large-scale scenarios; in fact, if p grows with ||,
such a combinatorial search procedure incurs in exponential
complexity.

Noting that solutions to ; and P, may be obtained by sim-
plistic constructions once a minimal feasible dedicated input
configuration is provided (see Theorem 9 and Theorem 10).

Corollary 3. There exist O(|X|*) complexity procedures for
computing solutions to P, Py and Pa, where |X| denote the
number of state vertices in D(A). o

Remark 5. Algorithm 1 as well as the algorithms to determine
a solution to Py and Py can be found in [31]. <

VII. ILLUSTRATIVE EXAMPLE

The following example illustrates the procedure to obtain a
solution to 73{1, P1 and P, following the sequence of results
presented in Sections III-V. First, we compute a solution to
(3a) and (3b), i.e., Pfl, to be later used in computing a solution
to P;1. Then, we use a particular solution of P; to compute a
solution to Ps.

Consider the directed graph D(A) = (X,Ex ) depicted
in Figure 2-(a) and compute a top and bottom assignable
maximum matching associated with B(A) = B(X,X,Ex x),
that we know to exist and can be constructively ob-
tained using Lemma 4 (and its proof). In particu-



lar, a top assignable maximum matching can be ob-
tained by resorting to Algorithm 1, for instance, M* =
{(@2,21), (21,23), (23,25), (va,27), (v5,%6), (T6,Ts)s
(28, 9), (x10,710)} depicted by the blue edges in Figure 2-
(c). As noticed in Lemma 3 such maximum matching can
decompose D(A) in state stems and cycles, as depicted in
blue in Figure 2-(b).
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Fig. 2. (a) The original digraph D(A) = (X, Ex, x) where the dashed boxes
denote the SCCs of D(A), the black vertices the state vertices, and the arrows
the directed edges; (b) The digraph D(A) where the edges in blue belong
to a maximum matching M* with maximum top and bottom assignability,
associated with B(A) = B(X, X, Ex x), depicted in (c).

Solution to (3a) The set of right-unmatched vertices associ-
ated with M* is Ur = {x9, x4} and therefore by Theorem 4
we have m = 2. Moreover, because D(A) has two non-
top linked SCCs (8 = 2 in Theorem 4). The maximum top
assignability index of B(A) in Theorem 4 is o = 2 since both
N, N are assignable. Hence, we need p =m + 3 —a =
2 4 2 — 2 = 2 dedicated inputs.

Therefore, a particular minimal feasible input configuration
(see Theorem 5) is {z2,x4}. Remark that this can also
be determined using Algorithm 1. In fact, {2, 24} is the
only possible minimal feasible input configuration. Hence, by
assigning an input to each of {2, 24}, we obtain a structurally
controllable system. This choice is depicted in Figure 3-(a),
but notice that the choice of the index of the effective inputs
(u1,u9) is arbitrary, corresponding to a permutation of the
columns of the matrix B. The structure of B is given by
Bg)l =1, 34,2 = 1 and zero elsewhere. Moreover, (3a) has a
5; edges between inputs and states (depicted
by the green edges in Figure 3-(a)).

Solution to (2a): In this case the solution of (3a) is also a
solution to (2a) under the additional constraint of minimum
number of effective inputs. By Theorem 8 (and also Corol-
lary 1), the structure of B is given by Bg 1 =1, B42 =1
and zero elsewhere. Moreover, (2a) has a total of |Bllo = 2
edges between inputs and states (depicted by the green edges
in Figure 3-(a)).

Solution to (3b): To compute the minimum number of state
variables to be assigned with outputs to have structural observ-
ability, we proceed with the same reasoning as above but using
D(AT) as the system digraph, which corresponds to reversing
the directions of the edges of the original digraph D(A). Thus,
m' =2, 3 =2 and o = 1, where, in terms of the original
digraph D(A), m’ denotes the number of left-unmatched
vertices of a maximum matching associated with the bipartite

graph B(A), B’ denotes the number of non-bottom linked
SCCs and o' the maximum bottom assignability index. The
edges corresponding to a maximum matching with maximum
bottom assignability index are depicted in Figure 2-(c). Hence,
atotal of p =m' + ' —a’ =2+ 2 — 1 = 3 state variables
to ensure structural observability are required. The minimal
feasible output configuration is given by {zg, 19,27}, by the
dual of Theorem 5 applied to structural output design.

Fig. 3. In (a) and (b) we depict two different solutions to P2. In blue we
can identify the directed edges associated with matched edges in a maximum
matching, in green the input edges and in red the output edges. From the solid
colored lines we can easily identify the cycles comprising input-output stems:
in (a) the feedback edge in gray closes the loop with an input-output stem
whereas in (b) there is only one cycle comprising two input-output stems.

Solution to (2b) : By the dual of Theorem 8§, the solution
of (2b) consists of two outputs (say y1, y2) that are required to
measure the state variables associated with the left-unmatched
vertices, i.e., {7,z9}. In addition, a new output or one of
the previously assigned should be assigned to x1¢. For the
case that y; or yo is connected to x19 we have the minimal
output solution (given by the dual of Corollary 1 applied
to structural design), depicted in Figure 3-(a). Therefore, the
structure of C' associated with the previous choice is: C_'Lg =1,
6’2710 =1, 6'2,7 = 1 and zero elsewhere. Hence, (2b) incurs
in the minimum of ||C||p = 3 (depicted by the red edges in
Figure 3-(a)).

Solution to P; Merge the solutions of (2a) and (2b) and the
result follows by Theorem 9. In particular, we also have the
minimal solution to P;, as described in Corollary 2.

Solution to Py Invoking Theorem 10, we can construct a
solution to P,. Consider B and C previously constructed to
solve P;, which are also minimal solutions (in the sense of
Corollary 2). First, notice that a common maximum matching
exists (as described by Lemma 4), which is depicted by the
blue edges in Figure 3. In fact, notice that uy — o — 1 —
T3 — X5 — Tg — Ts — Tg9 — Y1 defines an input-output
stem, as well as ug — x4 — x7 — yo. Together with the
feedback edges depicted by gray edges in Figure 3, the input-
output stems are covered by cycles, as specified in (13)-(14).
Further, notice that both Figure 3-(a) and Figure 3-(b) satisfy
the conditions in Theorem 2 and they are both mix-pairings
given by K such that K 1,1 = f(gg = 1 and zero elsewhere,
depicted in Figure 3-(b), and K such that K’Lg = K271 =1
and zero elsewhere, depicted in Figure 3-(b), respectively.



VIII. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have proposed several novel graph-
theoretic characterizations of all possible solutions to the fol-
lowing structural system design problems: (1) the I/O selection
problem, which studies the sparsest configurations of state
variables that are to be actuated/measured by inputs/outputs
(either dedicated or non-dedicated) to achieve structural con-
trollability/observability, and (2) the CC problem, which stud-
ies the sparsest information patterns or equivalently minimum
number and configurations of feedback edges required be-
tween inputs and outputs such that the closed-loop system is
free of structurally fixed modes. Our framework is unified,
in that, it presents a joint solution to the above problems.
Furthermore, we have provided algorithms of polynomial
complexity (in the number of state variables) for systematically
computing solutions to these problems. A natural direction for
future research consists of extending the current framework
to cope with I/O and CC selection with heterogeneous costs,
i.e., in which different state variables incur different actua-
tion/measurement costs and the communication cost (or cost
of incorporating a feedback edge) varies from one input-output
pair to another.

APPENDIX

In the sequel, given two digraphs D' and D2, V(D?) and
E(V(D?Y)), for i = 1,2, denote the set of vertices and the set
of edges with both linked vertices in V(D?) respectively. In
addition, the notation D! \ D? denotes the digraph D'\D? =
(VP'\P® = (DY)\V(D?), £(VP\PY)).

Proof of Lemma 1 : Let D' = (V',&’) be a digraph where
each vertex v € V' withi =1,...,¢p corresponds to a cycle
C' in the original digraph D, and an edge (v’ ,v?") € £ exists
between two vertices vil,vi” € V' if and only if there exists
an edge (in the original digraph D(A)) from a state vertex in
C" to a state vertex in C' . Now, notice that D’ is an SCC,
since the original D(A) is an SCC. In particular, it follows
that, for each vertex v’ € V', there exists a DAG D", with v’
as its root, that spans D’. Thus, the claim follows by noting
that such a spanning DAG in D’ corresponds to a chain in
D(A). |

Proof of Lemma 2 : Let C., i =1,--- ,, be any subcollec-
tion of cycles such that C; € NI for all 5. By applying Lemma

1 to each SCC of D(A), note that there exists a collection of
(disjoint) chains each of which spans a distinct SCC of D(A).
Moreover, by Lemma 1, the spanning chain in the i-th non-
top linked SCC, ¢ = 1,--- ,~, may be constructed such that
its first element is the cycle C;. Finally, note that each chain
spanning an SCC that is non-top linked has an incoming edge
to at least one of its vertices from (at least) one of the ~ chains
spanning the non-top linked SCCs. In particular, by merging
each chain in a top-linked SCC with exactly one chain in a
non-top linked SCC, we obtain a new collection of disjoint
7 chains which span D(A) and satisfy the requirements of
Lemma 2. ]

Proof of Lemma 3 : First observe from the definition, the
subgraph D* spans D(A).

We next prove the minimality of the decomposition (through
state-stems and cycles) achieved by M *. To this end, note that

the following generic digraph properties may be verified from
the definitions:

(1) For C C Ex_x, the digraph D¢ = (X, C) corresponds to
a spanning decomposition of D(A) into disjoint subgraphs of
state stems and cycles if and only if the edges in C define a
matching M (not necessarily maximum) for B(X, X, Ex x).

(2) The root of a state stem belonging to a matching M of
B(X,X,Ex x) is necessarily a right-unmatched vertex w.r.t.
M.

A direct consequence of the above properties is that the
edges in M* constitute a spanning decomposition of D(A)
into disjoint state stems and cycles. We now establish the
desired minimality of M™ by contradiction. Assume, on the
contrary, there exists a spanning decomposition D¢ of D(A)
into disjoint subgraphs of state stems and cycles, such that,
C consists of strictly fewer state stems than M™*. Then, by
property (1) above, the corresponding matching M€ con-
sists of fewer state stems than M *. Since, by property (2)
above, each state-stem in M corresponds to a unique right-
unmatched vertex (and similarly for M*), we conclude that
MC consists of strictly fewer right-unmatched vertices than
M?*. This clearly contradicts the fact, that, M* is a maximum
matching. Hence, the desired assertion follows. |

Proof of Theorem 3 : [=] Let S,, be a feasible dedicated
input configuration. Then, by Theorem 1, there exists a de-
composition of D(A) into state cacti, where the root of each
cactus is a vertex in S,. Now, further decomposing the state
cacti collection into disjoint state stems and cycles (which
necessarily span D(A)), it follows that the roots of the result-
ing state stems are vertices in S,. Then, by property (1) in
the proof of Lemma 3, we may conclude that S,, corresponds
to the set of right-unmatched vertices of a matching M (not
necessarily maximum) of B(A). Finally, note that there exists
a maximum matching M™, such that the set Ug of its right-
unmatched vertices is a subset of the set of right-unmatched
vertices of M. (Note that any matching can be augmented to
a maximum matching, see [28]). It follows immediately that
Ur C S,.

Now assume on the contrary that there exists no A, C S,
containing at least one state vertex from each non-top linked
SCC. Then, there is a non-top linked SCC without any of its
vertices in S,, which implies, by definition, that none of its
vertices are reachable from any state vertex in S,,. Hence, in
particular, such a non-top linked SCC cannot belong to any
state cacti decomposition of D(A) with roots in S,, which
contradicts that S,, is a feasible dedicated input configuration.

[«<] We show that D(A) can be decomposed into two
partitions Dy, and D4, that are spanned by disjoint union
of state cacti with roots in Ur and A, respectively. Let
Du, = (Vun,Eun) where Vi, is composed of all state

vertices that are reachable in D(A) from the state vertices in

Ug, and &, comprises the edges of D(A) with both endpoints
in Vyy,,, and let D4, = D(A)\Dy,,. We now show that each
partition is spanned by state cacti (with roots in Ur and A,
respectively) which would imply that D(A) is spanned by state
cacti with roots in S,,.

o Dy, is spanned by state cacti with roots in Ur: By

Lemma 3, it follows that D(A) is spanned by a disjoint union



of state stems S with roots in Ur and a disjoint union of
cycles C. In particular, by construction, Dy, is spanned by S
and a subset of the cycles that span D(A), denoted by C’ C C.
The digraph Dy, \S is then spanned by C’ (a disjoint union
of cycles) and hence, by Lemma 2, it follows that Dy, \S is
spanned by v disjoint chains, where ~ denotes the number
of non-top linked SCCs in Dy, \ S; moreover, each such
chain may be constructed to have as its first element a cycle
belonging to a distinct non-top linked SCC of Dy, \ S.

Finally, note that, by construction of Dy, each non-top
linked SCC in Dy, \ S has at least one incoming edge from
the set S. This implies, in particular, that the state stems S in
Duy,, connect to the chains spanning Dy, \ S and hence, Dy,
is spanned by a disjoint union of state cacti with its roots in
UR.

o D4, is spanned by state cacti with roots in .4,,: Notice that
D4, is spanned by a disjoint union of cycles and is comprised
of a subset of the non-top linked SCCs of D(A). For each non-
top linked SCC i of D 4,, let C* be a cycle in the i-th SCC
which contains a state vertex, say #*, from A,. (Note that
such C* exists for all 7 since .4, contains state vertices from
all the non-top linked SCCs.) Hence, another application of
Lemma 2 yields that there exist a disjoint collection of chains
in D4, (as many as the number of non-top linked SCCs in
D 4,,) such that the first element of each chain, say chain i, is
the cycle C* and the collection spans D_4,. Now observe that
each chain in turn is spanned by a state cacti; specifically, by
removing an edge appropriately from the first element (cycle)
C® of chain i, we may obtain a state cactus in which the state
vertices in C® form a state stem with #° € A, being its root
and the remaining cycles in C® are connected from the state
stem. Hence, it follows immediately that D4, is spanned by
a disjoint collection of state cacti with roots in A,,.

Hence, there exists a disjoint union of state cacti that spans
D(A) with roots in S, which implies by Theorem 1 that S,,
is a dedicated feasible input configuration. ]

Proof of Theorem 4 : From Theorem 3, it follows that
a (minimal) feasible dedicated input configuration S, must
contain a subset g of right-unmatched vertices w.r.t. some
maximum matching of B and a subset .4, comprising exactly
one state variable from each non-top linked SCC of D(A).
Therefore, for any such pair of subsets U/r and A,, the
size of a minimal feasible dedicated input configuration S,
is upper bounded by |S,| < |[Ugr| + |Au] — |Ur N Ay,] =
m+ S — |Ur N Ay |. The minimum is achieved by maximizing
the intersection |/r N A, |; by definition, the maximum value
of [UrN.A,| attainable under the given constraints on the sets
Ugr and A, is «, the maximum top assignability index (see

Definition 5). The desired assertion now follows immediately.
|

Proof of Theorem 5 : The characterization obtained in
Theorem 3 and the development in the proof of Theorem
4 implies that there is a one-to-one correspondence between
minimal feasible dedicated input configurations and subset
pairs (Ug, .A,) which maximize the intersection [Ur N A,
under the constraints that U/p is the set of right-unmatched
vertices of a maximum matching of 5 and A, is a subset of
state vertices with exactly one vertex in each non-top linked

SCC of D(A). It then readily follows that such maximizing
pairs are exactly the ones where U/r corresponds to the set
of right-unmatched vertices of a maximum matching of B
with maximum top assignability and A, = Ag U AS, where
AR C Ug denotes the set of state vertices in /g that belong to
non-top linked SCCs, and, A¢ is any subset of state variables
comprising only one state variable from each non-top linked
SCC of D(A) not assigned by the right-unmatched vertices
Upg. The desired equivalence follows immediately. ]
Proof of Theorem 6 : Follows from Theorem 5 and by
considering duality in linear systems, in other words, by taking
D(AT) and designing the corresponding B (using Theorem 5),
which corresponds to CT'. |
Proof of Theorem 7 : The proof is very similar to that of
Theorem 3. We sketch the outline, details are omitted.
[=11f (A, B) is structurally controllable, then by Theorem
1 it follows that it is spanned by a disjoint union of input cacti.
By definition, an input cactus is composed by an input stem
with edges going from its vertices (either the input or the state
vertices) to cycles and/or chains. In addition, an input stem
consists of an input with an edge to the root of a state stem,
thus, it follows (see proof of Lemma 3) that D(A) admits a
decomposition into state stems and cycles where the root of
each state stem is connected from a (distinct) input and the
roots of the state stems correspond to a set of right-unmatched
vertices Uy, associated with a matching of B (not necessarily
maximum). Therefore, by reasoning similarly to Theorem 3, it
follows that there exists a subset of right-unmatched vertices
Upg associated to a maximum matching of B that is contained
in Z/l}’%, hence condition i) must hold. Finally, note that each
state variable must be reachable from an input (an immediate
consequence of the system being spanned by a disjoint union
of input cacti) and hence, it follows that in each non-top linked
SCC there exists at one state variable that is directly connected
from an input. Thus, condition ii) must hold.
[«] Follows similar arguments as in the proof of Theorem
3 with the following additional notes: (1) by adding an edge
from an input assigned to Ug to a state variable in A, that
belongs to the first element (cycle) of a chain, we obtain an
input cactus (by the recursive definition of input cactus); and
(2) by Theorem 3, there exists a disjoint union of state cacti
with roots in Uy and A, that span D(A). [ |
Proof of Theorem 8 : Follows directly from Theorem 7 and
Theorem 5 as explained in the main text. |
Proof of Corollary I : The corollary follows from Theorem
8 as explained in the main text. ]
Proof of Theorem 9 : Theorem 9 is an immediate conse-
quence of Theorem 8 and its dual applied to structural output
design. |
Proof of Corollary 2 : The corollary is an immediate
consequence of Corollary 1 and its dual applied to structural
output design. ]
Proof of Lemma 4 : We start by introducing the notion of
augmenting paths: an augmenting path for a matching M is an
alternating path (i.e., a sequence of edges alternating between
two disjoint sets) with an odd number of edges ejes...en,
such that eqqa € M and eeven ¢ M. In addition, Berge’s
theorem [28] states that a matching is maximum if and only



if it does not have augmenting paths. Now, consider two
maximum matchings M, M? of B(A) = B(X,X,Ex x) and
let MPAM? = M1\ M2UM?\M*! denote the symmetric dif-
ference between the two maximum matchings. In addition, let
VE(MTAM?), VP (M AM?) denote the left-end vertices and
right-end vertices of the edges in M'AM? respectively. Take
BA = B(VE(MTAM?), VP (M*AM?), M*AM?), then, by
Berge’s theorem it follows that no augmenting path (w.r.t.
ML = M N (M*AM?) or M3 = M? N (M'AM?) - both
maximum matchings of B%) exists, hence every alternating
path w.r.t M} (or M3) in B2 has even number of edges
alternating between M ! and M?2. Suppose that VI (MAM?),
VP (MLAM?) contain py,ps (< [V = V2| = [VE| = [V2))
right and left-unmatched vertices respectively, then there exists
p = p1 + po alternating paths that start and end in right/left-
unmatched vertices. Let P~ denote the collection of p, al-
ternating paths that start and end in left-unmatched vertices.
It follows that M* = M'APL = MN\PL UPIA\M! is a
maximum matching of B(A) (the number of edges is kept the
same by the symmetric difference) with unmatched vertices
given by (V. V3), where V}, is due to the edges previously
in M! and V# induced by P together with the left-unmatched
vertices not in VX (M'AM?). [ |
Proof of Proposition 3 :
(1) Follows by the construction presented in the main text.
(2) We provide a constructive proof. Remark that by con-
struction, K € K(M"Y, 8y, -+ ,Spew|) (see (12)) yields
condition b) in Theorem 2. Additionally, if S; = M"Y (for
some 7 and S;NS; = () for all j # i) then the edge set associ-
ated with K is given by F(M™“Y,S;) (defined in (11)) which
leads to a cycle comprising the input-ouput stems described
by Proposition 2, therefore it passes through all non-top linked
and non-bottom linked SCCs. Hence D(A, B, K,C) consists
of a single SCC (recall Proposition 1 which implies that every
state vertex can be reached from an effective input and reaches
an effective output), which, in addition, contains at least one
feedback link (since the edge set of K is non-empty). Thus,
condition a) in Theorem 2 also holds.
3) Recall that by construction, the set
K(M*¥Y,S8y,---,8puv|), includes all possible information
patterns with exactly |M™Y| feedback links which ensure
condition b) in Theorem 2 and, additionally, information
patterns with strictly fewer feedback links cannot achieve the
design objectives (see the lower bound (12) on the minimum
number of feedback edges required and the explanation in
the main text). The desired assertion follows immediately. H
Proof of Theorem 10 : [«<] If B,C are constructed
as in Corollary 2 then the system is structurally control-
lable/observable and minimality in ||B||o,||C||o is achieved.
Furthermore, at least max(m, 1) feedback links, where m
denotes the number of right/left-unmatched vertices need to be
considered, as obtained in (10). In addition, the lower bound
in (10) can be achieved as described in Proposition 3.
[=1] Given the previous developments, it is routine to verify
that if any of the conditions on B, C, or K as described in
the hypothesis is not satisfied, the triple cannot be a solution

to P. |
Proof of Theorem 11 : Step 1 can be performed by executing

depth-first search twice (as explained in chapter 22.5 in [28],
see also Section II), to obtain the DAG and consequently
identify the non-top linked SCCs. In particular, the correctness
of obtaining the non-top linked SCCs follows immediately.
Further, it incurs in O(]X'|+|Ex,x|) complexity. The construc-
tion of the weighted bipartite graph B(X, XY UZ,Ex x UET x)
follows readily D(A) and its DAG representation, which incurs
in at most linear complexity. Subsequently, a minimum weight
maximum matching can be obtained using the Hungarian
algorithm, which incurs in O(|X|?) (see [32]). To see that
the set of right-unmatched vertices presented in Step 3 is
associated with a maximum maximum with maximum top-
assignability, we notice the following: Let M’ be a maximum
matching found using the Hungarian algorithm (in particular,
it incurs in the minimum cost). Then, M* = M’ \ {(i,z;) €
M' : i € ZTandz; € X} is a maximum matching of
B = B(X,X,Ex x), because edges from £y x incur lesser
cost than those in £z x, and the latter are only used if
no edge from £x x can be used to increase the matching.
Additionally, notice that all edges from £z x N M’ have one
of their endpoints in vertices from X, which we represent
by ©. Hence, those same vertices become right-unmatched
vertices associated with A *. Futhermore, each vertex in ©
belongs to a different non-top linked SCC, by construction
of £z x. In fact, we notice that © comprises the maximum
number of state vertices from the set of right-unmatched
vertices in distinct non-top linked SCCs. In other words,
the maximum matching M* has a set of right-unmatched
vertices which ensures maximum top-assignability. This last
claim is a consequence of noticing that to obtain more right-
unmatched vertices in distinct non-top linked SCCs either
there exists another another maximum matching M" with an
additional edge from £z x which increases the total cost and
consequently M" \ {(i,z;) € M"” : i € Zand z; € X} is
not a maximum matching of B. Finally, Step 4 has linearly
computational complexity and it follows, by Theorem 5, that
S, is a minimum feasible dedicated input configuration. W

Proof of Corollary 3 : By Theorem 6 and Theorem 9
it follows that solutions to P and P; may be computed
by performing simple constructions (without incurring addi-
tional complexity) once a pair of minimal feasible dedicated
input/output configurations are available (the latter may be
determined in polynomial complexity in the number of state
variables, as stated in Theorem 12). A solution to P, can
also be determined by incurring polynomial complexity since
it requires a minimal solution to problem P; (may be deter-
mined with polynomial complexity) and a mix-pairing K of
D(A, B,C) (see Theorem 10), the latter can be constructed
using a polynomial complexity procedure (also without in-
creasing the overall complexity), see Remark 3. ]
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