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Abstract—This paper presents a Model Predictive Control
(MPC) scheme where a combination of a stabilizing stage cost
and an economic stage cost is employed to allow the minimization
of an economic performance index while still guaranteeing
convergence toward a desired steady-state. Input-to-state-stability
(ISS) with respect to the economic stage cost is provided. More
precisely, for the case of an economic stage cost converging to
zero, the economic optimization only affects the transient behav-
ior of the closed-loop trajectories preserving the convergence to
the desired steady-state. Alternatively, if the economic stage cost
is merely bounded, or convergent to a bound, the closed-loop
state trajectory is ultimately bounded around the desired steady-
state with the size of the bound being monotonically increasing
with the magnitude of the economic stage cost. The loosening
of the closed-loop guarantees, i.e., moving from convergence to
ultimate boundedness, gives space to the increase of economic
performance. Numerical results illustrate the effectiveness of
the proposed method on an energy efficient trajectory-tracking
control problem of a marine robotic vehicle navigating in the
presence of water currents.

Index Terms—Economic model predictive control; input-to-
state-stability; nonlinear predictive control; constrained control;
nonlinear systems; maritime control

I. INTRODUCTION

THE two key features that determined the success of MPC
strategies in many control applications are the ability to

satisfy input and state constraints and to explicitly optimize a
given performance index. Depending on the meaning of the
performance index, we identify two classes of MPC schemes:
tracking MPC and economic MPC.

In a tracking MPC scheme, the performance index is chosen
to penalize the distance from the current state to a desired one,
therefore driving the state vector to a desired steady-state or
state trajectory. For an overview of the methods that utilize the
so-called terminal set and terminal cost, we refer the reader to,
e.g., [1], [2], [3], [4], for the discrete-time case, and to, e.g.,
[5], [6], [7], for the continuous-time counterpart. In contrast,
the work [8] avoids the use of these terminal elements and
focusses on the computation of a sufficiently long horizon to
guarantee closed-loop stability.

In an economic MPC scheme, the term “economic” is used
to highlight that the performance index is not designed as a
distance from a desired state, but it rather represents an index
of interest to be minimized, e.g., an economic performance
index. Here, the main challenge stems from the fact that the
standard value function, used in tracking MPC, is generally not
decreasing as the state approaches the economically optimal
steady-state or state trajectory. A solution to this problem

is proposed in [9], and later generalized in [10], [11], [12],
where a rotated value function, which satisfies the desired
decrease, is designed using a dissipativity property of the
system. Whereas the above-mentioned methods employ a
terminal set and a terminal cost, in [13] the author avoids
these elements and provides conditions on horizon length and
prediction for closed-loop state convergence to an arbitrarily
small neighborhood of the optimal steady-state. In [14] the
authors extend their tracking MPC scheme [15], [16], designed
to address the stability and recursive feasibility for the case
of jumps of the desired set point, to the case of jumps on
the economic stage costs, and therefore, on the associated
economically optimal steady-state. The work [12] considers
generic time-varying economic stage costs and convergence to
possibly time-varying economically optimal state trajectories
in the continuous-time framework.

Other approaches to economic MPC developed without the
use of dissipativity properties of the system has been reported
in the literature. In [17], [18] a generalized terminal set,
consisting of all the feasible steady-states, and a constraint
on the decrease of the terminal cost from one solution of
the MPC optimization problem to the other, are employed to
ensure closed-loop state convergence to a steady-state of the
system. In [19] the proposed controller constantly optimizes
the economic stage cost and, at an arbitrarily given time, the
convergence to a desired steady-state is enforced by constrain-
ing the state within shrinking level sets of a given control
Lyapunov function defined over the whole region of interest.
In [20], [21] a combination of a stabilizing and an economic
stage cost is adopted while still guaranteeing stability and
convergence, respectively, to a desired steady-state.

Despite of the active research in the field, most of the con-
tributions focus on the convergence to a steady-state, which is
either the economically optimal one [9], [10], [11], [14], [13],
a generic one [17], [18], or one that is given [19], [20], [21].
Some exceptions are the works [22], [11], [23] that focus on
the convergence to an optimal periodic state trajectory and [12]
that addresses convergence to a pre-computed economically
optimal time-dependent state trajectories. This general trend
rules out a set of interesting behaviors, e.g., bounded and non-
periodic trajectories, that arise in many practical applications
where the compromise between economic performance and
tracking performance is the desired behavior. Further, often,
the economically optimal behavior cannot be calculated a
priori and the use of other specific assumptions (like the
dissipativity assumption of the dissipativity-based Economic
MPC, e.g., [9], [10], [11], [12]) can be challenging to verify,
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but one would still require to have some guarantees on the
closed-loop behavior of the system that is driven to minimize
an economic objective.

Combining an economic and a stabilizing performance in-
dex is a direct and appealing technique used in many practical
control problems. The idea of adding a “stabilizing” term to an
economic stage cost function to obtain closed-loop guarantees
is not new in the technical literature. Such term is intended
as a regularization term in, e.g., in [22] to prove convergence
to periodic orbits, or in [9] to satisfy a dissipativity property
and therefore certify convergence to an economically optimal
steady-state. In [24] a similar term is added to increase the
closed-loop performance in the transient phase.

In this work, we propose a different approach by proving
that the system in closed-loop with an MPC controller is ISS
with respect to the economic stage cost. Using this property,
it is shown that for the case where of economic stage cost
is uniformly bounded over time, or converges to a bound,
the closed-loop state trajectory of the system converges to a
bounded set around the desired steady-state, with the size of
the bound being monotonically increasing with the magnitude
of the economic stage cost. We build on our previous works
[25], [26], where the result in [26] is first extended to the
case of time-varying dynamical models, constraints sets, and
stage costs, and then merged with [25] in a unified framework.
The theory is further extended from convergent-economic-
cost-convergent-state to ISS with respect to the economic cost.

The remainder of this paper is organized as follows: the
problem definition is given in Section II, followed by the main
result in Section III, and in Section IV with a discussion on
possible design methods. Section V presents an application of
the proposed approach to energy efficient control of a marine
vehicle navigating through water currents. Section VI closes
the paper with conclusions.

Notation. For a generic continuous-time trajectory x, the
term x([t1, t2]) denotes the trajectory considered in the time
interval [t1, t2] and x(t) the trajectory evaluated at a specific
time t. The notation x(τ ; t, z) is used whenever we want to
make explicit the dependence of x(τ) on the optimization
problem parameters t and z, and we adopt the bar notation x̄ to
refer to a predicted trajectory, i.e., a feasible future trajectory
of the MPC optimization problem. For a generic function
g : R × Rm → R, with time and state vectors as parameters,
and scalar γ ≥ 0, the term L(t; g, γ) denotes the time-varying
γ-sublevel set of g(·), i.e., L(t; g, γ) := { x : g(t, x) ≤ γ }.
If the function g(·) takes only the state as parameter, then
L(g, γ) := { x : g(x) ≤ γ } denotes the associated time
invariant γ-sublevel set. The term B(r) denotes the closed ball
set of radius r defined as B(r) := {x : ‖x‖ ≤ r}. A function
continuous α : [0, a)→ R≥0, for some a > 0, is said to belong
to class K if it is zero at zero and strictly increasing. Moreover,
α(·) is said to belong to class K∞ if it is a class-K function
with a =∞, and it is radially unbounded, i.e., α(x)→∞ as
x→∞. A function β : R≥0 ×R≥0 → R≥0 is said to belong
to class-KL if for each fixed s the mapping β(r, s) belongs to
class-K with respect to r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → ∞. For a given
n ∈ N, SE(n) denotes the Cartesian product of Rn with the

group SO(n) of n×n rotation matrices and se(n) denotes the
Cartesian product of Rn with the space so(n) of n×n skew-
symmetric matrices. The term C(a, b) and PC(a, b) denotes
the space of continuous and piecewise continuous trajectories,
respectively, defined over [a, b] or [a,+∞) for the case where
b = +∞. For sake of simplicity, the dependence on time and
parameters is dropped whenever it is clear from the context.

II. PROBLEM DEFINITION

Consider the continuous-time dynamical system

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0, t ≥ t0 (1)

and let the state and input vectors x(t) ∈ Rn and u(t) ∈ Rm
be constrained as

(x(t), u(t)) ∈ X (t)× U(t), t ≥ t0, (2)

where the set-valued maps X : R ⇒ Rn and U : R ⇒ Rm
denote the time-varying state and input constraint sets, and t0
and x0 = x(t0) are the initial-time and initial-state vectors,
respectively.

Definition 1 (Open-loop MPC problem). Given a pair
(t, z) ∈ R≥t0×Rn and an horizon length T ∈ R>0, the open-
loop MPC optimization problem P(t, z) consists in finding the
optimal control signal ū∗ ∈ PC(t, t+ T ) that solves

J∗T (t, z) = min
ū∈PC(t,t+T )

JT (t, z, ū)

s.t. ˙̄x(τ) = f(τ, x̄(τ), ū(τ)), ∀τ ∈ [t, t+ T ]

(x̄(τ), ū(τ)) ∈ X (τ)× U(τ), ∀τ ∈ [t, t+ T ]

x̄(t) = z,

x̄(t+ T ) ∈ Xaux(t+ T )

with

JT (t, z, ū) :=

∫ t+T

t

l(τ, x̄(τ), ū(τ))dτ +m(t+ T, x̄(t+ T ))

where the finite horizon cost JT (·), which corresponds to the
performance index of the MPC controller, is composed of the
stage cost l : R≥t0 × Rn × Rm → R and the terminal
cost m : R≥t0 ×Rn → R, which is defined over the time-
varying terminal set Xaux : R≥t0 ⇒ Rn. In the sequel, we
denote by kaux : R≥t0 × Rn → Rm an auxiliary control law
defined over the terminal set, such that kaux(t, x) ∈ U(t)
for all t ≥ t0 + T and x(t) ∈ Xaux(t). �

For a given pair (t̂, x̂) ∈ R≥t0 × Rn we say that the open-
loop MPC problem P(t̂, x̂) is feasible if it admits a feasible
solution.

In a sampled-data MPC approach, the control input is
computed at the discrete-time samples

T := {t0, t1, . . . }, δk := tk+1 − tk ∈ [δ, δ̄] (4)

for two positive scalars δ and δ̄ with δ < δ̄. Concatenating the
solution of the MPC optimization problem with the auxiliary
control law results in the following notion of extended state
and input trajectories.
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Definition 2 (Extended trajectories). The extended input tra-
jectory uei(t) for t ∈ [ti,∞) at (ti, xi), with xi := x(ti), is
defined to be the concatenation of the open-loop MPC solution
ū∗(t; ti, xi) with the auxiliary control law kaux(·) as follows:
uei(t) = kext(t, x; ti, xi) with

kext(t, x; ti, xi) :=

{
ū∗(t; ti, xi), t ∈ [ti, ti + T ]

kaux(t, x), t > ti + T
.

The extended state trajectory xei(t) is the related closed-loop
state trajectory starting at (ti, xi) ∈ R≥t0 ×X (ti). �

The following mild assumptions on the dynamical model
are required to guarantee, together with the boundedness of
the state vector, the existence and uniqueness of the solution
of the system in closed-loop with the MPC controller.

Assumption 1. The function f(·), introduced in (1), is locally
Lipschitz continuous in x, piecewise continuous in u and
t in the region of interest, and without loss of generality,
f(t, 0, 0) = 0, for all t ≥ t0. Moreover, f(·) is bounded for
bounded states, i.e., the set

{‖f(t, x, u)‖ : t ≥ t0, x ∈ X̂ , u ∈ U(t)} (5)

is bounded for any bounded set X̂ ⊂ Rn. �

The condition on the boundedness of f(·) for bounded
x, also adopted in [7], is always satisfied in the case of
time-invariant systems with input constraints set U(·) being
uniformly bounded over time.

The sampled-data MPC control law is defined as

u(t) = kMPC(t, x) := kext(t, x; btc, x(btc)), (6)

where btc is the maximum sampling instant ti ∈ T smaller
than or equal to t, i.e., btc = maxi∈N≥0

{ti ∈ T : ti ≤ t}.
Note that the control input (6) is well defined even when the
distance between two consecutive sampling instants of time
is greater than the horizon length, i.e., ti+1 − tt > T . In this
case, the closed-loop input trajectory results in a combination
of optimal trajectories and auxiliary control inputs.

The following technical assumption is required to guarantee
the existence of the solution associated with the auxiliary
control law.

Assumption 2. The closed-loop systems (1) with
u(t) = kaux(t, x), from Definition 1, admits a unique
solution defined for all t ≥ t0 + T . �

The goal of this paper is to analyze the properties of the
closed-loop system (1)-(6) for the case that the stage cost is
chosen to be a combination of a standard stabilizing stage cost,
from tracking MPC, and an economic stage cost. Toward this
goal, the stage cost is decomposed as

l(t, x, u) = ls(t, x, u) + le(t, x, u) (7)

where the functions ls : R≥t0 × Rn × Rm → R and
le : R≥t0 × Rn × Rm → R denote the stabilizing stage
cost and the economic stage cost, respectively.

III. MAIN RESULT

Before stating the main result, we introduce the following
assumptions that are common in the tracking MPC literature.

Assumption 3 (Initial feasibility). The optimization problem
P(t0, x0) admits a feasible solution. �

Assumption 4 (Stabilizing stage cost).
(i) The state constraint set X (t) and the terminal set

0 ∈ Xaux(t) ⊆ X (t) are closed, connected, and
contain the origin for all t ≥ t0. The input constraint set
U(t) is such that 0 ∈ U(t) for all t ≥ t0.

(ii) The stabilizing stage cost satisfies ls(t, 0, 0) = 0 and
there is a class-K∞ function α : R≥0 → R≥0 such that
ls(t, x, u) ≥ α(‖x‖) for all (t, x, u) ∈ R≥t0×Rn×Rm.

(iii) The function m(·) is positive semi-definite.
(iv) For any given pair (x̂, û) ∈ Rn × Rm the functions

l(t, x̂, û) and m(t, x̂) are uniformly bounded over time.
(v) There exists a feasible auxiliary control law

kaux : R≥t0 × Rn → Rm, defined over the
terminal set Xaux(·), such that, for the closed-loop
system (1) with u(t) = kaux(t, x), with initial time
and state pair (t̂, x̂) ∈ R≥t0+T × Xaux(t̂), the state and
input vectors satisfy x(t) ∈ Xaux(t) and u(t) ∈ U(t),
respectively, and the condition

m(t̂+ δ, x(t̂+ δ))−m(t̂, x̂)

≤ −
∫ t̂+δ

t̂

ls(t, x, kaux(t, x))dt (8)

holds for any δ > 0.

Assumption 5. Consider the constrained system (1)-(2) and
the open-loop MPC problem from Definition 1. For all
(t̂, x̂) ∈ R≥t0 × Rn with P(t̂, x̂) feasible there exists a
control law uf ∈ PC(t̂, t̂ + T ) such that, the closed-loop
system (1) with u(t) = uf (t), t0 = t̂, and x0 = x̂, has
feasible state and input trajectories, i.e., satisfying (2), and
the inequality∫ t̂+T

t̂

ls(τ, x, uf )dτ +m(t̂+ T, x(t̂+ T )) ≤ αc(‖x(t̂)‖)

holds for a class-K∞ function αc : R≥0 → R≥0. �

This assumption was employed in [3] (Assumption SA4) for
the discrete-time case, for a specific uf to guarantee closed-
loop stability of the origin. For a suitable choice of stage and
terminal cost, this assumption coincides with the existence of a
control input that renders the origin of the closed-loop system
an asymptotically stable equilibrium point. We refer the reader
to Section III of [3] for an interesting discussion on the topic.

For the sake of generality, Assumptions 1-5 and the Def-
inition 1 of the open-loop MPC problem consider piecewise
continuous input signals. Although, we highlight that the result
of this paper still holds if restricting the input to be piecewise
constant, as long as all the assumptions are satisfied within
this framework, i.e., including the piecewise constant auxiliary
control law. This can be the case in many practical applications
where continuous-time dynamical systems are controlled by
digital MPC controllers.
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The main theorem of the paper is the following:

Theorem 1 (ISS-based Economic MPC). Let Assumptions 1-5
hold. Then, the system (1) in closed-loop with (6), where l(·) is
decomposed as in (7), is ISS with respect to the economic stage
cost, i.e., there exists a class-KL function β(·) and a class-K
function γ(·) such that for any initial state x(t0) ∈ X (t0)
and any bounded B defined as

B := sup
τ≥t0

(‖le(τ, x(τ), u(τ))‖) (9)

the solution x(t) exists and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ(B). (10)

for all t ≥ t0. �

Remark 1 (Transient economic optimization). It is worth
noting that Theorem 1 can be applied to cases where the
economic optimization is only performed during a transient
phase, while still guaranteeing convergence to the desired
steady-state. This is due to the fact that, in general, the ISS
property of a system implies the convergent-input-convergent-
state property. Therefore, if the economic stage cost converges
to zero, then also the state will converge to the desired steady-
state. For further discussions on transient optimization in a
similar framework, we refer the reader to [24]. Depending on
the intensity of the economic stage cost, the latter work shows
how it is possible to preserve closed-loop stability of the set-
point, as proposed in [20], or allow to renounce to stability for
convergence in order to leave more space to perform economic
optimization, as proposed in [25], [24] and allowed by the
framework presented in this paper. �

Remark 2 (Uniform and asymptotic boundedness). The use
of the terminal set in Assumption 4 is enough to guarantee the
recursive feasibility of the open-loop MPC optimization prob-
lem. Therefore, uniform boundedness of the state trajectory
could be enforced using state constraints for any arbitrary
performance index. Although, as the main drawback, the
region of attraction of the controller would clearly be limited
within such constraints. This is in contrast with the approach
proposed in this paper, where the bound is not imposed by state
constraints, i.e., uniformly for all t ≥ t0, but derives from the
ISS property of Theorem 1, and is reached asymptotically as
t→∞, from all initial states of the region of attraction. Since
no further state constraints are required, the proposed MPC
controller can guarantee convergence to an ultimate bound
and still potentially have a global region of attraction. This is
the case of the simulation results of Section V, where a vehicle
is driven to an ultimate bound around the desired trajectory
starting from any initial condition. �

Remark 3 (Quality of the bound B). As well known in the
MPC literature, adding a term that is not a function of the
optimization variables x̄ and ū to the performance index does
not influence the optimizer of the open-loop MPC optimization
problem. Therefore, it is important to remove such terms before
computing the value of B to avoid a conservative estimate of
the ultimate bound. �

A. Proof of Theorem 1

The proof is structured as follows: we start by introducing
a shifted value function. In contrast to the standard value
function from tracking MPC, an offset term is introduced
to capture the effect of the economic stage cost. Upper and
lower bounds of such function are derived in Lemmas 1-3.
Lemma 4 provides a bound on the decrease of the shifted
value function evaluated along the closed-loop state trajectory.
Using this latter result, Lemma 5 shows that the sampling of
the closed-loop value function evaluated at the time instants T
is ISS with respect to B, where we say that a sampling is ISS
when the discrete-time system associated with the evolution
of such samples is ISS. Using Lemma 4 and Lemma 5,
Lemma 6 demonstrates that the same ISS property applies
to the whole continuous time evolution of the value function.
Combining this last result with Lemma 3 concludes the proof
of Theorem 1. For the sake of clarity, the proofs of the lemmas
are presented in Appendix.

Definition 3 (Shifted value function). Consider the open-loop
MPC problem from Definition 1 and the bound B from (9).
Moreover, consider a pair (t̂, x̂) ∈ R≥t0 × X (t̂) with P(t̂, x̂)
feasible. Using the minimizer ū∗ ∈ PC(t̂, t̂ + T ), and the
associated state trajectory x̄∗ ∈ C(t̂, t̂+ T ), the shifted value
function is defined as

V(t̂, x̂) :=

∫ t̂+T

t̂

l(τ, x̄∗, ū∗)dτ

+m(t̂+ T, x̄∗(t̂+ T ))− TB. (11)

�

Lemma 1 (Upper bounds on shifted value function). Consider
the open-loop MPC problem from Definition 1, the bound
B from (9), and let Assumptions 1-5 hold. Then, for all
(t̂, x̂) ∈ R≥t0 ×X (t̂) with P(t̂, x̂) feasible, the shifted value
function V(·) from Definition 3 satisfies

V(t̂, x̂) ≤ αc(‖x̂‖). (12)

�

Before computing a lower bound for the value function, we
first present the following lemma.

Lemma 2. Consider the system (1) and let Assumption 1
hold. Then, for any class-K∞ function α : R≥0 → R≥0

and constant ∆ > 0 there exists a class-K∞ function
α∆ : R≥0 → R≥0 such that∫ t+δ

t

α(‖x(τ)‖)dτ ≥ δα∆(‖x(t)‖) (13)

holds for all δ ∈ [0,∆], x(t) ∈ Rn, and t ≥ t0. �

Lemma 3 (Lower bounds on shifted value function). Consider
the open-loop MPC problem from Definition 1, the bound
B from (9), and let Assumptions 1-5 hold. Then, for all
(t̂, x̂) ∈ R≥t0 × X (t̂) with P(t̂, x̂) feasible and for any
∆ ≤ T , the shifted value function V(·) from Definition 3
satisfies

V(t̂, x̂) ≥ δvα∆(‖x̂‖)− 2TB (14)
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for any scalar δv ∈ (0,∆], and for a class-K∞ function
α∆ : R≥0 → R≥0. �

The previous lemmas describe the properties of the shifted
value function at a generic pair (t̂, x̂) ∈ R≥t0 ×Rn. Next, we
focus on the evolution of the latter evaluated along the state
trajectory of the closed-loop (1) with (6).

Lemma 4. Consider the shifted value function V(·) from
Definition 3, the bound B from (9), and let Assumptions 1-5
hold. Then, along the closed-loop (1) with (6), the inequality

V(ti + δ, x(ti + δ)) ≤ V(ti, x(ti))

−
∫ ti+δ

ti

α(‖x(τ)‖)dτ + 2δB (15)

holds for any ti ∈ T and δ > 0. �

Consider the sampling of the closed-loop state trajectory

S := {si = x(ti) : ti ∈ T } (16)

at the time instants ti ∈ T with T defined in (4). Then, by
Lemma 2 and Lemma 4 we have

V(ti+1, si+1) ≤ V(ti, si)

−
∫ ti+1

ti

α(‖x(τ)‖)dτ + 2(ti+1 − ti)B

≤ V(ti, si)− δαδ̄(‖si‖) + 2δ̄B. (17)

Using standard arguments from ISS analysis of discrete-time
systems [27], adapted to the shifted value function, equation
(17) is used to show that the shifted value function evaluated
at the sampling (16) satisfy an ISS bound with respect to B,
as made explicit in the following lemma.

Lemma 5 (ISS bound on sampled value function). Consider
the shifted value function V(·) from Definition 3, the bound B
from (9), and let Assumptions 1-5 hold. Then, for the sampling
S of the closed-loop (1) with (6), defined in (16), there exists
a class - KL functions β̂δ(·), dependent on δ and δ̄ and with
β̂δ(r, 0) = r, such that

V(ti, si) ≤ max
{
β̂δ(V(t0, s0), i), γ̂(B)

}
(18)

holds with

γ̂(r) := α̂−1
(
ρ−1(2δ̄r)

)
, (19)

for any integer i ∈ N≥0, class-K∞ function ρ(·) such that
(Id−ρ)(·) belongs to class-K∞, and class-K∞ functions α̂(·),
which always exists, such that α̂(r) ≤ δαδ̄(α

−1
c (r)), for all

r ≥ 0, and (Id− α̂)(·) belongs to class K. �

Since from sample to sample the value function satisfies
(18) and among samples, from (15), the value function does
not increase more than 2δ̄B, the following lemma shows that
an ISS bound with respect to B also applies to V (·) evaluated
along the whole continuous-time trajectory.

Lemma 6 (ISS bound on value function). Consider the shifted
value function V(·) from Definition 3, the bound B from (9),

and let Assumptions 1-5 hold. Then, there exists a class-KL
functions β̂(·) such that

V(t, x(t)) ≤ max
{
β̂(V(t0, x0), t− t0), γ̂(B) + 2δ̄B

}
(20)

holds with γ̂(·) in (19) for all t ≥ t0. �

At this point, consider Lemma 3 with δv = ∆. Combining
the lower bound (14) with (20) and the fact that max{a, b} ≤
a+ b ≤ max{2a, 2b} for any a, b ∈ R≥0, leads to

∆α∆(‖x(t)‖)
≤ max{β̂(V(t0, x0), t− t0), γ̂(B) + 2δ̄B}+ 2TB (21)

≤ max
{

2β̂(V(t0, x0), t− t0), 2γ̂(B) + 4δ̄B, 4TB
}

and therefore, by (12) and the monotonicity of α−1
∆ (·), to the

desired bound

‖x(t)‖ ≤ max

{
α−1

∆

(
2

∆
β̂(αc(‖x(t0)‖), t− t0)

)
, α−1

∆

(
2γ̂(B) + 4δ̄B

∆

)
, α−1

∆

(
4BT

∆

)}
≤ β(‖x(t)‖, t− t0) + γ(B) (22)

where β(·) and γ(·) are the class-KL and the class-K∞
functions defined as

β(r, s) := α−1
∆

(
2

∆
β̂(αc(r), s)

)
γ(r) := α−1

∆

(
2γ̂(r) + 4δ̄r

∆

)
+ α−1

∆

(
4rT

∆

)
.

This concludes the proof. �

IV. DESIGN METHODS

This section addresses the design of the MPC proposed
controller. Specifically, we provide guidelines for the design of
the open-loop MPC optimization problem, from Definition 1,
and for the estimation of the size of the asymptotic bound of
the state vector.

A. Design of the open-loop MPC optimization problem

The design of the MPC controller requires the selection a
suitable terminal set, terminal cost, and stage cost that satisfy
the assumptions of Theorem 1.

1) Terminal set, terminal cost, and stabilizing stage cost:
It is worth to notice that, by setting le(·) = 0, Assumption 4
coincides with the well-known tracking MPC sufficient con-
ditions for convergence of the closed-loop state trajectory to
the origin, see, e.g., [5], [7]. Consequently, the design of the
stage cost ls(·) and the computation of the auxiliary elements
m(·) and Xaux(·) can be performed using any of the design
techniques presented in the tracking MPC literature.
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2) Economic stage cost: In many practical applications, the
bound B in (9) can be obtained by physical considerations
on the system under analysis. Although, for the general case
where such assumption can be difficult to be a priori verified,
a simple approach consists in enforcing the desired bound
using a smooth saturation-like function. In particular, consider
the function l̂e : R≥t0 × Rn × Rm → R that we wish to
minimize and a smooth saturation-like function sat : R→ E ,
with bounded E , e.g., the function

sat(x) = k1 atan

(
1

k2
x

)
,

where the constants k1 > 0 and k2 > 0 determine the maxi-
mum value and the smoothness of the function, respectively.
Then, the saturated economic cost

le(t, x, u) = sat(l̂(t, x, u))

is trivially bounded by, e.g., B = k1π/2.
On the same line, and recalling Remark 1, if we wish

to affect only the transient behaviour of the closed-loop
trajectory, the bounded economic cost can be multiplied by
an integrable function q : R→ R as follows

le(t, x, u) = q(t) sat(l̂(t, x, u))

with ∫ +∞

t0

|q(τ)|dτ < +∞.

This last method was employed in [25], with
q(t) = c e−λ(t−t0), for two positive constants c > 0
and λ > 0, to design highly observable closed-loop
trajectories converging to the origin.

B. Estimation of the ultimate bound

Theorem 1 shows that the state vector x converges asymp-
totically to a set with size monotonically increasing with the
value of B. Such bound can be obtained by considering (20)
and taking the time t to infinity, which leads to the level set

L(t;V, γ̂(B) + 2δ̄B) (23)

with γ̂(·) in (19) and where, for the sake of simplicity, in
this section we consider δ = δ̄ = δ. Although the set (23) is
in general difficult to compute, this section shows that, under
certain assumptions, it can be outer bounded by the set{

x : ‖x‖ ≤ α−1

(
α̂−1(2δB) + 2δB + 2TB

δ

)}
(24)

where α̂(·) is any class-K function, which always exists, such
that α̂(r) ≤ δα(m−1(r)), for all r ≥ 0, and (Id − α̂)(·)
belongs to class K. The function m(·) and α(·) are from
Assumption 4, where for the sake of simplicity, m(·) is
assumed to be time-invariant. If this is not the case, it is always
possible, by Assumption 5, to consider a time-invariant class-
K∞ upper bound of m(·).

The approximation (24) is obtained combining (23) with the
functions αδ̄(·) and αc(·), used in (19), and the lower bound
of the shifted value function V (·) computed next.

Computation of αδ̄(·). Notice that the function αδ̄(·) is a
class-K∞ function adopted in Lemma 4 to lower bound the
integral of the stage cost as∫ ti+1

ti

ls(τ, x, u)dτ ≥
∫ ti+1

ti

α(‖x(τ)‖)dτ ≥ δαδ̄(‖x(t)‖)

(25)

for u ∈ PC(ti, ti+1). In order to estimate the function αδ̄(·),
consider the approximated performance index

JT (t, z,u) ∼
N∑
i=0

δl(t+ δi, x(t+ δi), u(t+ δi))

+m(t+ T, x(t+ T )) (26)

for δ̄ = δ = δ = T/N with N ∈ Z≥1,
or equivalently, consider the “sample-and-hold”
stage cost defines as l(bτc, x(bτc), u(bτc)) with
bτc = maxi∈N0:N

{ t + δi : t + δ i ≤ τ}.
Note that, (26) holds with equality in many numerical
implementations of MPC controllers obtained by discretizing
the continuous-time performance index with a discretization
step of δ. Then, the last inequality of (25) holds with equality
by choosing αδ̄(r) = α(r), for all r > 0.

Computation of αc(·). Within the terminal region, when-
ever present, or equivalently restricting X (t) to be Xaux(t),
it is possible to choose αc(r) = m(r), with r ≥ 0. This
is a direct consequence of the property (8) of the function
m(·), which highlights that the terminal cost upper bounds
the infinite horizon performance index (cost-to-go) over the
terminal set.

Computation of lower bound on V(·). The lower bound
on the value function can be obtained by combining Lemma
3 with the choice α∆(r) = α(r), with r ≥ 0, and ∆ = δ,
discussed above.

At this point, combining (23) with (19), where ρ(r) = θr
with θ ∈ (0, 1), approximating taking θ to 1, and selecting
αδ̄(r) = α(r) and αc(r) = m(r), for all r ≥ 0, leads to (24).

Although this section provides a closed-form estimate of the
asymptotic bound, it is worth noting that, in general for B 6= 0,
the bound (24) can be conservative. This is a consequence
of the fact that tight lower and upper bounds of the value
function used in this section are generally difficult to compute.
Moreover, the estimate of such ultimate bound is associated
to the worth case scenario where the economic stage cost is
always at its maximum (bounded) value, which is generally
not the case. This is illustrated in the following section via
numerical simulations.

V. SIMULATION RESULTS

The proposed MPC scheme finds applications in scenarios
where one desires to i) minimize an economic objective that
is conflicting with the main tracking objective and, ii) there
is margin to reduce tracking accuracy to perform economic
optimization. An example is the problem of energy-efficient
trajectory tracking of a marine robotic vehicle in the presence
of water currents. Here, similarly to [28], the tracking objective
is to drive the vehicle to a pre-defined trajectory and the
economic objective is to reduce the energy of the control
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input signal. This section analyzes the two cases of persistent
penalization of the energy of the input signal, leading to
an asymptotic tracking error, and its transient penalization,
leading to convergence to the desired trajectory.

A. Model description

Let I be an inertial coordinate frame and B be a
body coordinate frame attached to the vehicle. The pair
(p(t), R(t)) ∈ SE(2) denote the configuration of the
vehicle, position and orientation, where R(t) is the ro-
tation matrix from body to inertial coordinates. Now, let
(v(t),Ω(ω(t))) ∈ se(2) be the twist that defines the velocity
of the vehicle, linear and angular, where the matrix Ω(ω(t)) is
the skew-symmetric matrix associated to the angular velocity
ω(t), defined as

Ω(ω(t)) :=

(
0 −ω(t)
ω(t) 0

)
.

The marine vehicle is modelled as

ṗ(t) = R(t)

(
v(t)

0

)
+ c(p(t)), Ṙ(t) = R(t)Ω(ω(t)) (27a)

where the vector field c : R2 → R2 denotes the contribution
of the water currents to the velocity of the marine vehicle.
The control input u(t) =

(
v(t) ω(t)

)′
, consists of only the

forward and the angular velocity. The vector field is randomly
generated with ‖c(p)‖ ≤ 10 km/h for all p ∈ R2. A uniform
time sampling T = {0.04i, i ∈ N≥0} is considered and
the open-loop MPC optimization problems are solved using
ACADO Toolbox [29] with an horizon length of 1.8 hours.

B. Computation of stabilizing stage cost, terminal set, and
terminal cost

In the following examples, for any desired position tra-
jectory pd : R≥t0 → R2, parameterized over time, we use
the design procedure in Appendix B, with Ke = I2×2 and
ε = (−0.2, 0)′, to design the stage cost and the terminal cost
of an MPC controller that steers the vehicle toward the desired
position trajectory.

C. Example 1: ultimate bounded behaviour

Consider a desired circular trajectory

pd(t) = 4
(

sin
(

2πt
Tend

)
− cos

(
2πt
Tend

))′
(28)

with Tend = 10. The proposed strategy is used to optimize
the energy consumption of the vehicle, while still guaranteeing
boundedness of the closed-loop position around the desired
trajectory. Toward this goal, following the guidelines of Sec-
tion IV-A, the economic cost is designed as

le(t, x, u) = kc atan

(
1.5

kc
‖u(t)‖2

)
,

and the simulation is executed four times with
kc ∈ {0, 10, 20, 30}, to show the effect of the economic
cost on the closed-loop system.

It is worth noting that, in contrast to the standard case,
where the objective is to stabilize the system around the
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Fig. 1. Closed-loop position (top) and input (bottom) trajectories for the
different values of kc ∈ {0, 10, 20, 30} associated with the Example 1.
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Fig. 2. Average energy consumption of different values of
kc ∈ {0, 10, 20, 30} associated with the Example 1.
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Fig. 3. Closed-loop trajectories of the tracking error (top), instantaneous
energy consumption (middle), and economic stage cost (bottom) for different
values of kc ∈ {0, 10, 20, 30} associated with the Example 1. The dashed-
lines in the bottom figure show the maximum value of the economic stage
cost allowed by the saturation function.

equilibrium (x, u) = (0, 0), here the chosen economic stage
cost is conflicting with the stabilizing stage cost (45). This is
true because in general, at the desired behavior (tracking error
equal to zero), the system still needs a non-zero input signal
to keep the vehicle on the desired trajectory.

Fig. 1 shows the closed-loop state and input trajectories. The
case kc = 0 coincides with the nominal controller without
economic optimization. We observe that by increasing the
value of kc, the closed-loop position trajectory, following the
water currents, deviates from the predefined one reducing the
strength of the control inputs.

Using the guidelines of Section IV-B, where ∆ in (26) is
chosen to be equal to T/10 , it is possible to compute an a-
priori estimate of the bound on the size of the asymptotic error.
This leads to the values {0, 29.6588, 41.9439, 51.3706}
associated to kc ∈ {0, 10, 20, 30}, respectively. As expected
from the discussion in Section IV-B, Fig. 3 (top) shows the
conservativeness of such bounds in the proposed example. This
is also consequence of the fact that the economic stage cost,
shown in Fig. 3 (bottom), is generally far below its maximum
value considered in the computation.

The decrease of the instantaneous energy consumption and
the associated bounded increase of tracking error is displayed
in Fig. 2. The effectiveness of the proposed strategy is shown
in Fig. 3, which explicits the effect of the parameter kc on the
average energy consumption described by the mean of ‖u(t)‖
over the duration of the simulation.

D. Example 2: transient economic optimization

In this example, for the same desired trajectory of the
previous case, the proposed controller is employed to reduce
the consumption in a transient phase while still guaranteeing
asymptotic convergence to the desired position.

Toward this goal, following the considerations in Section IV,
the economic cost is designed as

le(t, x, u) = kc atan

(
1.5

kc
‖u(t)‖2

)
e−

1
2 t.

Similarly to the previous example, the effect of the eco-
nomic cost on the closed-loop system is shown executing the
simulation four times with kc ∈ {0, 10, 20, 30}. As expected,
Fig. 4 shows that increasing the value of kc, the closed-loop
position trajectory, following the water currents, deviates from
the predefined one reducing the strength of the control inputs.

Fig. 5, which explicits the effect of the parameter kc on the
average energy consumption described by the mean of ‖u(t)‖
over the duration of the simulation.

In contrast to the case considered in Example 1, here we
have an increase of the overall energy of the input signals,
although due to the transient effect of the economic stage cost,
convergence to the desired trajectory is guaranteed.

VI. CONCLUSIONS

This paper presents an MPC scheme that combines a
stabilizing stage cost with an economic stage cost. As the
main result, we prove that the state trajectory of the system in
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Fig. 4. Closed-loop position (top) and input (bottom) trajectories for the
different values of kc ∈ {0, 10, 20, 30} associated with the Example 2.
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Fig. 6. Closed-loop trajectories of the tracking error (top), instantaneous
energy consumption (middle), and economic stage cost (bottom) for different
values of kc ∈ {0, 10, 20, 30} associated with the Example 2. The dashed-
lines in the bottom figure show the maximum value of the economic stage
cost allowed by the saturation function.
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closed-loop with the MPC controller is ISS with respect to the
economic stage cost. This guarantee can be exploited in many
practical applications where the compromise between conver-
gence to a trajectory and economic optimization represents the
desired behavior. The effectiveness of the proposed scheme
is demonstrated via a numerical example, where an energy
efficient trajectory-tracking control problem of a marine vessel
model moving through water currents is considered.
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APPENDIX A
PROOFS

A. Proof of Lemma 1

The upper bound follows immediately by plugging the
feasible law uf ∈ PC(t̂, t̂ + T ) from Assumption 5 in the
shifted value function from Definition 3 and using the bound
on the economic cost (9). In fact, by the suboptimality of the
feasible law, we have

V(t̂, x̂) ≤
∫ t̂+T

t̂

ls(τ, x, uf )dτ +m(t̂+ T, x(t̂+ T ))

+

∫ t̂+T

t̂

le(τ, x, uf )dτ − TB

≤ αc(‖x̂‖),

which concludes the proof. �

B. Proof of Lemma 2

This proof is structured as follows: first, for a solution x of
(1)-(2) starting at time t ≥ t0 from x(t) ∈ X (t), Assumption 1
is used to obtain a time-invariant piecewise continuous lower
bound on the evolution of ‖x(τ)‖, for all τ ≥ t ≥ t0. Then,
combining such bound with α(·) and integrating from t to t+δ
leads to the desired result.

We start by noticing that Assumption 1 can be used to derive
the following lower bound

‖x(τ)‖ ≥ max(0, ‖x(t)‖ − (t− τ)b(r̂)), ∀τ ≥ t ≥ t0
(29)

for all ‖x(t)‖ ≤ r̂ and for an increasing function
b : R≥0 → R≥0 positive away from the origin. The
inequality (29) can be explicitly proved combining Lemma 7
with the fact that b(·) is an increasing function and that ‖x(t)‖
is not negative.

At this point, consider the set of constant samples ri := δri
with i ∈ N≥0 and δr > 0. Then, evaluating (29) with r̂ = ri+1

in the intervals [ri, ri+1], results in a piecewise affine lower-
bound β : R≥0 × R≥0 → R≥0 such that

‖x(τ)‖ ≥ β(‖x(t)‖, τ − t)

where

β(r, s) := αs(max(0, α−1
s (r)− s))

αs(s) := ri + (s− si)b(ri+1), ∀s ∈ [si, si+1]

with si+1 = si + δr/b(ri) and s0 = 0. Fig. 7 provides an
illustration of this bound. It is important to notice that:

1) Since b(·) is positive away from zero and increasing, the
function αs(·) belongs to class-K∞.

2) For all r ∈ R≥0 and s ∈ R≥0 we have β(r, 0) = r and
β(r, s) > 0 for r 6= 0.

3) For any two constants r̂1 and r̂2 with r̂1 > r̂2 we have
β(r̂1, s+ δ̂) = β(r̂2, s) for a positive δ̂ > 0, i.e., β(r̂2, ·)
is a copy of β(r̂1, ·) shifted forward by δ̂. Specifically,
this is true with δ̂ := α−1

s (r̂1)− α−1
s (r̂2).

4) For a given ŝ, the function β(r, ŝ) is non decreasing in
r ∈ R≥0.

5) For a given r̂ the function β(r̂, s) is non increasing in
s ∈ R.

Since α(·) belongs to class-K∞, the same conditions apply
to the function β̂(r, s) := α(β(r, s)). At this point, for any
t ≥ t0 and δv > 0 we can write∫ t+δv

t
α(‖x(τ)‖)dτ
δv

≥
∫ t+δv
t

β̂(‖x(t)‖, τ − t)dτ
δv

=

∫ δv
0
β̂(‖x(t)‖, τ)dτ

δv
=: αδ(‖x(t)‖).

(30)

Note that:

• Properties 2 and 5 implies αδ(0) = 0 and αδ(r) > 0 for
all r 6= 0.

• Properties 3 and 5 implies that αδ(·) is non-decreasing.
In fact, for any r̂1 and r̂2 with r̂1 > r̂2 the following
holds

αδ(r̂2) =

∫ δv
0
β̂(r̂2, τ)dτ

δv

=

∫ δv
0
β̂(r̂1, τ + δ̂)dτ

δv
≤
∫ δv

0
β̂(r̂1, τ)dτ

δv
= αδ(r̂1).

• αδ(·) is radially unbounded from αs(·) being radially
unbounded.

• αδ(r) is continuous in both r, from β̂(·) being continu-
ous, and δv .

Now consider

α̂v(r) := min
δv∈[0,∆]

αδ(r) (31)

where the minimum exists from αδ(r) being continuous on δv
with δv in a compact [0,∆]. Note that

• α̂v(·) is zero at zero, positive anywhere-else, and radially
unbounded since αδ(·) is zero at zero, positive anywhere-
else, and radially unbounded for all δv ∈ [0,∆].
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• α̂v(·) is non-decreasing since

α̂v(r̂1) = min
δv∈[0,∆]

∫ δv
0
β̂(r̂1, τ)dτ

δv

≤ min
δv∈[0,∆]

∫ δv
0
β̂(r̂2, τ)dτ

δv
= α∆(r̂2) (32)

for all r̂1 < r̂2.
• α̂v(·) is continuous from β̂(·) being continuous.

Therefore, there always exists a function α∆ : R≥0 → R≥0

belonging to class K∞ such that α∆(r) ≤ α̂v(r) for all r ≥ 0.
Combining α∆(·) with (30) and (31) concludes the proof. �

Lemma 7. Consider the system (1)-(2) and let Assumption 1
hold. Then, the bound

‖x(t+ δ)‖ ≥ ‖x(t)‖ − δb(‖x(t)‖)

holds for all t ≥ t0, δ > 0, and for an increasing function
b : R≥0 → R≥0 positive away from the origin. �

Proof. By Assumption 1 we can write

‖f(t, x, u)‖ ≤ b(r), ∀t ≥ t0, x ∈ B(r), u ∈ U(t) (33)

where, without loss of generality, the function b : R≥0 → R≥0

is considered to be monotonically increasing and positive
away from the origin. In fact, even if b(·) is not monotoni-
cally increasing (but only non-decreasing from the inclusion
B(r̂1) ⊂ B(r̂2) for all 0 ≤ r̂1 < r̂2) one could choose
b̂(r) := b(r) + εr, with ε > 0 is monotonically increasing,
greater than 0 away from the origin, and satisfies (33) with
b(r) = b̂(r).

At this point, consider a solution x starting at time t ≥ t0
from the states x(t). We identify two cases: either the solution
x evolves outside B(‖x(t)‖), i.e., ‖x(τ)‖ > ‖x(t)‖ for all
τ ∈ (t, t+δ], or it spends some compact and connected interval
of times Ii, with i ∈ N, inside B(‖x(t)‖). Let the generic ith
interval be defined as Ii := [ti, ti+δi] for a ti ≥ t0 and a δi >
0 where, by continuity of the solution x, ‖x(ti)‖ = ‖x(t)‖.
Then, for all τ ∈ Ii the solution satisfies

x(τ) = x(ti) +

∫ τ

ti

f(s, x, u)ds,

=⇒

‖x(τ)‖ ≥ ‖x(t)‖ −
∫ τ

ti

‖f(s, x, u)‖ds

≥ ‖x(t)‖ − (τ − ti)b(‖x(t)‖)
≥ ‖x(t)‖ − δib(‖x(t)‖)
≥ ‖x(t)‖ − δb(‖x(t)‖), (34)

where we used (33) and the facts that ‖x(τ)‖ ≤ ‖x(t)‖ and
that, for any two vectors v1, v2 ∈ Rn, the inequity ‖v1 +
v2‖ ≥ ‖v1‖ − ‖v2‖ holds. Therefore, for all the time when
x(τ) ∈ B(‖x(t)‖) the bound (34) holds. This concludes the
proof. �
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Fig. 7. Lower bound on ‖x(τ)‖ for the system f(t, x, u) = (1+sin(t))x2u
with u = − sign(x) ∈ [−1, 1], α(r) = r, b(r) = 2r2, δr = 0.1 and
x(t) = 0.25.

C. Proof of Lemma 3

The desired lower bound follows combining the Definition 3
of the shifted value function, the lower bound on the stabi-
lizing stage cost from Assumption 4-(ii), the positive semi-
definiteness of m(·) from Assumption 4-(iii), the upper bound
on the economic stage cost B from (9), and Lemma 2:

V(t, x̂) =

∫ t+T

t

l(τ, x̄∗, ū∗)dτ

+m(t+ T, x̄∗(t+ T ))− TB

≥
∫ t+T

t

ls(τ, x̄
∗, ū∗)dτ +

∫ t+T

t

le(τ, x̄
∗, ū∗)dτ − TB

≥
∫ t+δ

t

α(‖x̄∗‖)dτ −
∫ t+T

t

‖le(τ, x̄∗, ū∗)‖dτ − TB

≥
∫ t+δ

t

α(‖x̄∗‖)dτ − 2TB ≥ δα∆(‖x(t)‖)− 2TB

for all δ with 0 ≤ δ ≤ ∆ ≤ T . This concludes the proof. �

D. Proof of Lemma 4

The proof is structured as follows: first, we show that the
(15) applies to any extended trajectory, and then also to any of
the closed-loop trajectories, being a concatenation of extended
trajectories from Definition 2.
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Consider the extended state and input trajectories xei and
uei , respectively, and let at first δ ≤ T , then

V(ti + δ, xei(ti + δ)) ≤
∫ ti+T+δ

ti+δ

l(τ, xei , uei)dτ − TB

+m(ti + T + δ, xei)

= V(ti, xei(ti))

−
∫ ti+δ

ti

le(τ, xei , uei)dτ +

∫ ti+T+δ

ti+T

le(τ, xei , uei)dτ

−
∫ ti+δ

ti

ls(τ, xei , uei)dτ +

∫ ti+T+δ

ti+T

ls(τ, xei , uei)dτ

−m(ti + T, xei) +m(ti + T + δ, xei) (35)

where the first inequality arises from the fact that the extended
trajectory is not optimal. Combining (35) with (8) and the
bound on le(·), results in

V(ti + δ, xei(ti + δ))− V(ti, xei(ti))

≤ −
∫ ti+δ

ti

ls(τ, xei , uei)dτ + 2δB

≤ −
∫ ti+δ

ti

α(‖xei‖)dτ + 2δB (36)

where the last inequality follows from Assumption 4-(ii).
Using similar computations, it is easy to show that (36) also
applies to the case where δ > T .

To see that (36) still holds for the closed-loop (1) with (6),
it is enough to notice that the associated state trajectory x is a
concatenation of pieces of extended trajectories computed at
the different time instants ti ∈ T , and therefore, considering
tj = bti + δc, results in

V(ti + δ, x(ti + δ))− V(ti, x(ti))

≤ −
j−1∑
k=i

∫ tk+1

tk

α(‖xek(τ)‖)dτ

−
∫ ti+δ

tj

α(‖xej (τ)‖)dτ + 2δB

= −
∫ ti+δ

ti

α(‖x(τ)‖)dτ + 2δB

which concludes the proof. �

E. Proof of Lemma 5

Consider the sampling S from (16). Combining (12) with
(17) results in

V(ti+1, si+1) ≤ V(ti, si)

− δαδ̄(α−1
c (V(ti, si))) + 2δ̄B. (37)

Let α̂(·) be a class-K∞ function such that
α̂(r) ≤ δαδ̄(α

−1
c (r)), for all r ≥ 0, and (Id − α̂)(·)

belongs to class K, which always exists by Lemma B.1 of
[27]. Combining the latter bound with (37) results in

V(ti+1, si+1)− V(ti, si) ≤ −α̂(V(ti, si)) + 2δ̄B. (38)

At this point, following the same steps in [27], specifically
form (13) to (17) of the latter work, there exists a class-KL
functions β̂δ(·), possibly dependent on δ̄ and δ, such that

V(ti, si) ≤ max{β̂δ(V(t0, s0), i), γ̂(B)}

with γ̂(·) defined in (19) for any class-K∞ function ρ(·) such
that (Id− ρ)(·) belongs to class-K∞. �

F. Proof of Lemma 6

Consider a sampling S from (16), then:
• From sample to sample, by Lemma 5, the bound

V(ti, si) ≤ max{β̂δ(V(t0, x0), i), γ̂(B)} (39)

holds for all i ∈ N≥0;
• Within the generic time interval [ti, ti+1), from (15) the

value function never increases more than 2δ̄B.
As a result, equation (20) can be satisfied by a continuous
upper bound β̂(·) of the discontinuous “sample-and-hold”
function β̂1(·) defined by β̂1(r, s) = β̂δ(r, bscT ) + 2δ̄B
with bscT := max{i : ti ≤ s, ti ∈ T }, e. g.,
β̂(r, s) := β̂1(r, 0) + 2δ̄B for all (r, s) ∈ R≥0 × [t0, t1]
and β̂(r, s) := (1 − θ(s))β̂1(r, i − 1) + θ(s)β̂1(r, i) with
θ(s) := (s− ti)/(ti+1− ti) for all (r, s) ∈ R≥0× [ti, ti+1]
with i ≥ 1. This concludes the proof. �

APPENDIX B
DESIGN OF A TRAJECTORY-TRACKING MPC CONTROLLER

Consider the vehicle model (27) and the tracking error
defined as

e(t) := R′(t)(p(t)− pd(t))− ε, (40)

where ε := (ε1, ε2)′ ∈ R2 is a given constant vector, arbitrary
small in norm, with ε1 6= 0. Computing the first time derivative
of e results in the following error dynamical model

ė = −SR′(p− pd) +R′
(
R

(
v
0

)
+ c− ṗd

)
= −S(R′(p− pd)− ε)− Sε+

(
v
0

)
+R′(c− ṗd)

= −Se+ ∆u+R′(c− ṗd), ∆ :=

(
1 ε2
0 −ε1

)
. (41)

This section, as in [21] but for the model with water
currents, addresses the design of an MPC control law that
drives the vector e(t) to the origin as t → +∞, and thus
drives ‖p − pd‖ → ‖ε‖. Specifically, we design an auxiliary
control law kaux(·), a stabilizing stage cost, a terminal set, and
a terminal cost that satisfy Assumption 4, where the vector x
is replaces with e and (e, u) = (0, kaux(t, 0)) is considered to
be the desired steady-state.

Considering the error dynamical model (41) and noting that,
from ε1 being different from zero, the matrix ∆ is full rank,
the control input

u(t) = kaux(t, e) = ∆−1(−Kee−R′(c(t)− ṗd(t))) (42)
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makes the origin e = 0 an exponentially stable equilibrium
point. This is certified by the Lyapunov function

Vaux = 0.5e′e (43)

with the associated closed-loop decrease

V̇aux = e′(Se+ ∆u+R′(c(t)− ṗd(t))) = e′(S −Ke)e

= −e′Kee ≤ −‖e‖2λmin(Ke) = −2λmin(Ke)Vaux,
(44)

where we used the fact that S is a skew-symmetric matrix
and therefore v′Sv = 0 for any v ∈ R2. Using the proposed
auxiliary control law, Assumption 4-(ii) is trivially satisfied by
the stage cost

ls(t, x, u) = ‖e‖2Q + ‖u− kaux(t, 0)‖2O ≥ ‖e‖2Q (45)

for any positive define matrix Q � 0 and positive semi definite
matrix O � 0. Moreover, since the proposed auxiliary control
law globally exponentially stabilizes the origin of the error
space, the terminal set can be omitted and the terminal cost is
computed using Proposition 27 of [12].
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