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Abstract—We propose a numerical algorithm for multiple
vehicle motion planning that takes explicitly into account the
vehicle dynamics, temporal and spatial specifications, and energy-
related requirements. As a motivating example, we consider the
case where a group of vehicles is tasked to reach a number of
target points at the same time (simultaneous arrival problem)
without colliding among themselves and with obstacles, subject
to the requirement that the overall energy required for vehicle
motion be minimized. With the theoretical setup adopted, the
vehicle dynamics are taken explicitly into account at the planning
level.

The paper formulates the problem of multiple vehicle motion
planning in a rigorous mathematical setting, describes the opti-
mization algorithm used to solve it, and discusses key implemen-
tation details. The efficacy of the method is illustrated through
numerical examples for the simultaneous arrival problem. The
initial guess to start the optimization procedure is obtained from
simple geometrical considerations, e.g., by joining the desired
initial and final positions of the vehicles via straight lines.
Even though the initial trajectories thus obtained may result
in inter-vehicle and vehicle/obstacle collisions, we show that the
optimization procedure that we employ in this paper will generate
collision-free trajectories that also minimize the overall energy
spent by each vehicle and meet the required temporal and spatial
constraints.

The method developed applies to a very general class of
vehicles; however, for clarity of exposition we adopt as an
illustrative example the case of wheeled robots.

I. INTRODUCTION

OTION PLANNING for autonomous vehicles in the
Mpresence of geometric, temporal, and energy-related
constraints is a challenging problem that is at the core of
many real applications. The rapid development of the field
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of robotics in the past decade, going from single robot tasks
to missions that require coordination, cooperation, and com-
munication among a number of networked vehicles makes the
availability of versatile motion planners increasingly impor-
tant. Ground [20], aerial [22], marine [10], and space robotics
[12] alike illustrate the large spectrum of possible application
domains that call for the use of reliable motion planners
aimed at optimizing the performance that can be achieved
in real scenarios, either in terms of reducing maneuvering
time or minimizing energy consumption, or an appropriate
combination thereof. The increasing sophistication of groups
of autonomous vehicles that are tasked to carry out extremely
challenging missions in cooperation, often in hazardous and
complex non-structured environments, add to the complexity
of the supporting mission planning systems, which must ad-
dress explicitly inter-vehicle and vehicle-environment collision
avoidance. For these reasons, cooperative motion planning
continues to pose formidable challenges to system designers.

A. Problem Setting

It is envisioned that, in the not-too-distant future, groups
of autonomous vehicles equipped with advanced sensor suites
will roam the environment to acquire data at an unprecedented
scale, detect and monitor episodic events, and inspect crit-
ical infrastructures on an almost permanent basis. Meeting
these objectives under harsh operation conditions requires
careful planning with a view to proper mission execution
under the constraint of limited energy. The latter is a natural
consequence of energy storage limitations, which become the
overriding factor in the operation of robots that must operate
in a fully autonomous mode over extended periods of time.
Planning is also required to ensure, in the case of multiple
vehicle operations, that the robots meet spatial configuration
constraints.

It is against this backdrop of ideas that, in this paper,
we address the following multiple vehicle motion planning
problem: given a number of (possibly heterogeneous) vehicles
tasked to arrive at desired target positions simultaneously and
in the presence of known obstacles, compute trajectories that
join the initial and target points, minimize overall vehicle
energy expenditure, and meet the dynamical constraints of
each vehicle while avoiding inter-vehicle and vehicle/obstacle
collisions. Space limitations dictate that we focus on this
simultaneous arrival problem. However, the core methodol-
ogy developed for cooperative motion planning applies to a
multitude of other mission scenarios.
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Figure 1. An overview of the trajectory planning framework introduced in this paper.

We tackle the problem of multiple vehicle motion plan-
ning by adopting an optimal control theoretical setting and
including explicitly in the problem formulation the possibly
complex dynamics of the vehicles involved. The planning
tool that we develop affords mission designers an efficient
methodology to understand how different cost functions and
vehicle characteristics impact on the expected performance
of a group of vehicles. In contrast with many strategies
commonly reported in the literature for near real-time motion
planning, we do not resort to approximations that often end
up restricting the applicability of the algorithms proposed to a
very limited set of possible mission scenarios. These would be,
for instance, discrete (i.e., gridded) environments, discrete sets
of motion primitives (i.e., prescribed “maneuver elements”),
and/or discrete time, together with the underlying general
assumption that no problems will occur after the transition
from the planning space to the application space, such as
the occurrence of obstacles that are too small for the discrete
environment/motion/time grid size to have been captured in the
planning phase. Our conviction is that once the nature of the
problem of motion planning is understood in a general sense,
choices affecting the efficiency of an algorithm (e.g. making
the problem finite-dimensional instead of infinite-dimensional
as in our proposed approach) can be made from an informed
point of view, and the results of the planner presented here
can then be used as “ground truth” against which to validate
the results obtained later through a modified algorithm that
reduces the computational load; e.g. by means of “educated
heuristics” or by going from continuous to discrete time
optimization. Our interest lies in understanding what kind of
cost functions can be useful for motion planning of multiple
vehicles in realistic scenarios. Making this approach applicable
to on-line planning, possibly in a receding horizon fashion, is
not the focus of this paper and is left for future work'.

The methodology adopted builds on a numerical method for
solving optimal control problems initiated by Hauser [15] and
developed with coworkers, that is known as the PRojection
Operator based Newton method for Trajectory Optimization

! In [25], the authors claim that trajectory generation that returns a feasible
result in “under a minute” can be considered as being an “on-line planner”.
Although being a rather vague definition, in this sense, depending on the
complexity of the problem setting (number of vehicles and obstacles and
time horizon), our method can be considered as on-line applicable.

(PRONTO). It is a direct method that constructs a second
order approximation of the optimization problem directly in
continuous time (thus avoiding the transcription phase [3]),
and employs a Newton method in the Banach manifold of
system trajectories, with second order convergence.

B. State-of-the-art

The literature on vehicle motion planning is vast and defies
a simple summary. The problem is well known and the
methodologies for its solution proposed in the literature are
diverse; see for example [26, 33, 9] and the references therein.
Still, to the best of our knowledge, no motion planner is
available that takes into account the full vehicle dynamics
and addresses explicitly the issues of energy minimization
and multiple vehicle collision unless some assumptions aimed
at simplifying the task at hand are done. In many cases,
the approaches are limited to planning paths without the
associated timing laws that are an integral component of a
trajectory—see e.g. [33, p. 161] for an illustration of the
difference between these two terms. Common approaches
that are used to make the motion planning problem easier
to address are, e.g., discretization of the environment [35],
simplified [27] or subclasses of possible vehicle models [13],
and a limited set of possible motions [4] or path shapes [29].
In fact, one of the most common approaches is to include the
limitations imposed by the vehicle dynamics at the planning
level by adding them to the problem in the form of velocity
and acceleration constraints that are imposed on a path planner,
see, e.g., [22]. In this respect, the trajectory generation method
we present in this paper also stands in contrast to our previous
approach [19].

Many path and trajectory planning approaches limit them-
selves to a subset of possible path shapes, e.g. Dubins paths
(i.e. lines and arcs) [29, 34]. This allows for the computa-
tion of possible maneuvers using a tree-based planner for
finding a collision-free path [14, 21]. However, this comes
at the expense of reduced flexibility of the solution, and
possibly undesired first- and second-order discontinuities at
the transition points of the path components, which put the
vehicle actuators under more load than would be necessary.
Differentiability issues can be avoided by planning polyno-
mial paths of sufficiently high degree [25, 23, 38, 32]. A



maneuver is then considered “feasible” if related kinematic
and dynamic quantities such as velocity, acceleration, and
curvature satisfy suitable bounds over the entire planning
horizon to increase the confidence that the actual vehicle will
be able to track the planned motion. Although with these
latter planning approaches non-smoothness of the resulting
trajectories ceases to be an issue, some conservatism is in-
troduced in order to be able to express the vehicle limits in
terms of simple kinematic or dynamic constraints. In contrast
to the described approaches, our planner produces trajectories
that satisfy nonlinear vehicle dynamics. In other words, the
trajectories resulting from our planner are guaranteed to be
feasible in terms of the vehicle dynamics and C2-smooth (or
higher), for the simple reason that they are the solution of an
optimization process that explicitly incorporates the nonlinear
vehicle model, which the computed trajectories satisfy.

Alternatively, originally non-smooth paths are sometimes
smoothed by fitting polynomials in a post-processing step
[29], an approach that might be classified as separating path
planning (finding a non-smooth path through the environment
based on a given discretization) from trajectory optimization
(smoothing the paths, possibly in an iterative manner [6]).
Since this necessarily involves changing a path after a solution
to the multiple vehicle planning problem has been found, the
possibility exists that collisions may be re-introduced into a
formerly collision-free set of paths. Planning in this sense is
essentially a two-step process (i.e. planning and subsequent
refinement) [7], which may result in the situation where the
results of one step are influenced by the other step in such a
manner that both alternate without finding an optimal solution.
In contrast, our approach is a one-step solver that uses collision
avoidance specifications directly in the minimization process,
so that collisions have an immediate impact on the shape of
the cost functional.

Post-processing of trajectories to verify their feasibility
in terms of constraints is usually done on the basis of a
discretization of the trajectories in space or time [7]. Such a
discretization is used in the vast majority of methods available
in the literature, and offers some of the advantages of direct
methods, e.g. easy implementation and relative robustness to
poor initialization. However, it also brings with it the problem
of finding a suitable step size: the grid cannot be too small,
because otherwise the finite-dimensional optimization problem
would become intractable for a general-purpose solver, while,
if the time grid is too coarse, it is possible that not all violations
of the constraints (e.g. collisions) are detected. This problem
is completely avoided in the motion planning approach that we
propose in this paper, since it uses a variable step size solver.
This is because the projection operator approach that is at
the root of our methodology is not based on a transcription
phase, which would be the standard for many direct methods
in optimal control [8]. Using a variable step size solver ensures
that no collision falls “in between two discrete points”; i.e.,
situations such as that in [7], where the authors need to do a
sampling of the trajectories and to adapt the step size in certain
regions according to the properties of the environment, do not
occur. In other words, we propose to first find a solution and
then approximate it (for in-memory storage), whereas most

approaches first approximate the problem and then solve it on
a discrete subspace.

C. Main Contributions

The main contributions of this paper are threefold:

1) Optimization Framework: We develop a numerical
framework for the computation of minimum-energy, inter-
vehicle and obstacle collision-free, multiple-vehicle trajecto-
ries that allows for the explicit inclusion of arbitrary full
vehicle dynamics (instead of simple algebraic constraints) in
the non-convex optimization problem (illustrated in Figure 1).
By incorporating explicitly the vehicle dynamics, together
with models of the vehicle’s actuators and power source, it
becomes possible to compute, for each candidate maneuver,
the energy expenditure at the energy source level, and not
simply the output mechanical energy imparted to the vehicle.
It is not essential that the initial curves be feasible trajectories;
if required, the projection operator may be used to transform
them into feasible trajectories in terms of the vehicle dynamics
before invoking the optimization algorithm. Furthermore, the
initial curves do not have to satisfy the inter-vehicle and
obstacle avoidance collision constraints.

2) Barrier Functional: We introduce a refinement of the
barrier functional method introduced in [18] that shows im-
proved performance of the algorithm in the presence of
collisions among vehicles and with obstacles. This barrier
functional is used as extension of the interior point optimiza-
tion method to incorporate the collision avoidance constraints
as part of the cost functional, thus achieving an approximate
solution to the constrained optimization problem by means of
a continuation approach.

3) Simulations: We show numerical examples to demon-
strate the effectiveness of the method. In order to maintain the
focus on the method itself, a simple second-order dynamical
model of a non-holonomic, differential drive robot is devel-
oped, including battery energy consumption; obstacles are
assumed to be enclosed in a circular hull. The demonstration
scenarios include multiple vehicles performing a formation
change, moving in a random obstacle field, and executing a
survey mission with repeatedly intersecting trajectories.

D. Terminology

The basic terminology is defined next. In the remainder of
this paper, we use the term “collision avoidance” to designate
the avoidance of inter-vehicle collisions; the term ‘“obstacle
avoidance” will be used for situations where a vehicle avoids
a stationary obstacle. With a slight abuse of semantics, we use
formulations like “the projection operator” to mean both the
mathematical operator as well as the full approach to solving
an optimization problem; distinguishing both meanings will be
clear from the particular context in which the terms are used.
The notion “trajectory” is to be understood as referring to time-
dependent state-input curves satisfying the vehicle dynamics.

This paper is organized as follows: Section II introduces the
vehicle model adopted for illustration purposes, describes the
cost functional involved in the motion planning problem, and



formulates the latter rigorously. The projection operator ap-
proach adopted to solve the resulting optimization problem is
briefly described in Section III, together with a summary of the
barrier functional used to incorporate optimization constraints.
Sections IV and V discuss the numerical implementation of the
algorithm and show the results obtained from representative
simulations. Conclusive remarks with a perspective on future
research are given in Section VI. Two appendices give a
detailed development of the vehicle model and its electrical
system.

II. PROBLEM FORMULATION

The methodology that we propose applies to arbitrarily
complex vehicle dynamics. In this paper, however, in order
to not clutter the presentation and distract the reader from the
main contribution, we chose to build the presentation on the
simple model of a unicycle-like ground robot.

A. Vehicle Dynamics

The vehicle model considered in this work is that of a
two-wheeled mobile robot, depicted in Figure 2. The model,
obtained from first principles and detailed in Appendix A, is
given by

T = ucos
Y = usiny
b= ()

mu = Cc1u —+ CQ(TL + TR)

Ji = c3r + ca(L — TR),

where 7 and J are auxiliary terms defining the equivalent
mass and moment of inertia, respectively, and c¢i, c2, cs,
and c4 are constants defined through the model’s physical
properties. The model states and inputs are listed in Table I. In
what follows, {I} and {B} denote an inertial and body-axis
reference frame, respectively.

Table I
LIST OF STATE AND INPUT VARIABLES FOR THE ROBOT MODEL AT HAND.
THE BODY FRAME IS DENOTED AS { B}, THE INTERTIAL FRAME AS {I}.

Var.  Description Unit
x z-coordinate of center of mass in {I} [m]
y y-coordinate of center of mass in {I} [m]
[ yaw angle (in the z-y-plane) [rad]
u inertial velocity along the {8}z axis [m]/[s]
r angular speed about the {B} axis [rad]/[s]
TR right motor driving torque [Nm]
TL left motor driving torque [Nm]

Many trajectory optimization approaches are limited to
differentially flat systems [36], since this allows for planning
to occur in the output space [28], resulting in a fast algorithm.
One must be careful, however, even when working with
differentially flat systems, as the cost functions of interest
may in fact be rather complicated (i.e., highly nonlinear)
functions of the “flat coordinates”, limiting the effectiveness
of a simple performance analysis. The vehicle model (1) is
also differentially flat; however, many systems of interest do
not possess this property. We therefore avoid restricting our

planner to this subclass of systems and avoid using properties
of differentially flat systems, thus making our framework
suitable for generic vehicle models.

In order to deal with more than one vehicle, we write the
state and input of the i-th vehicle in compact notation as

4 ] AT T
xli — {x[f] xg]] =z v i u 7 )
L ) @
and rewrite (1) in standard notation as
iy (t) = f(x[i] (t), uld (t),t) . “)

B. Cost Functional

Our goal is to minimize the energy spent by each vehicle
when moving from a given initial to a given final configu-
ration. As detailed in Appendix B, the instantaneous power
consumption for each robot can be computed as

(N2 (D)2
i i u +(u
Lo (< (8), (1)) = Ra(l)K?('z)

(4] (]
e (U o) + 2 ) 4 By )
t Pw Pw
where K., K, and R, are suitable constants related to the
electromechanical equations of the two DC motors mounted on
each vehicle. The length of an axle (i.e., the distance of a wheel
to the robot’s center of mass) is denoted as py; the wheels’
diameter is py. The term F, is the (constant) hotel payload, i.e.
the power required by all on-board devices that are not related
to the execution of any maneuvering commands, and which
require approximately constant input power, for example, the
on-board computer and a sensor package.

C. Terminal Condition

A terminal condition is imposed on each vehicle state at the
final time 7" adopted for the maneuver, i.e., its pose (position
and orientation) and its forward and angular velocity. In other
words, we desire that each robot reach its designated final pose
at time 7', satisfying

x(T) = xﬁi} , (6)

where N, is the total number of vehicles and i € {1,..., N,}.
The constant x}z] denotes the terminal condition.

Figure 2. A schematic view of the robot used in this paper with all states of
the dynamic model.



Instead of imposing the terminal condition as a hard con-
straint, we follow what is by now a classic approach (see
e.g. [5]) and formulate it as a soft constraint by defining the
terminal cost m(x[(T")) for each vehicle as

i 4 1 i i
m(x(T), ") = ST =<,

where the positive definite weight matrix P; is chosen to be
sufficiently large so as to represent a good trade-off between
integral and terminal cost.

Employing a terminal cost rather than a terminal constraint
allows for a certain “soft boundary”. If we had a terminal
constraint and a system that would not allow for the exact
satisfaction of that constraint, the problem itself would be
infeasible, regardless of how close a feasible solution could
exist to the terminal condition. When the exact satisfaction
of the terminal condition is essential, the formulation of the
terminal condition as a soft constraint can be further improved
by using the approach described in [16]. This advanced method
is, however, not discussed in this paper, as the results we obtain
by just using the terminal cost (7) are already satisfying.

D. Constraints for Collision Avoidance

A further requirement is that the trajectories be generated
in such a way that neither collisions between the vehicles
nor among vehicles and obstacles may occur. The intuition
behind our solution is shown in Figure 3. In the illustration
for the inter-vehicle collision avoidance scenario (Figure 3a),
both vehicles are shown at the same time ¢t = ¢;. At any
time ¢, no vehicle should be closer to another than the sum of
their security distances, 2r.. However, crossings of trajectories
in space are allowed: this happens, for example, when the
left vehicle moves faster than the right one along the paths
represented as dotted lines, so as to avoid intersection in time.

The requirement for the obstacle avoidance scenario in
Figure 3b is that no robot may be closer to the boundary of an
obstacle (defined by the obstacle’s radius r, around its known
center coordinates) than r., the robot’s security distance 2,

We define a set of trajectories as being inter-vehicle
collision-free if at all instants of time all vehicles are separated
from each other (i.e., pairwise) by at least a given security
distance. This is equivalent to defining circles around each
vehicle, centered at the origins of their body axes, with radii r,
that are half of the security distance; the disks are not allowed
to overlap. To achieve collision-free trajectories, the motion
planner must therefore ensure that the constraint

Ceol (X[i,] (t),xm (?)) — | |
(x) —xP0)? e - @)
(2r¢)? (2r¢)?

be satisfied for all times ¢ € (0,7") and all vehicles i,j €
{1,...,N,} with i # j.

—1>0 (8

2 To simplify the representation, only circular obstacles are considered at
this stage, although it technically would not be a problem to represent other
obstacle shapes as well by formulating the constraint differently, e.g. using
intersections of half-planes. Also, we can cover any obstacle with a union of
(circular) disks.

(b)

Figure 3. Illustration of the inter-vehicle collision avoidance and obstacle
avoidance constraints. Figure 3a captures the definition of the (minimal)
security distance between two robots; Figure 3b depicts the definition of the
minimal security distance between a robot and an obstacle.

The obstacle avoidance constraint can be formulated in
a similar manner. Let an obstacle be defined through the
coordinates x, and ¥, of its center and its radius r, (see
Figure 3b). Then, each obstacle k& can be represented by
the 3 x 1 vector ol* with o[lk] = o, O[Qk} = Yo,, and
ogc] = 7,,. Using this notation, trajectories that achieve
obstacle avoidance satisfy the constraint

Cobs(x[i] (t),o[’“]) =
(x) — o) (x(t) - o}

)2
-1>0, 9
(re+ o)

(o)

where k € {1,..., N, } and N, is the number of obstacles in
the environment.

E. Cost Term for Desired Trajectories

In case the user may want to “bias” the optimization process
towards trajectories that meet specified additional criteria,
such as lying in preferred regions of the environment, desired
curves’can be defined to guide the motion planning algorithm.
The cost to be paid for a trajectory that does not match the
specification of a desired trajectory is added as an additional
term inside the cost integral. By doing so, we can penalize
deviations of the planned trajectory from a desired curve
without necessarily forcing it to exactly match the desired
trajectory (which might not necessarily be a valid trajectory
of the system or satisfy constraints). To this effect, we define
positive definite weight matrices Qr and Ry that, together with
a desired system states xéﬂs and desired inputs udﬂs, specify
the additional cost term

1 ; 7 1 i i
Sl == @)[g, + 510 —uil O[5, - 10

In case the optimizer is to be used solely as a trajectory
generator, both weight matrices may be set to be zero.

3Since they do not necessarily satisfy the vehicle dynamics, these motions
are referred to as “curves”, not as “trajectories”.



F. The Optimization Problem

The various components of the problem can now be put
together to yield the optimization problem

minimize / E pow

+ L (x1 (), (1)

7),ul(7))

N,
7) ) dr+ Z m(xl(T), xy} )
i=1

subject to %1 = f(x[1 ul’l 1)
ceot (X (1), x51(1)) > 0, i # j
Cobs (x[i] (1), O[k]) >0
(11
withi,j € {1,..., Ny } and k € {1,..., N,} and the boundary

conditions x!’ (O) =x

III. TRAJECTORY OPTIMIZATION USING THE PROJECTION
OPERATOR APPROACH

This section contains a description of the method adopted to
deal with the optimization problem defined above. We make
use of the notation in [15, 18]. Instead of solving (11) with the
hard constraints as given above, we employ a barrier functional
that allows for the satisfaction of interior point constraints as
part of the cost functional itself. After discussing the approach
adopted to solve the optimization problem, we give a formal
introduction of the barrier method.

A. Projection Operator Approach to the Optimization of Tra-
Jectory Functionals

We review the projection operator based Newton method
for the optimization of trajectory functionals, introduced by
Hauser in [15]. The projection operator approach is suitable
for addressing optimal control problems of the form

T
minimize /0 Wa(r),u(r), ) dT + m(z(T)) (12)

subject to & = f(x,u,t), z(0)=xp.

The key idea exploited is that a properly designed trajectory
tracking controller defines a function space operator that
maps a desired trajectory (a curve) to a system trajectory
(that can be viewed as an element of a Banach manifold,
henceforth referred to as the system’s trajectory manifold).
Composing the optimization objective (a functional) with the
(trajectory tracking) projection operator converts the dynam-
ically constrained optimal control problem into an essentially
unconstrained optimization problem.

Let Z =[0,7] or [0,00) be an interval of interest and sup-
pose that £(t) = («(t), u(t)), t € Z, is a bounded curve (e.g.,
an approximate trajectory of f) and let n(t) = (x(t),u(t)),
t € Z, be the trajectory of f determined by the nonlinear
feedback system

a(t) =
u(t) =

z(0) = =z, (13)

The mapping

P:&=(al), u() = n=(z(),u())

defines a nonlinear projection operator. Note again that we
refer to a trajectory as including both time-dependent states
and inputs. Roughly speaking, if K (-) stabilizes a trajectory
&o, then the trajectory nn = P (&) will be well defined for all £
near & and the mapping P will be continuous (and C" if f
is). Properties of a projection operator defined for curves and
trajectories on an infinite interval were deveoped in [17], where
‘P is used to show that the set of exponentially stabilizable
trajectories of f is in fact a Banach manifold. When the
interval of interest is bounded, the same properties hold for
‘P without any stability requirement (which is meaningless in
that case), but K(-) can then be chosen as if to stabilize so
that the modulus of continuity of P is small.

Let K(-) be bounded on Z = [0,7] and use 7 to denote
the manifold of trajectories of f with initial state z¢. Then
P) € T for all £ € domP and £ € T if and only if
& = P(&). Together, these imply that P(&) = P(P(£)) for all
£ € domP or P =P oP so that P is indeed a projection.

The curve £ = (a(-), u(+)) may be used to provide a redun-
dant representation of the trajectory n = P(&) = (z(-),u(-)).
This robust representation of the trajectory (z(-), u(-)) is well
suited for numerical computations since the approximation
errors introduced by discretization in time and quantization in
space are kept small by the stabilizing effect of the feedback.
In contrast, if f describes an unstable system, one can find
quite different trajectories for which the initial state and
sampled control trajectories are the same to machine precision.
Note that a suitable feedback gain K(-) may be constructed
by, for example, solving a finite horizon linear regulator
problem [1] about a trajectory 1 = (x(-), u(+)).

Defining the functional

Mazllmvmmmﬂw+mm@»

for curves £ = (a(+), u(+)), we see that the optimal control
problem (12) can be written as minge7 h(§). Defining

9(&) = n(P(¢))

for £ € U with U open and P(U) C U C domP, we see that
the optimization problems

min h(¢) and min 9(&)

are equivalent in the following sense. If £* € T NU is a
constrained local minimum of A, then it is an unconstrained
local minimum of ¢. If £* € U is an unconstrained local
minimum of g in U, then & = P(£T) is a constrained
local minimum of 7. This observation is the basis for the
development of a family of Newton and quasi-Newton descent
methods for the optimization of h over 7.

The projection operator P provides a convenient parame-
trization of the trajectories in the neighborhood of a given
trajectory. Indeed, the tangent space 17 of bounded trajec-
tories of the linearization of & = f(x,u,t) about £ € T can
be used to parameterize all nearby trajectories [17]. That is,



given £ € T, there is an ¢ > 0 such that, for each n € T with
ln—¢&|l < e there is a unique ¢ € T¢T such that n = P(£+().
Note also that ¢ — DP(&)-( is the bounded linear projection
operator defined by linearizing (13) about ¢ and that ( € T¢T
if and only if ¢ = DP(¢) - C.

We use the following Newton method for the optimization
of trajectory functionals. The reader interested in understand-
ing the optimization method at an intuitive level is invited to
consult [31, Fig. 1], where a graphical illustration that captures
the iterations involved in the algorithm can be found.

Algorithm (Projection operator Newton method)
given initial trajectory & € T
for 1 =0,1, 2, ...
design feedback K (-) defining P about &;
search direction

G =arg min Dh(€) -+ 3 Dg(6)- (GO (14)
step size
v =axg min h(P(& +4)) (15
update
&iv1=P& +7G) (16)
end

This algorithm is similar to the Newton method for uncon-
strained optimization of a function g(-) in, e.g., a finite-
dimensional space. As usual, the second order Taylor poly-
nomial is used as a quadratic model function for determining
a descent direction. The key differences are that (a) the search
direction minimization (14) is performed over the tangent
space to the trajectory manifold and (b) the update (16)
projects each iterate onto the trajectory manifold, giving a
descending sequence of system trajectories. The projection
operator and the cost evaluation are easily computed by
solving ODEs (initial value problems).

The Newton algorithm (with 7; = 1) provides (local)
quadratic convergence to a local minimizer satisfying second
order sufficiency conditions. The algorithm is easily gen-
eralized (or globalized) by replacing the Newton direction
calculation (14) by a quasi-Newton search direction calculation

G =arg min Dg(&)-C+50&) (GO, A7)
where the functional ¢(&;) is a suitable positive definite
approximation to D?g(&;). For instance, if I(z,u,t) is pos-
itive definite (or strongly convex) in (z,u), one may use
q(€) - (¢,¢) = D?*h(€) - (¢,¢). Note also that it is not
necessary to do an accurate line search in (15). The standard
backtracking line search (see, e.g., [5]) has been shown to
work well.

B. A Barrier Functional for Constraints

Trajectory optimization with inequality constraints on the
state and input can be approached with the help of a barrier
functional [18] that generalizes the use of log barrier functions

in finite dimensions [5]. Indeed, to approximate the solution
of the constrained optimal control problem

T

min | (@ (7), u(r), )dT + m(x(T))

st a(t) = f(x(t),u(t),t), x(0) = xo
cj(z(t),u(t),t) <0, tel0,T],je{l, ...k}

(18)

with the constraints ¢;, we could try and solve
T
min / U(z(7),u(r),7)
0
- eZlog (—cj(a(t
J

st &(t) = f(z(t),u(t),t), =(0)=
for ¢ > 0. The log barrier terms in the cost prevent the
constraint functions from crossing zero, allowing them to go
to zero as e approaches zero. From this point of view, the
approach seems to be effective.

A key difficulty in the formulation in (19) is the fact that the
use of the log barrier function implies that infeasibility will
not be tolerated at all. That is, it is not possible to evaluate the
cost in (19) unless £ is a feasible curve. Furthermore, even if
¢ is feasible, we can not be sure that P(§) will be.

To resolve this issue, we define, for 0 < § < 1, the
approximate log barrier function

), u(t), t))dr + m(z(T)) (19)

z2>0
—1}—log5 z<94.

—log z

Bs(z) = l[(z;%)Q

2 o

(20)

The C? function (35(-) retains many of the important properties
of the log barrier function z — —logz while expanding
the domain of finite values from (0, 00) to (—o0,c0). Both
functions are (strictly) convex and strictly decreasing on their
domains. Thus, if ¢ : R — R is a strictly convex proper
function, the function z — Bs(—c(z)) is also a strictly convex
proper function on R. It follows that, for convex f(z) and

cj(z),
—I—EZ@; Cj

is a convex problem that has the same solution (z}) as the one
that would be obtained using the standard log barrier function,
provided that ¢ > 0 is small enough that 6 < —c;(z?}) for all
7.

Returning to infinite dimensions, we use the constraint
functions in (18) to define the approximate barrier functional

mln f(z 2D

T
0= [ Y ss-ca.uw.ur @)
0 -
J
for a given curve & = (a(-), u(+)).
The unconstrained optimal control problem
(23)

géig h(€) + ebs (&)

is an approximation of (18) in much the same way that (19)
is. The key difference is that the functional A(-) + ebs(-) can
be evaluated on any curve £ in X while the objective in (19)



may only be evaluated on feasible curves. As in the finite
dimensional case, a trajectory & that is a locally optimal
solution of (19) is also a locally optimal solution of (23)
provided 6 > 0 is sufficiently small. In particular, since &£
is continuous,

0 < min min —c;(z}(t), us(t),t)

(24)
tel0,T] J

is sufficient for 0.
The projection operator based Newton method may be used
to optimize the functional

ge.s(§) = (P (§)) + ebs(P(€))

as part of a continuation method (i.e., following a central path)
to seek an approximate solution to (18). The strategy is to start
with a reasonably large € and d, for instance, e = § = 1. Then,
for the current € and §, the problem

(25)

min ge 5(£) (26)

is solved using the Newton method starting from the current
trajectory. If necessary or desired, the value of J is reduced
to, for instance, ensure that (19) has been solved at the
current level of e. When satisfied, the trajectory is updated
to the current optimal. Next, ¢ and & are decreased using,
for instance, € < ¢/10 and ¢ < 0/10. Then go back to the
minimization step and continue. The effect that § has in this
extension of the logarithmic barrier functional is demonstrated
in Figure 4a.

For efficiency, the line search in the Newton method can
be modified to help in the search for feasible trajectories and
to aid in maintaining feasibility once it has been achieved.
This can be done reasonably well since the projection operator
ensures that P(£ 4+ ~¢) will be close to & + ¢ provided (¢ is
not too large. Thus, when £ is a feasible trajectory, we expect
that the trajectory £ = P(£ + () will be feasible provided
that the curve & 4+ ( is feasible and «( is sufficiently small.

10 \ 10
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Figure 4. A comparison of Bs5(z) with B5(c(z)) for different values of §
with their C2-smooth continuation defined for z <= §. In Figure 4a we use
the convention o(z) := — log(z) (i.e. for 6 = 0).

IV. NUMERICAL IMPLEMENTATION

In what follows, we present a numerical method to solve
the optimization problem defined above, using the previously
described barrier function approach for the hard constraints.
We begin by describing the procedure of converting the afore-
mentioned optimization approach into a numerical algorithm.

After formulating the constraints as barrier terms, we introduce
an extension of the barrier functional formulation, so that
it will not reward greater distances among the vehicles or
between vehicles and obstacles, as would be the case for
the original definition that was discussed above. The section
concludes with some consideration on the implementation of
the algorithm on a laptop computer.

In contrast to the vast majority of approaches present in the
literature, we solve this optimization problem as a continuous-
time problem on an infinite-dimensional function space. It
is important to bear in mind that, to solve the optimization
problem in this manner, we do not need to discretize it (neither
in time, nor in the vehicles’ state space or their input and
output spaces). It is merely for representing and storing the
results that discretization is required.

A. Optimization Constraints

Following the barrier functional formulation discussed in
Section III-B, the constraint functions (8) and (9) will be
incorporated as barrier terms in the cost integral. In contrast to
the standard log-barrier method, this method allows expressing
inequality constraints as a valid function on the full search
space (i.e., extending the domain from (0,00) to (00, 00)).
Moreover, it is continuous and twice differentiable, thus
meeting the prerequisites of the projection operator approach
that we employ here to solve our optimization problem. By
adjusting the tuning parameters, this barrier function can be
shaped such that collisions of a robot with another one or
with an obstacle have a strong impact on the integral cost,
whereas, due to an improvement we made on the original
barrier functional (to be discussed at the end of this section),
the function’s influence is effectively zero for the time intervals
during which no collision occurs.

Making use of the barrier functional, the collision avoidance
term of the cost functional is defined as

leot (X(t)) = Z 656 (Ccol (X[Z] (T)a X[j] (T))>
i,7€{1,...,Ny}
i#]
+ Z €fs (cobs (x (T),O[k])) . @D
ie{l,...,Ny}
ke{l,...,No}

As mentioned above, the barrier functional’s stiffness de-
pends on the choice of the two tuning parameters € and §,
which, after the initial run of the Newton descent method has
converged, may be adapted and the algorithm re-started with
the previous solution as the initial curve, thereby gradually
“hardening” the barrier. This allows accommodating initial
trajectories that may not be feasible in terms of the constraints
expressed by the barrier functional; an initial “soft” barrier
will naturally drive the trajectories out of the infeasibility
region of the optimization space. Later adjustments of the
barrier functional’s parameters make the barrier more stiff,
which prevents the trajectories from re-entering the infeasible
regions. It is important to keep in mind that setting the
parameters to a stiff barrier right from the beginning might
not result in a feasible solution at all since the descent of the
cost functional might be too steep for the Newton descent.



Thus, we can define the total optimization problem as

T
min /
0

(lpow (x[i] (1), ul? (T))

i j€{l,..., N}
kE{L o No}

+ i (x1 (), ul (1), 7)
oo (x1'(7), xU)(7)) ) dr
+m(x(T))

(28)

s.t. X = f(X7 u, t)v X(O) = X0,

where x( is the vector of initial boundary conditions x([)i 3

B. An Extension of the Barrier Functional

As shown in Figure 4a, 85(z) assumes (unbounded) negative
values for z > 1. As a consequence, the negative part may
dominate in the cost integral; in what concerns our application,
this effectively puts a reward on a vehicle to stay away from
another vehicle (or obstacle) as far as possible. In our area
of application, i.e. trajectory generation and optimization for
multiple vehicles, this formulation of the barrier functional
(Section III-B), i.e. being unbounded from below, is dis-
advantageous: for example, with long distance trajectories,
where potential collisions with other vehicles or obstacles
become rare events over the total time interval, the integral
over the cost functional is dominated by the huge negative
area of the corresponding s barrier term. This leads to the
fact that the relative importance of saving energy diminishes,
allowing for large-distance circumnavigation of the conflict
areas, together with the associated large system inputs and
high energy expenditure—instead of maintaining e.g. a low-
value speed profile and staying closer to the boundaries of the
collision zone. In addition, the desired positive peak in the
cost functional at the time of potential collision can, over the
course of the optimization, be lowered to negative values by
staying as far away from the collision zone as other existing
optimization constraints (e.g. vehicle dynamics) would allow.
To overcome this disadvantage, we extended the [s barrier
functional by forming a composition with what we sometimes
call the “hockey stick”: the C2-smooth function

anh(z
o {t (=)

z otherwise ,

g
if z>0
(29)

so that every occurence of [s(z) is being replaced by
Bs(o(z)). By doing so, the value of the barrier goes to
zero quickly, but never becomes negative. The effect of this
extension is shown in Figure 4, where we compare it with the
previous approach: Bs(c(z)) does asymptotically approach 0
for z — oo. In contrast to what is shown in Figure 4a, this
has the effect of only requiring the vehicles to avoid collisions
taking into account the given security distance without driving
them further away from other (and from obstacles) than
necessary (Figure 4b).

In the remainder of this paper, we let S5(z) denote the
extended barrier functional, i.e.,

Bs(2) == Bs(o(2)), (30)

where (5 denotes the (original) barrier functional from Sec-
tion III-B.

C. Implementation Considerations

The projection operator approach to the optimization of
trajectory functionals can be implemented in Matlab as an
iteration over sequential calls to a number of Simulink models,
that act as wrapper functions for the actual algorithm code.
For the purpose of execution time reduction, the latter was
implemented in C. Using calls to those “models” makes it
easy to obtain a numerical solution of the differential equations
involved by leaving the numerical integration The ODE solver
“ode45” was used in all simulations we show in this paper,
with an absolute tolerance of 107!° and a relative tolerance
of 1075. to the ODE solver of choice.

The algorithm itself was defined as a M-file script taking
care of the iterations, computing the Newton steps, adjusting
the step size, and invoking the S-function files with new inputs.
A number of S-functions were defined for different parts of
the projection operator. Namely, to compute: (1) the regulator
gain to drive the system to its desired terminal state, (2) the
gainK (-) for the projection operator itself and simultaneously
executing the projected trajectory and obtaining the cost, and
(3) the first and second order derivatives of the cost functional
required by the Armijo rule [2].

Solving the minimization problem (11) in the particular
way we propose here immediately leads to numerous benefits:
we get C2-smooth trajectories, which are highly desirable for
reducing motor wear. In addition to this, the formulation in
(11) automatically ensures simultaneous arrival®, which is
an absolute necessity for cooperative missions, especially if
the planned trajectory only constitutes one part of a larger
mission plan. We also have the benefits of a system state that
is explicitly incorporated in the optimization problem (see,
eg. [30]). Finally, by making use of the projection operator
method, we have at our disposal the possibilities of infinite-
dimensional optimization, which means that our approach will
not suffer from the problems of discretization inherent to other
optimization methods reported in the literature. (Notice that
discretization must necessarily occur at a certain stage when
we solve optimization problems with a digital computer, but
in our case this is dependent on the settings of the ODE solver
employed, which can be, and in our case is, a variable-step-
size solver.)

The simulation experiments conducted for this paper (see
Section V) are all based on the same set of constants specifying
the robot parameters (see Table II). The extended version of
the (s barrier functional introduced above was used in all runs
of the optimizer. A required security distance of 2.0 meters
between vehicles and 1.0 meters between a vehicle and an
obstacle was specified, effectively resulting in . = 1.0 m
(c.f. Figure 3).

Every optimization run started with the weights e = 32.0
and 6 = 1.0 for the inter-vehicle collision avoidance ;s barrier.
The obstacle avoidance scenarios additionally used the values

4Since we numerically solve this optimization problem using an ODE
solver, simultaneous arrival is achieved in an approximate fashion.



Table 11
ROBOT BODY AND WHEEL CONSTANTS (TABLE IIIA) AND MOTOR
ELECTRIC CONSTANTS (TABLE IIIB) OF THE GROUND ROBOT.
mp 10.0 kg b 0.05 Nms
o 025m K. 0.046 Nm/A
Jy 0.2 kg/m? K. 0.046 Vs/rad
my  0.15 kg R, 0.66 Q
Pw 0.1 m
Jw  0.00075 kg/m? P, 260W
(@ (b)

e = 16 and § = 0.25 as initial setting for the obstacle
avoidance barrier. The energy optimization term (5) of the
cost function was weighted with a factor of 4.0 to ensure
that it dominates the other components. The weight P on the
terminal cost m(z (7)) was fixed as a diagonal matrix’

Pf = diag([Pfl, e ’PvaD

31
with Py, = diag([100, 100, 507 /180, 1000, 1]) . ©1)

In addition to this, the terminal cost (7) was weighted with a
scaling factor of 3.0.

The projection sub-part of the algorithm was also used
for obtaining initial curves that are feasible in terms of the
robots’ dynamics. By projecting a given, desired path together
with a velocity profile (possibly non-smooth) onto the set
of trajectories of the system, we obtain a feasible vehicle
trajectory.

V. SIMULATION RESULTS

The trajectory generation and optimization problem method
was tested with various scenarios. We first discuss a simple
trajectory generation problem, and subsequently will move on
to more complex scenarios showing the necessity of outer
loop iterations that gradually adjust the barrier functional to
make it stiffer. Finally, we will show results with problem
configurations to obtain two different feasible paths through
a random field of obstacles by merely changing the trade-off
between different parts of the cost function.

A. Trajectory Generation for Multiple Vehicles

An example of a “pure trajectory generation” scenario is
shown in Figure 5: by only specifying only the boundary
conditions (i.e. initial and final poses as well as forward and
rotational velocities) of the problem, the method generated
an energy-optimal solution to the multiple vehicle planning
problem.

Besides allowing for formation changes within a fleet of
autonomous vehicles, this understanding of trajectory gen-
eration also has an application to the solution of the “Go-
To-Formation” behavior that is required e.g. for autonomous
underwater vehicles (AUVs) before a mission starts: since
the vehicles are constantly subject to the influence of waves
and currents, they cannot be deployed in formation. This

5 Alternatively, the weight matrix P; could also be obtained as the solution
of the LQR problem given by the linearization of the augmented state system
about the final time 7'.

Figure 5.
pictograms allow us to visualize the security distance that must be maintained
by the collision avoidance constraint: the circles are allowed to touch, but not
to intersect.

A formation change scenario. The circles around the robot

makes it necessary to start multiple vehicle missions on-the-fly,
thereby requiring the vehicles to reach the mission plan’s first
formation simultaneously and with equal forward velocities
from positions scattered over the initial field of deployment
from a supply vessel.

Managing a formation change by only specifying the bound-
ary conditions has, in comparison to using desired trajectories
for the same goal, the advantage that the planner has more
flexibility in shaping the trajectories. This is especially useful
in transition phases between different robot formations since
collisions may only occur during these transitions. Having to
move along desired trajectories would pose an unnecessary
restriction to the problem. In other words, a formation change
should be achieved not by telling the robots in a fleet how to
change their formation, but only that they have to do so.

The computed solution is also optimal in the sense that
deviations from the straight line connections between the
initial and final positions are minimal; the vehicles avoid each
other by exactly their security distance, which can be visually
verified by considering Figure 5. The trajectories do intersect,
in space but not at the same instants of time; the deconfliction
constraints (illustrated by the circles around the vehicles that
are shown at the times of closest approximation) are always
satisfied. In a more colloquial manner, one could say that the
trajectories intersect in space, but are separated in time, or,
in other words, they intersect in space, but not in time.

It is also interesting to see the evolution of the optimal
trajectories while iterating over the configuration parameters
of the (s barrier functional. Figure 6 shows this for the
initial curve, the final solution, and some intermediate steps
for the formation change scenario. The frames illustrate the
importance of beginning the descent with a “soft” value for €
and 4, so that the trajectories can move away from the collision
points without being stuck (in the sense that a very stiff setting
of the parameters would make it much harder to find a descent
direction). Later on, while gradually increasing the stiffness of
the barrier functional, and reducing its relative weight at the
same time, the by now collision-free trajectories can move
closer to the constraint boundary.
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Figure 6. Development of the local optima obtained over various iterations on the configuration parameters of the 35 barrier functional. Some intermediate
steps are omitted, since they cannot be easily distinguished from each other at the resolution of a printed paper.

B. Optimization of Repeatedly Crossing Trajectories

A more sophisticated scenario was used to verify the capa-
bilities of our method when optimizing a collection of desired
trajectories. The desired mission is a “braid maneuver”, where
the robots repeatedly switch their relative positions (Figure 7).
This is a maneuver that provides great ground coverage for
exploration purposes, similar to the well-known “lawnmower
maneuver” for autonomous surface craft in marine applica-
tions, but is most likely more economic since it avoids the
fast transients that are inherent to the “lawnmower” when
going from straight line to curved paths and back. A possible
application for the “braid maneuver” would be e.g. observation
missions for multiple vehicles that are aimed to maximizing
ground coverage, or multiple vehicle SLAM.

This solution to optimizing the “braid maneuver” problem
that is shown in Figure 7 was achieved by ']providing a high
weight in Qr for the states x[f], X[Ql } and xz of each vehicle
1. The other states and all inputs were weighted with 0. The
initial curve was a straight line connection between the initial
and final positions, with corresponding values for initial and
final heading. Optimizing the trajectories with a non-zero
weight on the energy term of (28) also serves the purpose
of regularizing the problem.

This scenario additionally shows how important a proper
parameter setting is for obtaining the desired solution. A
relatively “soft” barrier defined through the initial setting of
e and § as specified above, in conjunction with big weight
matrices Q1 and Ry, is crucial to make the trajectories “jump”
away from the initial curve (straight lines) during the first
set of iterations. As a result, the vehicles pass the potential
collision points that define the peaks of the barrier functional
in the desired manner. In later (outer) iterations, when € and ¢
are gradually reduced to make the barrier stiffer and force the
solution into a collision-free area, the trajectories are more
and more fixed to the respective side of the peak of the
barrier functional. Thus, trajectories that are feasible in terms
of the mission specifications are maintained even when the
barrier terms’ influence on the cost function diminishes with
increasing stiffness of the barrier.

C. Obstacle Avoidance

As an example of how a differently weighted trade-off
among the energy, trajectory tracking, and collision avoidance
components of the cost function may yield very different
solutions, consider the scenario shown in Figure 8. Here, we

solve the problem of making two vehicles maneuver across a
field of obstacles using two strategies. In the first strategy, the
vehicles are given desired spatial trajectories that are simply
straight lines from the initial to the final end-points (notice
that the straight lines intersect the obstacles and are therefore
not feasible). During the optimization process, the planner
modifies the trajectories in order to avoid collisions while
requiring minimum energy usage for doing so. In the second
strategy, the planner is not given any desired (straight line)
paths.

The obstacle field was randomly generated using a uniform
distribution in [0.0m, 50.0m] for the obstacle positions and in
[1.0m, 3.0m] for their radii. The result of an optimization run
is shown in Figure 8a: the resultant trajectories stay as close as
possible to the desired trajectories. The comparatively “sharp”
turns are connected to a reduction of the corresponding veloc-
ities and feasible in terms of the vehicle dynamics. A zoomed
view on a segment of the trajectories is shown in Figure 8b: the
resultant trajectories maintain the feasibility criteria defined
by the collision and obstacle avoidance constraints, visualized
here by the circles around the red-rimmed robot pictograms.
These circles mark the security margin around each robot
and are plotted only at those instants of time where the [
functional has a peak related to a local minimum of the inter-
vehicle distance.

It is interesting to compare this result with the one ob-
tained from pure trajectory generation, (Figure 8c) using what
previously were the desired trajectories as an initial curve in
the iterative optimization process. Otherwise, i.e., in terms of
obstacle data and boundary conditions, the scenario is identical
to the previous one. The trajectories obtained are smoother,
but at the expense of obtaining longer paths to follow. The
final time 7' was the same in both cases. However, since
the trajectories were not required to “stay close” to desired
trajectories defined a priori, the algorithm was able to converge
much faster than for the initial problem setting.

VI. CONCLUSION

We presented a numerical method for solving motion
planning problems for multiple vehicles. The method takes
explicitly into account the vehicle dynamics, and it generates
and optimizes the corresponding trajectories so that the energy
usage is minimized while satisfying temporal and spatial
constraints, such as simultaneous arrival and the avoidance
of collisions among the vehicles and with obstacles. We
emphasize that, in our approach, energy usage is not to be
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Figure 7. A “braid” maneuver for three vehicles. Desired trajectories are shown as dashed lines.
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Figure 8. Two trajectories to maneuver across a random obstacle field. This scenario shows the versatility that can be achieved by combining a non-feasible
“desired” trajectory with a cautious setting of the weights on the barrier functionals (Figure 8a). In Figure 8b, we show a zoomed portion of that solution,
and Figure 8c gives an alternative solution that was obtained by not specifying a desired trajectory.

understood in the purely mechanical sense (i.e., the integral
over the mechanical power obtained by multiplying each
wheel’s torque by the wheel’s rotational velocity or the thrust
force by the forward speed in the case of a two-wheeled robot
or an underwater vehicle, respectively). Instead, the energy
computation is done by including explicitly in the problem
formulation models of the actuators and energy sources used
to power the vehicles. In the case of a wheeled robot, this
yields the energy drawn from an electric power source. The
generated trajectories are feasible in terms of the vehicle
dynamics, optimal in the sense of the energy consumed,
and they ensure that, when executed by a trajectory tracking
controller, the vehicles neither collide with each other nor with
obstacles present in the environment. We remind the reader
that the proposed approach requires the vehicle dynamics to
be twice differentiable, and the analytical expressions need
to be implemented as part of the problem setting, since the
approach requires solving differential equations.

At its core, the algorithm makes use of a projection operator
based Newton descent method for unconstrained trajectory
optimization problems. Constraints imposed by inter-vehicle
collision avoidance and avoidance of obstacles are converted
into additive terms in the cost functional by the use of an
existent barrier function method that we improved to capture
the particularities of inter-vehicle and obstacle collision avoid-
ance. It is important to remark that we achieve asymptotic

convergence of the solution; in fact, the solutions converge
to a local minimizer that fulfills the second order sufficiency
condition (SSC). Since a solution obtained with the algorithm
is second-order sufficient, we may claim that the overall
problem presented and solved in this paper is well-posed.

In optimization, the initialization phase is an important part
of the problem, and our planner is no exception. Coordination
space planning [26, Section 7.2.2] might be a useful addition
as a pre-planning heuristic to obtain a good initial guess. Of
course, such an exploitation of the topological properties of
the problem comes at the expense of biasing the solution
toward a particular local minimum even before the core
trajectory optimization starts. This effect might be reduced by
using as a planner on the coordination space an algorithm
that is weighted with the expected energy usage, e.g. A*
with an appropriately designed goal function. However, since
constraints as inter-vehicle collision avoidance immediately
render the optimization problem non-convex anyway, such a
“pre-planning” approach can be expected to help in finding a
better local optimum.

In the future, we plan to extend our planning system by
adding a waypoint finding method as a pre-planning step that
incorporates topological information from the environment
as well as a desired configuration of the vehicle formation.
Because the robots’ equations of motion are explicitly in-
corporated into the planner instead of merely implemented



Table III
LIST OF VARIABLES USED IN DERIVING THE GROUND ROBOT MODEL.
Var.  Description Unit
b motor viscous friction coefficient [NT[m][s]
b wheel displacement on the axle [m]
(axle aligned with robot’s y axis)

Pw radius of one of the wheels [m]
mp mass of the robot’s body kel
my  mass of one of the wheels [ke]
éR right wheel rotational velocity [rad]/[s]
éL left wheel rotational velocity [rad]/[s]
UR right wheel longitudinal velocity [m]/[s]
ur, left wheel longitudinal velocity [m]/[s]
FRr force produced by right wheel [N]
Fi, force produced by left wheel [N]

Jb inertia of the robot’s body [kg] [m]?
Jw inertia of each wheel [ke] [m]?
Jr rotor inertia of one of the motors 194] [m]?
Iy motor current of left motor [A]
Ir motor current of right motor [A]
K motor torque constant [N][m]/[A]

as e.g. inequality constraints on velocities, accelerations and
path curvature, it will be relatively easy to adapt the planner
to a more complex vehicle model. We also plan to tune
the algorithm and test it in the course of field trials with a
fleet of autonomous marine robots. A further step aimed at
extending the planner will be its decentralization (see e.g.
[24, 37]) so that planning can be executed faster. This will
also require, amongst other extensions, the implementation of
a communication topology based on the robots’ formation.

APPENDIX A
DERIVATION OF THE ROBOT DYNAMICS

We present a model of a two-wheeled ground robot with
linear and rotational dynamics and ideal tires, i.e., no sideslip
and ideal rolling of the wheels. The variables describing the
robot’s physical dimensions are detailed in Table III. The
model can be obtained from first physics principles. We chose
to present it in detail in order to stress the fact that in our
approach the model includes not only the vehicle dynamics
but also its actuators (electrical motors). This allows for the
computation of the electrical energy that is drawn from the
batteries that power the motors. This is in contrast to a number
of approaches, where only the output mechanical energy is
computed.

The kinematic equations of the vehicle are given by

= ucosy (A-1)
Y = usiny (A-2)
h=r. (A-3)

Its dynamical model can be written as a set of equations
consisting of the linear (forward) and rotational dynamics of
a body, subjected to the two forces F1 and Fgr in Figure 9,
together with the dynamics of the motors for the left and right
wheel. Assuming that the moments of inertia of the latter are

equal, this yields the equations

(mp + 2my)i = Fy + Fg (A-4)
Joi = pp(FL — Fr) (A-5)
(Je + Jo)bL = Ky — bby, — py i (A-6)
(Je + Jw)br = KiIx — bg — puFr (A-7)
where we consider the torques
KtIL = TL (A-S)
Kilr =1 (A-9)

as model inputs. The terms pyF1 and pyFr that appear in
(A-6) and (A-7) constitute the reaction force that is imparted
on the ground by the vehicle in motion.

(a) Top view.

(b) Side view (right).

Figure 9. Illustration of the robot’s dynamics when undergoing a right turn.
The figure shows the position of the wheels in body coordinates and the forces
and induced torque acting on the vehicle’s body.

The robot dynamic equations are accompanied by the fol-
lowing kinematic equations describing the velocities of the
wheels at the contact points, computed as the sum of the
body’s forward velocity and the tangential velocity of the
wheels:

(A-10)
(A-11)

UL = U+ ppr

UR = U — PpT .
We further add a set of nonholonomic constraints (describing
the velocities of the wheels at their contact points under the
assumption that the only friction in the system comes from
the motors, i.e., the wheels are rolling freely):
(A-12)
(A-13)

ur = pwéL
UR = pwOR -
With (A-10) and (A-12), together with (A-11) and (A-13),

the wheels’ rotational velocities can be described in terms of
the body velocities as

: 1
0L = —(u+ por)

(A-14)

P

. 1
Or = —(u— ppr). (A-15)

Using (A-14) and (A-15) and their time derivatives, we now
derive a set of linear relations that later on will be needed for
substitution in the vehicle model, namely

. 9 . 9
O +0r = —u O+ 0r = —1

(A-16)
Pw Pw
. . 2 . . 2
HL - HR = %’I‘ 9L — 9R = %7‘ (A—17)



Table IV
LIST OF VARIABLES USED IN DERIVING THE INTEGRAL COST TERM OF
THE ROBOT’S ENERGY USAGE.

Variable  Description Unit
%3 left motor armature voltage [V]
W right motor armature voltage [V]
K. motor back EMF constant [VI1[s][rad]
L, armature inductance [H]
Ra armature resistance Q]
B hotel payload power consumption [W]
lpow total power needed by the robot [W]

Our aim is to find a final model with just two dynamic
equations, i.e., one for the forward dynamics and another for
the heading dynamics, that take the motor torques as inputs.
We begin by deriving the forward dynamics by adding (A-7)
to (A-6), resulting in
(Jr + Jw) (B + 0r) = 7.+ R — b(6L + Or) — pw(FL + FR) .

(A-18)
Inserting (A-16) and (A-4) in the above equation yields

2 2b
— (S + )i =1L+ TR — —u — py(mp + 2my)i (A-19)

2 .
+ (4 )i = —(L+1,) - Fu

(mb + 2my
W Pw W
(A-20)

and finally

(et )it = (. 47)— s, (A-21)

w w w

(mb+2mw—|—2p

which is the equation for the robot’s forward dynamics. The
correctness of (A-21) can be verified by considering the units:
both sides of the equation represent forces.

In a similar manner, we derive the heading dynamics by
subtracting (A-7) from (A-6), which yields

(Jr + JW)(QL — QR) = 1TL — TR — b(@L — QR) — pw(FL — FR) .
(A-22)
Using (A-17) and (A-5), this equation can be rewritten as
2 2
Tt Ty = — R — P~ P g (A23)
W Pw Pb
leading to the rotational dynamics
2 2 2
(Jo+ 225 (T + 1) = 2o — ) — Pobr . (A-24)
Pw Pw Pw

The same analysis as before can be made for the robot’s
heading dynamics (A-24): both sides of the equation have
to be torques. This is obviously true for the left-hand side,
where relative inertia terms are multiplied with the rotational
acceleration. The first term on the right-hand side constitutes
the input torques with a dimensionless constant multiplier, and
the second term represents the rotational damping.

Using (A-21), (A-24), and the vehicle kinematics (A-1) to
(A-3), the final robot model becomes a nonholonomic me-

chanical model with damping terms and no dynamic coupling,
consisting of five states, given by

T = ucosy

Y = usiny

p=r

. 2 1 (A-25)
mi = ——u+ — (7L + 7r)

W Pw
7. 2%
Jr=— br + (L—TR),

where the motor torques 7g and 7y, are the system inputs. The
auxiliary variables are defined as

1
m = myp + 2my + 2—2JW

, (A-26)
J=Jy+227,.

w

For clarity of the exposition, the model can be written as

T = ucosy
Uy = usiny
¢ =7 (A-27)
mi = ciu + CQ(TL + TR)
j?" = C3Tr + C4(’7’L — TR) s
where c1, c2, c3 and ¢4 are parameters defined as
2b 1 2p?
a=——5 C=— 63:*%5 C4:&~ (A-28)
pw pW pW pW
APPENDIX B

COMPUTING THE INSTANTANEOUS POWER REQUIREMENT

We aim to minimize the vehicle’s energy consumption
by solving a dynamically constrained optimization problem,
where the constraints represent the vehicle dynamics. For this
reason, we need to model the actual total power consumed by
the robot, which is given by

lpow = TLVi + IRVR + By . (B-1)

In this equation, P, represents the instantaneous power that is
consumed by the hotel payload, e.g. on-board computers and
sensors, which, for the simlicity of exposition, we assume to
be constant. All variables needed in the following section are
given in Table IV°. The robot’s complete electrical system
is depicted in Figure 10: it contains two DC motors and
a resistance representing the constant consumption of the
computer system.

The equations associated with the electric circuits (or arma-
tures) of the two DC motors can be written as

d .
I + R, =V, — KO,

L, B-2

Po gy (B-2)
d

Ldpbd Ig + Rolg = Vg — K.bg, (B-3)

SWe recall that, in consistent units (that is, K¢ in [N][m]/[A] and K. in
[VI[s)/[rad]), we have the numerical equivalence K; = K.—see e.g. [11,
Figure 2.26].



where |, and g refer to the right and left wheels, respectively.
There is virtually no interference between the three parallel
circuits, so the motors can be dealt with in a decoupled manner
using separate equations.

Jol0w 19|

=
peojfed By
3nou seindwiod
‘@'*_
-~

Jojow B

Figure 10. The robot’s electrical circuit.

For our purpose it is sufficient to consider the motors’
electrical equations at steady-state (obtained by neglecting the
inductances in the armature circuits), so that we remain with
static equations. Making the reasonable assumption that both
the left and the right motor are equally fabricated, we can
rewrite (B-2) and (B-3) as

Vi = R + K.0p

. (B-4)
VR = RoIr + K0 .
Notice that (A-8) and (A-9) can be rewritten as
I =n/K,
L 7’L/ t (B-5)
IR = TR/K[ .

By substituting (B-4) and (B-5) into (B-1), and making use
of the equations for for the rotational velocities (A-14) and
(A-15), we obtain the instantaneous power

2 2 K
lpow :Ra s +TR C(TL

K2 5, p*w(u‘i‘PbT)

+ =) + By, (B6)
Pw
which forms the cost for the optimization problem. Notice
that the first summand is a dissipative term related to the
electrical circuit, while the second term is the mechanical
power required to move the robot.

Ignoring the constant F,, we can write (B-6) in matrix form

as
T
x(T) Qe Se| |x(1)
lpow = T ’ (B-7)
u(r)| S’ Re| |u(r)
where the quadratic cost is determined by the matrices
R,
& 0
Qe = Os5x5 Rg = | % R
O a
K?
lo 00 ke Fh ]T B-5)
E= K. K. }
000 2K pw _2[)11)ﬂpw

It is easy to verify that the quadratic form (B-7) has seven
eigenvalues, four of which are non-zero. In particular, the ma-
trix has two positive eigenvalues corresponding to dissipating
energy, and two negative ones corresponding to recovering
energy from the motion. Note also that, since all constants in

(B) are positive, the magnitude of the dissipating eigenvalues
is larger than the magnitude of the energy storing eigenvalues,
which confirms the intuition that dissipating energy is “easier”
than storing it.
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